
1

Introduction and Concepts

The core part of this book, Chapters 2 to 5, constitutes a comprehensive
overview of different classes of MIP heuristics and describes individual heuris-
tics in detail. In Chapter 6, we present a computational study that analyzes
the impact of primal heuristics from different angles and presents two recent
and innovative lines of research that extend and develop the field in promis-
ing new directions: primal heuristics for mixed-integer nonlinear programming
(Chapter 7) and machine learning for primal heuristics (Chapter 8).

Before exploring these topics, this chapter introduces the main concepts and
notation that we will use throughout the book. In Section 1.1, we formally
introduce mixed-integer programs, while in Section 1.2 we give an overview
of the different types of complete algorithms used for solving them, from the
ubiquitous LP-based branch and bound to (less mainstream) primal methods.
Then, in Section 1.3, we provide an overview of how primal heuristics are used
inside MIP solvers: what their (typical) impact on the solving process is, and
how they are scheduled within the branch-and-bound search. Then, we give
a first categorization of the different types of primal heuristics inside a mod-
ern MIP solver. In Section 1.4, we introduce bound tightening and constraint
propagation, essential building blocks in the design of (many) primal heuris-
tics. In Section 1.5, we review the general concepts that are used when design-
ing a heuristic algorithm for (general) combinatorial optimization problems,
as those are relevant for the specific MIP case as well. Finally, we introduce
additional concepts that are used when analyzing primal heuristics for MIP
(Section 1.6) and for measuring their impact on the solving process (Section
1.7), most notably the primal integral.

1

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

2 Introduction and Concepts

1.1 Notation

Every maths book needs a section that is an accumulation of definitions. So
here is ours, introducing some core concepts of computational MIP.

Definition 1.1 (MIP problem) Let m, n ∈ Z>0. Given a matrix A ∈ Rm×n, a
right-hand-side vector b ∈ Rm, an objective function vector c ∈ Rn, a lower
and an upper bound vector l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n, and a subset
I ⊆ N = {1, . . . , n}, the corresponding (linear) MIP problem is given by

min cTx

s.t. Ax 6 b,

l j 6 x j 6 u j, for all j ∈ N ,

x j ∈ R, for all j ∈ N \ I,

x j ∈ Z, for all j ∈ I.

(1.1)

Note that the format given in Definition 1.1 is very general. First, maxi-
mization problems can be transformed into minimization problems by multi-
plying all objective function coefficients by −1. Similarly, “>” constraints can
be multiplied by −1 to obtain “6” constraints. Equations can be replaced by
two opposite inequalities. We assume, without loss of generality, that l j 6 u j

for all j ∈ N and l j, u j ∈ Z for all j ∈ I.
If I = ∅, problem (1.1) is called a linear programming (LP) problem.
For a given MIP P, the set

X̃(P) B {x ∈ Rn | Ax 6 b, x ∈ [l, u], x j ∈ Z for all j ∈ I},

is called the set of feasible solutions of the MIP. Let c? ∈ R ∪ ±∞ with

c? B inf{cTx | x ∈ X̃}.

If c? = −∞, we call P unbounded; if c? = +∞, we call it infeasible. If c? is
finite, we call it the optimal solution value of P. A solution x ∈ X̃ is called
an optimal solution if and only if cTx = c?. If c = 0, we call P a feasibility
problem.

One of the most effective techniques in MIP is the use of relaxations to
provide proven lower bounds on the optimal solution value of a given prob-
lem instance. The LP relaxation of a MIP arises by omitting the integrality
constraints.

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.1 Notation 3

Definition 1.2 (LP relaxation) Given a MIP P of the form (1.1), the LP

min cTx

s.t. Ax 6 b,

l j 6 x j 6 u j, for all j ∈ N ,

x j ∈ R, for all j ∈ N ,

(1.2)

is called the LP relaxation of P.

The feasible region of the LP relaxation is a polyhedron. There is always an
optimal solution of the LP relaxation that is attained in a vertex of this polyhe-
dron. Throughout this book, we will typically refer to LP-feasible solutions as
x̄ ∈ Rn, while we refer to integer feasible solutions as x̃ ∈ Rn−|I| × Z|I|. For a
given linear constraint ∑

j∈N

ai jx j ≤ bi,

and a given point x̄, we call the value∑
j∈N

ai j x̄ j

the activity of the constraint i with respect to the point x̄.
By knowing the optimal objective function values of a relaxation and of a

feasible (integer) solution, we get a dual bound and a primal bound, respec-
tively, for the optimal solution value of a MIP. To measure the quality of these
bounds with respect to either the optimal solution value or each other, we use
the notion of gap functions.

Definition 1.3 (primal gap) Let x̃ be a solution for a MIP, and let x? be
an optimal (or best known) solution for that MIP. We define the primal gap
γp ∈ [0, 1] of x̃ as

γp(x̃) :=

0, if cTx? = cT x̃ = 0,

1, if cTx? · cT x̃ < 0,
|cT x?−cT x̃|

max{|cT x?|, |cT x̃|}
, otherwise.

The primal-dual gap is a typical measure given by MIP solvers during run-
time. It is often referred to as an optimality gap, a name that might be consid-
ered slightly misleading since it does not explicitly describe the gap of any of
the bounds to optimality, but is, rather, a worst-case estimation.

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

4 Introduction and Concepts

Definition 1.4 (primal-dual gap) Let x̄ be an optimal solution of a relaxation
of a MIP and x̃ be a feasible solution for that MIP. We define the primal-dual
gap γpd ∈ R≥0 of x̄ and x̃ as

γpd(x̄, x̃) :=

0, if cT x̄ = cT x̃ = 0,
cT x̃−cT x̄
|cT x̄|

, if cT x̄ · cT x̃ > 0,

∞, otherwise.

Inequalities only constrain variables against shifting their values into one
direction. For the design of heuristics, it can be of interest to know into which
direction a variable “is more constrained.” This motivates Definition 1.5.

Definition 1.5 (variable locks) Let a MIP in the form (1.1) be given.

(i) The number of negative coefficients κ j := |{i : Ai j < 0}| of a column A· j is
called the number of down-locks of the variable x j.

(ii) The number of positive coefficients κ j := |{i : Ai j > 0}| of a column A· j is
called the number of up-locks of the variable x j.

Further, we call a variable x j trivially down-roundable, if κ j = 0, and hence
all coefficients of the corresponding column of matrix A are nonnegative. We
call a variable x j trivially up-roundable, if κ j = 0, and hence all coefficients of
the corresponding column of matrix A are nonpositive.

1.2 Algorithms for Mixed-Integer Programming

Since MIP is an NP-hard problem,1 all known algorithms for general MIP
have a worst-case exponential runtime. Branch and bound [108] is the most
widely used algorithm to solve mixed-integer programs. State-of-the-art MIP
solvers such as SCIP [2], FICO Xpress [60], Gurobi [85] and IBM ILOG
CPLEX [101] all use LP-based branch and bound as a basic algorithm that
is enhanced by various sophisticated subroutines to make the solvers efficient
in practice.

In many cases, primal heuristics for MIP have been studied as subroutines of
LP-based branch and bound; see in particular [18]. They might either be used
globally, before the main part of the search, or locally for individual subprob-
lems. The basic ideas of branch and bound are described in Section 1.2.1.

1 0–1 integer programming was among the 21 problems of Karp [103] for whom
NP-completeness was first proven. The NP-completeness proof for the general integer case
followed four years later [40].

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.2 Algorithms for Mixed-Integer Programming 5

Branch and bound, however, is not the only algorithm used to solve MIPs.
A group of algorithms that is closely connected to primal heuristics are primal
(exact) methods and are discussed in Section 1.2.2.

1.2.1 LP-Based Branch and Bound

input : A MIP P
output: An optimal solution x? for P and the corresponding objective

value c?

1 L ← {P}, U ← ∞, x̃← NULL
2 if L = ∅ then
3 return (x̃,U)
4 end
5 Select Pi ∈ L, L ← L\{Pi}

6 Solve LP relaxation of Pi, x̄← LP(Pi), Lloc ← c(x̄)

/* Bounding */

7 if Lloc > U then
8 goto line 2
9 end

10 if x̄ ∈ P then
11 x̃← x̄, U ← Lloc

12 goto line 2
13 end
14 Select j ∈ I : x̄ j < Z

/* Branching */

15 Split Pi into P2i+1 := Pi ∪ {x j 6 bx̄ jc}

16 P2i+2 := Pi ∪ {x j > dx̄ je}, L ← L ∪ {P2i+1, P2i+2}

17 goto line 2

Algorithm 1 LP-based branch-and-bound algorithm to solve MIPs.

The idea of branch and bound is simple, yet effective: an optimization prob-
lem is recursively split into smaller subproblems, thereby creating a search tree
and implicitly enumerating all potential assignments of the integer variables.
The principle algorithm is given in Algorithm 1; a visualization is given in
Figure 1.1.

The task of branching (line 15 in Algorithm 1.1) is to successively divide the
given problem instance into smaller subproblems until the individual

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

6 Introduction and Concepts

(a) (b)

(c) (d)

(e) (f)

.

Figure 1.1 LP-based branch and bound: graphical representation. (a) The original
MIP instance. (b) The root node represents the original problem. (c) Branching
creates two subproblems. (d) One node for each subproblem. (e) Bounding cuts off

suboptimal part. (f) The leaf node (green) is solved; the others will be recursively
branched on.

subproblems are easy to solve. The best of all solutions found in the sub-
problems yields the global optimum. During the course of the algorithm a
branching tree is created, with each node representing one of the subproblems.
Compare Figures 1.1(a)–1.1(d). The original MIP is represented by the root
node of the branching tree. Splitting the domain of one of the integer variables

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.2 Algorithms for Mixed-Integer Programming 7

by rounding the fractional LP solution up and down and installing the rounded
values as new lower and upper bound, respectively, creates two disjoint sub-
problems. Those subproblems together contain all feasible integer solutions,
but the minimum of its two LP relaxations will be strictly better than the LP
relaxation of the original MIP. In the branching tree, the new problems are
represented as children of the root node.

The intention of bounding (line 7 in Algorithm 1.1) is to avoid the com-
plete enumeration of all potential integer assignments for the initial problem,
which are usually exponentially many. If a subproblem’s lower (dual) bound is
greater than or equal to the global upper (primal) bound, that subproblem can
be pruned. Lower bounds are calculated with the help of a relaxation, which
is expected to be easy to solve. Upper bounds are found if the solution of the
relaxation is also (integer) feasible for the corresponding subproblem. This is
visualized in Figure 1.1(e).

Most commonly, the LP relaxation (1.2) is used for dual bounding. For
MIPs, the LP relaxation is simply constructed by dropping the integrality con-
ditions; see Definition 1.2.

Various techniques have been developed to improve this basic algorithm.
Besides involved strategies for making good branching and subproblem se-
lections, this includes supplementary procedures that help in tightening the
lower and upper bounds. At each subproblem, domain propagation (see Sec-
tion 1.4.2) can be performed to exclude values from the variables’ domains.2

The relaxation may be strengthened by adding further valid constraints (typi-
cally linear inequalities), which cut off the optimal solution of the relaxation,
but retain all feasible solutions of the MIP. In the case where a subproblem
is found to be infeasible, conflict analysis might be performed to learn addi-
tional valid constraints. Primal heuristics are used as supplementary methods
to improve the upper bound. A good overview on the state of the art in compu-
tational mixed-integer linear programming can be found in [1, 116].

1.2.2 Primal Methods

A possible categorization of algorithms to solve optimization problems is to
subdivide them into primal and dual methods. Loosely speaking, a primal
method is an algorithm that produces a sequence of feasible, suboptimal so-
lutions until it meets a criterion proving that the current incumbent solution is
optimal. By contrast, a dual method is an algorithm that produces a sequence
of infeasible, “super-optimal” solutions until it finds a first feasible point –
2 The domain propagation applied at each subproblem is only one of the actions that are applied

to strengthen the formulation. In particular, an aggressive strengthening is performed in the
root node of the MIP so as to influence as much as possible the solving process. The actions in
that phase are referred to as preprocessing (or presolving) [154].

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

8 Introduction and Concepts

which will be an optimum. As examples, consider the primal and dual simplex
algorithms.

The added advantage of LP-based branch and bound is that it produces
two sequences during the course of the algorithm, providing dual and primal
bounds at the same time.

By the above classification, the cutting plane method [79, 80] by Gomory,
is a dual method; it approaches the set of feasible solutions “from the outside,”
solving a sequence of relaxations. As soon as the relaxation finds a point that
is feasible for the MIP, the proof of optimality comes “for free.”

Since the mid 1990s, there has been a rising interest in using primal methods
to solve MIPs. The principal ideas of primal methods, however, date back to the
60s and 70s. Test set algorithms and integral basis methods are two important
groups of primal methods for (mixed-) integer programming. Both procedures
require a known feasible solution as a starting point.

Test set algorithms are motivated by the Ford–Fulkerson [67] algorithm to
compute maximum flows through a network. A test set for a given integer
program P is a finite set of n-dimensional integral vectors T ⊂ Zn, such that
cTt < 0 for all t ∈ T and that for every nonoptimal feasible solution x̃ of
P, there exists a t ∈ T such that x̃ + t is a feasible solution of P. If given
a feasible start solution and a test set for a pure integer (linear) programming
(IP) problem the algorithmic idea is straightforward: iteratively find an element
of the test set that maintains feasibility when added to the solution. If no such
element exists, the current solution is optimal. When Graver introduced the
idea of test sets for integer programs, he showed that finite test sets exist for
every feasible IP [83]. Weismantel gives a good overview on different methods
to computationally obtain test sets for IPs [172].

The “simplified primal integer programming algorithm” in [175] can be seen
as one of the first versions of an integral basis method or a primal cutting plane
method for integer programming. The idea is to solve IPs only by means of the
primal simplex algorithm, hence starting from a feasible solution (and an as-
sociated basis) and only performing simplex pivots that improve the objective,
maintaining primal feasibility and integrality of the basic solution. Since this
might not be possible in general, the constraint matrix is manipulated. In [175],
this is done by adding a Gomory cut (and its slack variable) for the pivot row
when conducting the ratio test of the simplex algorithm. This cut itself will
then be chosen as the pivot row instead, and by construction the coefficient
of the pivoting variable in the cut and the pivot ratio cancel out. As a conse-
quence, both the cut’s slack and the pivot variables take integral values in the
new linear system that has been enhanced by one column and one row. A dif-
ferent understanding of this procedure is that it cuts off neighboring fractional

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.3 Primal Heuristics inside MIP Solvers 9

points of the incumbent feasible solution until it can make a simplex step that
leads to a new incumbent.

Several extensions of this algorithm have been suggested. Notably, Haus
et al. present an integral basis method that manipulates the columns of the ma-
trix without any cuts being added [90]. By contrast, Letchford and Lodi [109]
suggest several enhancements that make Young’s algorithm converge more
quickly by adding more cuts. The main improvements come from separating
classes of cuts other than only Gomory cuts and by potentially adding several
cuts per round, which is typical in dual cutting plane algorithms.

There is a smooth transition between primal methods and primal heuristics.
On the one hand, some primal heuristics such as local branching or proximity
search can be modified such that they become complete algorithms; see [62,
64]. In this case, each of their iterations will take an integer solution as an input
and have either an improved integer solution or a proof of optimality as output,
which is the general concept of primal methods. On the other hand, complete
primal methods such as test set algorithms or the integral basis method could
of course be run for a limited time as a primal heuristic within a branch-and-
bound-based MIP solver.

1.3 Primal Heuristics inside MIP Solvers

In state-of-the-art MIP solvers, primal heuristics play a major role in finding
and improving integer feasible solutions at an early stage of the solution pro-
cess. Knowing good solutions early during optimization helps to prune the
search tree and to simplify the problem via dual reductions. Further, know-
ing a solution proves the feasibility of a problem, and a practitioner might be
satisfied with a solution that is proven to be within a certain gap to optimality.

A meaningful experiment in [91] categorized the impact of various compo-
nents of branch-and-bound-based MIP solvers on the primal and dual sides of
the solution process, measured by the primal and dual integral [17], respec-
tively.3 He considered branching rules, node selection, cutting plane gener-
ation, presolving and primal heuristics, and either deactivated all algorithms
belonging to a certain component or, in the case of branching rule and node se-
lection, switched to the vanilla default rules of random branching and a depth-
first search.

One result of this experiment was that, not surprisingly, primal heuristics
have a much larger impact on the primal side of the solution process than on the

3 The primal integral is defined formally in Section 1.7.

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

10 Introduction and Concepts

Figure 1.2 Degradation (in percent) of the average primal and dual integral of the
MIP solver SCIP when deactivating individual parts of the solver (or changing
them to vanilla rules for branching and node selection). Picture by G. Hendel [91].

dual side. Figure 1.2 shows that primal heuristics are by far the most important
solver component for achieving good primal performance. Without them, the
average primal integral, roughly speaking a measure of the convergence of the
primal solution quality, nearly doubles.

These results are in line with those obtained in [6] with a similar experiment,
this time based on the commercial MIP solver CPLEX. The results therein
show that disabling primal heuristics gives an overall slowdown of approxi-
mately 28% in shifted geometric mean, and the slowdown gets higher when
restricting to the harder models, that is, models that take more time to solve to
proven optimality. Most importantly, primal heuristics play an important role
in being able to solve models at all: a non-negligible share of models becomes
unsolvable if primal heuristics are disabled.

Heuristics can be called at many different points of the branch-and-bound
search. The MIP solver SCIP knows 13 different timings at which external
heuristic plugins can be invoked. These include:

• before a node of the branch-and-bound tree is solved;

• after a node of the branch-and-bound tree has been solved;

• after domain propagation, but before LP solving at a node;

• after LP solving, but before branching;

• during LP solving, in each pricing round;

• after the final node of a dive in the branch-and-bound tree;

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.3 Primal Heuristics inside MIP Solvers 11

• various timing points for nodes with LP solves;
• before presolving starts;
• after presolving, before the initial root LP; and
• in between presolving rounds.

Clearly, some overall strategy is needed to coordinate the execution of all
the different heuristics within a MIP solver. As usual, a trade-off needs to be
sought: on the one hand, we do not want to miss finding good solutions early
on in the process; on the other hand, we do not want the primal heuristics to
become too time-consuming, in particular on models where they are not very
effective.

Common approaches include setting frequencies at which each heuristic
should be called, or setting a resource limit on how much should be spent
in the solving process executing primal heuristics (e.g., 10% of the running
time). In addition, some expensive heuristics are given a chance to run only
once during the solution process, usually at the root.

Unfortunately, little is published about these strategies, with two notable ex-
ceptions. In [93], multi-armed bandit theory is applied for deciding how to split
the heuristic resource budget on the different sub-MIP heuristics implemented
in SCIP. The idea is that as we run each of them, we can collect statistics
about their success rate on the current model, and bias future calls (within the
same solution process) toward the most successful ones, but still giving the
other heuristics a chance to run from time to time. Finally, in [27], the overall
solution process is formally split into the following three phases:

• feasibility phase, where the solver tries to find a first feasible solution;
• improving phase, where the solver has found a feasible solution, but not yet

the optimal one;
• proof phase, where the solver has already found the optimal solution and it

just needs to prove optimality.

The intuition is that a different tuning of the solver components in general, and
of primal heuristics in particular, should be used in the three phases. For ex-
ample, primal heuristics could be disabled in the last phase, or they could be
more aggressive if we are still in the first. Of course, precisely knowing when
the transition between the improving and the proof phases happens is a chal-
lenge in itself, thus making the strategy adaptation a complex task. The recent
line of research on the use of machine learning techniques within MIP (see,
e.g., [12] for a recent survey on the topic) is a potentially promising direction
for leveraging data to tackle the above challenge. Some of the work devoted

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

12 Introduction and Concepts

to the use of modern statistical learning for primal heuristics is discussed in
Chapter 8.

Also, it is of utmost importance to balance the time invested versus expected
success when designing individual primal heuristics. One common principle
of achieving this is the so-called fast-fail (or first-fail) strategy. This idea has
its origins in the constraint programming and artificial intelligence commu-
nity [89] as a rationale for branching strategies, and was transferred to MIP
heuristics in [18]. The rule of [89]: “To succeed, try first where you are
most likely to fail” can be interpreted as prioritizing the most critical, or wa-
vering, decisions early on. For variable fixing strategies, for example, this
means attempting to fix variables that appear hardest to make feasible first.
In a constraint-based view, this means aggressively resolving constraints first
that are highly violated, rather than “locking in” constraints that are already
feasible or almost feasible. This strategy offers two main benefits. First, it is
easier to rectify the implications of a decision early on, when many variables
are still unfixed. Second, if those early critical decisions indeed lead to infeasi-
bility, the heuristic fails early, and at least minimizes the wasted computational
time, hence the term “fail fast.” The opposite strategy – that naively appears
more natural to many humans – would be to fix variables or resolve constraints
in a way that at each step minimizes the risk of getting an infeasible situation.
In many situations, this pushes those hard decisions to the very end, where
there is less freedom to resolve their implications, hence making success less
likely, and ultimately often leads to running into an infeasible situation only
after investing a lot of computational effort.

We end the section by presenting two possible categorizations of primal
heuristics. The first categorization is based on the computational expensive-
ness of the building blocks that the heuristic is allowed to use. In this regard,
heuristics inside a MIP solver are usually split into:

• LP-free heuristics, that is, those algorithms that are based solely on con-
straint propagation and other logical reasoning, but that not are allowed to
solve linear programs (with the possible exception of solving a final LP in
the mixed-integer case after all integer values have been assigned a value).

• LP-based heuristics, that is, those algorithms that are allowed to solve LPs,
possibly multiple times.

• sub-MIP heuristics, that is, those algorithms that even allow the solution of
mixed-integer programs, which are typically a (quite) restricted version of
the main problem, with strict limits.

Alternatively, we can categorize heuristics depending on their purpose, that is,
if their main objective is to construct a feasible solution from scratch (start

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.4 Rounding and Constraint Propagation 13

heuristics), or rather to improve upon an already known feasible solution (im-
proving heuristics). Typically, but not necessarily, LP-free and and LP-based
heuristics are start heuristics, while most sub-MIP heuristics are improving
heuristics, defining and exploring neighborhoods associated with the known
feasible solutions.

The vast majority of the primal heuristics discussed in the next chapters
belong to only one of the classes above, with some notable exceptions. Never-
theless, the heuristics will be presented by grouping them into further (smaller)
categories so as to better highlight their characteristics. We will also try to dis-
cuss them by referring to the concepts introduced in this section, namely the
suitability of each group of heuristics to be invoked in specific points of the
branch-and-bound search and its different phases defined above.

1.4 Rounding and Constraint Propagation

The two major components of LP-based heuristics are rounding and constraint
propagation.

1.4.1 Rounding

In the MIP context, we refer to rounding as the operation that is applied to
turn an LP-feasible solution x̄ into a mixed-integer vector x̂. Namely, for each
j ∈ I, if x̄ j is integer, then x̂ j = x̄ j. Otherwise, x̂ j = bx̄ je, which denotes
assigning to variable x j the integer value nearest to the fractional one x̄ j. The
rest of the solution does not change, that is, for all j ∈ N \I, x̂ j = x̄ j. It is easy
to see that the resulting vector x̂ ∈ Rn−|I| × Z|I|, but that it does not necessarily
satisfy the linear constraints Ax 6 b in the MIP (1.1).

The rounding operation is performed on all variables at the same time, and it
is the most naive way of trying to recover MIP feasibility from an LP-feasible
solution. In practice, rounding is performed sequentially on one or few vari-
ables at a time by taking into account its effect, for example, through constraint
propagation, the topic of Section 1.4.2.

1.4.2 Constraint Propagation

Constraint propagation is a very general concept that appears under differ-
ent names in different fields of computer science and mathematical program-
ming. It is essentially a form of inference that consists of explicitly forbidding
values – or combinations of values – for some problem variables. Constraint

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

14 Introduction and Concepts

propagation is used as a subroutine inside many practical heuristics, and inside
branch and bound as well.

To get a practical constraint propagation system, two questions need to be
answered:

• What does it mean to propagate a single constraint? In our particular case,
this means understanding how to propagate a general linear constraint with
both integer and continuous variables. The logic behind this goes under the
name of bound strengthening (a form of preprocessing) in the integer pro-
gramming community [124, 154].

• How do we coordinate the propagation of the whole set of constraints defin-
ing our problem?

In the remaining part of this section we will first describe bound strengthen-
ing and then describe the basic concepts of constraint propagation systems, fol-
lowing the propagator-based approach given by Schulte and Stuckey in [158].

Bound Strengthening
Bound strengthening [1, 81, 97, 124, 154] is a preprocessing technique that,
given the original domain of a set of variables and a linear constraint on them,
tries to infer tighter bounds on the variables. We will now describe the logic
behind this technique in the case of a linear inequality of the form∑

j∈C+

a jx j +
∑
j∈C−

a jx j ≤ b,

where C+ and C− denote the index set of the variables with positive and neg-
ative coefficients, respectively. We will assume that all variables are bounded:
simple extensions can be made to deal with unbounded (continuous) variables
and equality constraints.

For a given linear constraint and a given point x̄, we call the value∑
j∈C+

a j x̄ j +
∑
j∈C−

a j x̄ j,

the activity of the constraint i with respect to the point x̄.
In order to propagate the constraint above, the first step is to compute the

minimum (α) and maximum (α) activity level [41] of the constraint, namely

α =
∑
j∈C+

a jl j +
∑
j∈C−

a ju j,

α =
∑
j∈C+

a ju j +
∑
j∈C−

a jl j.

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.4 Rounding and Constraint Propagation 15

Now we can compute updated upper bounds for variables in C+ as

u j = l j +
b − α

a j
, (1.3)

and updated lower bounds for variables in C− as

l j = u j +
b − α

a j
. (1.4)

Moreover, for variables constrained to be integer, we can also apply the floor
b·c and ceiling d·e operators to the new upper and lower bounds, respectively.
The maximum activity level is used analogously for constraints in ≥ form.

Let’s consider, for example, the following system of linear constraints over
five variables:

3x1 + 2x3 + x4 ≤ 5,

x4 − 6x5 ≥ 0,

x1 + x2 − x5 ≤ 0,

x1 ∈ {0, 1},

x2 ∈ {0, 1},

x3 ∈ {0, . . . , 5},

x4 ∈ {0, . . . , 10},

x5 ∈ {0, 1}.

(1.5)

The minimum activity α of the first constraint is zero, and that gives up-
dated upper bounds x4 ≤ 5 and x5 ≤ 2 (for the last upper bound, integrality
is exploited). Then, the updated maximum activity α for the second constraint
implies the upper bound x5 ≤ 0 (again, exploiting integrality). Finally, the last
constraint derives x1 = x2 = 0. Note that bound strengthening, being allowed
to exploit integrality information, can derive bounds that are invalid for the
linear programming relaxation, and thus strengthen the model: in the exam-
ple above, the fractional solution (0, 5/6, 0, 5, 5/6) is violated by the derived
bounds.

It is worth noting that no propagation is possible in the case that the maxi-
mum potential activity change due to a single variable, computed as

max
j
{|a j(u j − l j)|},

is not greater than the quantity b − α. This observation is very important for
the efficiency of the propagation algorithm, since it can save several useless
propagator calls.

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

16 Introduction and Concepts

Finally, for linear constraints of special form, there often exist stronger or
faster propagation algorithms. For example, a knapsack constraint, where all
variables are binary and all coefficients are integer, can be propagated by mak-
ing use of integer arithmetic instead of floating point arithmetic. Set covering
constraints, that is, constraints of the form

x j1 + x j2 + · · · + x jk ≥ 1,

where all variables are binary, admit only one kind of propagation, namely fix-
ing the remaining variable to 1 once all the others appearing in the constraint
are fixed to 0, and propagating a set of set-covering constraints can be imple-
mented very efficiently via the so-called two-watched literals scheme [133].
For an overview of specialized propagators for linear constraints, we refer
to [1].

Propagation Algorithm
Now that we have described what it means to propagate a single linear con-
straint, we move on to describe how the propagation of the different constraints
is coordinated within a MIP solver. The basic idea is that one does not just need
to propagate all linear constraints once, as reductions obtained when propa-
gating one constraint can lead to further reductions from constraints that we
already propagated. Intuitively, we need to keep propagating the relevant con-
straints until a fix point is reached, that is, no more propagations can be found.
It is also important to note that, in general, we do not just use the linear con-
straints of the model during propagation, but also other related global struc-
tures, for example, the clique table or the implication graph (see, e.g., [1] and
Section 2.5).

A general framework for describing the behavior of (efficient) constraint
propagation systems can be found in the constraint programming [149] litera-
ture, most notably in [157, 158]. In the remaining part of this section, we will
introduce the general concepts and describe how they map to the MIP case.

Constraint propagation systems are built upon the basic concepts of domain,
constraint and propagator.

A domain D is the set of values a solution x can possibly take. In our case,
the domain is defined by

l j 6 x j 6 u j, for all j ∈ N ,

x j ∈ R, for all j ∈ N \ I,

x j ∈ Z, for all j ∈ I.

(1.6)

In full generality, a constraint c is a relation among a subset of variables
listing the tuples allowed by the constraint itself. However, this (very general)

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.4 Rounding and Constraint Propagation 17

definition is of little use from the computational point of view. In the MIP case,
constraints are obviously defined as the linear constraints of the model, but in
general we also propagate other structures: those also play the role of con-
straints during propagation. In order to have a more practical, yet still general,
abstraction, constraint propagation systems implement constraints through so-
called propagators.

A propagator p implementing a constraint c is a function that maps domains
to domains and that satisfies the following conditions:4

• p is a decreasing function, that is, p(D) ⊆ D for all domains. This guarantees
that propagators only remove values.

• p is a monotonic function, that is, if D1 ⊆ D2, then p(D1) ⊆ p(D2).
• p is correct for c, that is, it does not remove any tuple allowed by c.
• p is checking for c, that is, all domains D corresponding to solutions of c

are fixpoints for p, that is, p(D) = D. In other words, for every domain D in
which all variables involved in the constraint are fixed and the corresponding
tuple is valid for c, we must have p(D) = D.

Again, propagators can be associated not just with the linear constraints of
the model, but with other global structures such as the clique table or the im-
plication graph. In addition, propagators can be used to implement dual re-
ductions, that is, bound changes that are not necessarily valid for all feasible
solutions of the model at hand, but that still guarantee that at least one optimal
solution is left. The most common example is the so-called reduced cost fix-
ing [140], but others such as orbital fixing [144] are also common in modern
MIP solvers.

A propagation solver for a set of propagators R and some initial domain D
finds a fixpoint for propagators p ∈ R.

A basic propagation algorithm is outlined in Algorithm 2. On input, the
propagator set is partitioned into the sets P f and Pn, depending on the known
fixpoint status of the propagators for domain D – this feature is essential for im-
plementing efficient incremental propagation. The algorithm maintains a queue
Q of pending propagators (initially Pn). At each iteration, a propagator p is
popped from the queue and executed. At the same time, the set K of variables
whose domains have been modified is computed and all propagators that share
variables with K are added to Q (hence they are scheduled for execution).

The complexity of this algorithm is highly dependent on the domain of the
variables. For integer (finite domain) variables, the algorithm terminates in a
finite number of steps, although the complexity is exponential in the size of
4 In general, a constraint c is implemented by a collection of propagators; we will consider only

the case where a single propagator suffices.

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

18 Introduction and Concepts

input : a domain D
input : a set P f of (fixpoint) propagators p with p(D) = D
input : a set Pn of (non-fixpoint) propagators p with p(D) ⊆ D
output: an updated domain D

1 Q = Pn

2 R = P f ∪ Pn

3 while Q not empty do
4 p = Pop (Q)
5 D = p(D)
6 K = set of variables whose domain was changed by p
7 Q = Q ∪ {q ∈ R : var(q) ∩ K , ∅}
8 end
9 return D

Algorithm 2 Basic propagation engine.

the domain (it is however polynomial in the pure binary case, provided that the
propagators are also polynomial, which is usually the case). For continuous
variables, this algorithm may not converge in a finite number of steps, as shown
in the following example (Hooker [97]):αx1 − x2 ≥ 0,

−x1 + x2 ≥ 0,
(1.7)

where 0 < α < 1 and the initial domain is [0, 1] for both variables; it can be
easily seen that the upper bound on x1 converges only asymptotically to zero.
In a first round of propagation, the upper bound of x2 would be tightened to α
due to the first inequality, and in turn the upper bound of x1 would be tightened
to α due to the second inequality. In the next round, the upper bound of x2

would be tightened to α2 due to the first inequality, leading to an upper bound
of α2 for x1, and so on, as shown in Figure 1.3. So, in practice, Algorithm 2
is stopped after some predefined number of iterations or if the reduction in the
domain of variable falls below some given threshold.

1.5 General Heuristic Concepts

While primal heuristics for MIP clearly exploit the specific properties and tools
of the MIP paradigm, for example, the global view of the problem given by
the MIP formulation and the ability to solve LP relaxations or even related

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.5 General Heuristic Concepts 19

x1

x2

Figure 1.3 A nasty example for constraint propagation.

(sub-)MIPs, they can often be described and interpreted with the language of
general mathematical heuristics for combinatorial optimization problems. In
particular, many constructive heuristics follow (more or less strictly) a greedy
approach, while most improvement heuristics are based on local search. In this
section, we give a general overview and definition of those basic concepts.

1.5.1 The Greedy Paradigm

A very natural approach for solving combinatorial problems is to use a strategy
that takes a sequence of decisions, with a set of different possible choices at
each step. If at each step we always pick the choice that is locally optimal, that
is, it is the best choice given the decisions we have made so far, and we never
backtrack on those decisions, then we have a greedy algorithm [48, chapter 16].

Greedy algorithms are not guaranteed to return the optimal solution (or even
a feasible solution) to an optimization problem, but in some cases they do. The
effectiveness of a greedy approach by far depends on the structure of the prob-
lem: for some specific classes of problems, such as minimum spanning tree,
shortest path and continuous knapsack (to name a few), there are greedy al-
gorithms that solve the problem to proven optimality. In less ideal, but still
good cases, they always return a feasible solution and are able to guarantee
a constant worst-case approximation ratio; for example, the greedy algorithm
returns a solution that is at most 1 − 1/e away from the optimum in submod-
ular function maximization [141], where e is the Euler constant. Similarly,
with some care, the greedy strategy gives a 2-approximation for binary knap-

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

20 Introduction and Concepts

sacks [125]. For other combinatorial problems, the best guarantee is no longer
constant: the approximation is O(log n) for both the set covering problem and
the traveling salesman problem (TSP), where the heuristic is known as nearest
neighbor. Finally, no guarantee whatsoever can be given for a general MIP.
Another substantial benefit of greedy strategies, besides their simplicity, is that
they are typically quite fast. With appropriate data structures, greedy algo-
rithms can be often implemented in linear time, potentially with an additional
logarithmic factor in case sorting is needed. So, even if they are not guaranteed
to find a solution, they are usually worth a try.

Inside MIP solvers, diving heuristics, that is, methods that simulate a dive in
the branch-and-bound tree by iteratively fixing a variable and resolving the LP
relaxation, are prime examples of greedy strategies.

1.5.2 Local Search

Another approach for designing heuristics for a given optimization problem is
that of local search. Again, the concept is very natural: given a known feasible
solution, often referred to as “reference” or “candidate” solution, it is usually
worth looking for a better one in a properly defined neighborhood in the solu-
tion space. Then, the approach can be repeated until a locally optimal solution
is found.

For structured optimization problems, local search heuristics rely on ad hoc
definitions of neighborhood, based on so-called moves. For example, permu-
tation problems (e.g., the TSP) are amenable to 2-opt neighborhoods, where a
solution is in the neighborhood of the reference solution if it can be obtained
from the latter by swapping two elements in the sequence. Another (even sim-
pler) neighborhood is 1-opt: given a reference solution, this is defined as the
set of solutions that can be obtained by changing the value of a single variable.
Note that a 1-opt neighborhood might not contain any additional solution (e.g.,
in the TSP case). On the one hand, the size (and structure) of the neighborhood
has a direct effect on the complexity of the method. Small neighborhoods are
clearly faster to explore, but the chances of finding an improving solution are
smaller, so there is a higher risk of getting stuck. On the other hand, very large
neighborhoods can be prohibitively expensive to explore, at least exhaustively.

In the MIP case, we often try to sidestep the issue by applying a so-called
large neighborhood search (LNS) approach, in which we define a neighbor-
hood implicitly by adding constraints (often, but not necessarily, variable fix-
ings), and then apply MIP technology recursively on the resulting sub-MIP.
While this is quite elegant, it is still quite challenging to predict a priori how
expensive each such sub-MIP is to solve, so proper limits and an outer logic

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.5 General Heuristic Concepts 21

to adjust the size of the subproblems is needed to get a practical method (see
Chapter 2).

Independently from the choice of neighborhood, we also need a sound strat-
egy to escape local optima, and we have a great variety of options, namely:

• we can restart the local search from a different solution, obtained by sam-
pling or perturbation;

• we can change the acceptance criterion when exploring a neighborhood,
allowing for non-improving solutions to be accepted;

• we can change the neighborhood (either in size or structure);
• all of the above.

There is a vast literature in the metaheuristic community [78] on strate-
gies based on local search: iterated local search (ILS), tabu search, variable
neighborhood search (VNS), simulated annealing and random walks, just to
name a few, have all proven quite successful on specific optimization prob-
lems, and are tools of wide applicability, although they often require extensive
tuning to give the best results on a given class of problems. We note though
that those meta approaches, while crucial when designing standalone heuris-
tics from scratch, are less important within the MIP framework, where we rely
on branch and bound itself to let the heuristics escape local optima.

Finally, note that local search is in many ways complementary to greedy
methods: greedy strategies can be used to find feasible solutions, while a sub-
sequent local search phase (i) improves their quality, and (ii) makes sure that
those are at least locally optimal.

1.5.3 Population-Based Methods

The local search methods described in Section 1.5.2 are so-called single so-
lution methods: they move from feasible solution to feasible solution, and the
currently explored neighborhood is defined starting from the current solution
only. These methods are of course allowed to (and often do) store past solu-
tions in a so-called solution pool, but those do not affect the behavior of the
algorithm. By contrast, population-based methods maintain a set of feasible
solutions at each iteration, and they explore the solution space based on some
properties of the whole set.

The most well-known population-based algorithms by far are genetic algo-
rithms [132] that are inspired by natural evolution: at each iteration, the cur-
rent generation of individuals (i.e., set of solutions) is mutated/combined to
obtain the next generation, and selection is applied according to fitness (i.e.,
the objective function). While the intuition of evolutionary algorithms is clear,

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

22 Introduction and Concepts

their design is less trivial: many different steps need to be specified, often in a
problem-specific fashion, and there are many parameters to be tuned in order
to get the best results on a given class of problems. However, once designed,
they are also, in general, quite easy to implement and they parallelize trivially.

Evolutionary algorithms are not predominant in MIP, for the same reason
as for local-search meta schemes, but some limited form of them, based on the
MIP solution pool, is actually implemented in all state-of-the-art MIP solvers.

1.5.4 Diversification vs. Intensification

To be successful, a primal heuristic needs to be able to find good quality so-
lutions in an exponentially sized solution space, and to do so in a reasonable
amount of time. In order to achieve such goal, when designing a primal heuris-
tics two opposite goals must be continuously kept in balance. On the one hand,
we want to sample different parts of the solution space in order to reduce the
chances of getting stuck in an unpromising region: this goal is called diver-
sification, and it is often achieved through a random component. On the other
hand, we also need to invest more resources in the promising parts, as sampling
alone is not going to find the proverbial needle in a haystack quickly enough on
average; this is called intensification, and it is often (although not necessarily)
based on some form of local search.

Most of the heuristics that we will describe in the book can be analyzed
under the lens of diversification vs. intensification. A greedy algorithm, for ex-
ample, does neither; it neither diversifies (to the contrary, being deterministic
it would always yield the same outcome), nor intensifies, and this is why a sin-
gle greedy approach is rarely a good option on general problems. At least on
the first front, the greedy scheme can be improved by incorporating random-
ization. The most common approach is the so-called GRASP scheme [59],
where at each step, instead of just picking the locally optimal solution, we
build a shortlist of best candidates and choose randomly within them. To the
contrary, a pure local search method intensifies very well but lacks diversifica-
tion; indeed, all the meta schemes mentioned in the previous sections can be
interpreted as a way to add diversification to the basic method (and thus escape
local optima).

1.6 Reference Points, Information and Statistics

In this section, we introduce some extra definitions and concepts that help dis-
cuss and analyze primal heuristics for MIP.

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.6 Reference Points, Information and Statistics 23

1.6.1 Reference Points

A variety of reference points are of interest for primal heuristics.
The incumbent solution, that is, the best feasible solution that has been found

so far during a running MIP solve, is used as a reference point for the vast
majority of improvement heuristics. In particular, large neighborhood search
heuristics such as RINS [51], proximity search [65], or local branching [62]
make use of the incumbent. Guided diving [51] is an example of a diving
heuristic that requires an incumbent solution.

Other feasible solutions are of comparable interest. Crossover is a large
neighborhood search heuristic that requires more than one solution. Further-
more heuristics might use infeasible integer points as reference, for exam-
ple, feasibility pump or some variants of local branching or proximity search.
Finally, a partial assignment of the integer variables might be used to initialize
local search heuristics. For example, this can be provided as an input to a MIP
solver.

Just as every MIP might have many different optimal solutions, there might
also be multiple optima of the LP relaxation. Many MIP heuristics consider an
optimal solution of the LP relaxation as a reference point. Besides that, alterna-
tive optimal or feasible solutions for the LP relaxation might be used to guide
heuristics. Another important reference point is the so-called analytic center.

The analytic center xac of a bounded polyhedron given in equality form
(Ax = b, x > 0) has been introduced by Sonnevend [163] and is defined as

xac = argmin

−∑
j∈N

ln x j : Ax = b

 . (1.8)

The analytic center can be efficiently computed by using a barrier algorithm.
Note that the strong convexity of the logarithm implies that the analytic center
of a bounded polyhedron is uniquely defined. It maximizes the distance to the
boundary due to the logarithm tending to minus infinity when its argument is
going to zero. If the polyhedron is a simplex, the analytic center is also the
barycenter of the polyhedron [164].

1.6.2 Solving Statistics

The pseudocosts [13, 72] of a variable are a statistic that is collected during
the course of a branch-and-bound algorithm. Pseudocosts track the history of
how much the dual bound improved when branching on a given variable in
previous nodes. These statistics can then be used to estimate how much the
objective will change when the bounds of the variables are tightened.

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

24 Introduction and Concepts

z = cT x

bx̄ jc x̄ j dx̄ je

∆↓

∆↑

Figure 1.4 Graphical representation of pseudocosts update.

Pseudocosts are updated after a bound change of a variable has been per-
formed (e.g., due to branching or a fix in a diving heuristic) and the LP relax-
ation of the tightened problem has been solved. When updating the pseudo-
costs, the objective gain per unit change in variable x j is computed. Assume
we change the lower bound of x j, that is, we rounded it up. Then, the upward
gain ς+

j is computed as

ς+
j :=

∆↑

dx̄ je − x̄ j
, (1.9)

where ∆↑ is the difference between the optimal LP objectives of the subprob-
lem with x j rounded up and the optimal LP objective before conducting the
rounding. The downward gain ς−j when rounding down a variable is computed
accordingly. The thin, light blue line in Figure 1.4 illustrates the operation.
These estimation formulas are based on the assumption that the objective in-
creases linearly in both directions.

Let σ+
j denote the sum of ς+

j over all subproblems that were created by
branching upward on x j and whose LP relaxation has already been solved and
was feasible. Further, let ν+

j be the number of such problems. Then the upward
pseudocosts of variable x j are calculated as the arithmetic mean of all objective
gains (per unit step length) observed by branching upward on x j, namely

Ψ+
j :=

σ+
j

ν+
j
. (1.10)

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.7 Measuring the Impact of Primal Heuristics 25

The downward pseudocosts Ψ−j are computed analogously from subproblems
that were created by branching downward on x j and whose LP relaxation has
already been feasibly solved.

The upward inference value of a variable x j, j ∈ I, is defined analogously
to the pseudocosts as

ς̃+
j :=

σ̃+
j

ν̃+
j
, (1.11)

where σ̃+
j is the sum of the number of domain reductions found by propaga-

tion taken over all subproblems that were created by branching upward on x j

for which domain propagation has already been applied, and ν̃+
j is the num-

ber of such subproblems. Again, the downward inference ς̃−j value is defined
analogously.

Branching statistics are useful information for primal heuristics to make
decisions, but heuristics can also contribute to these statistics. Rapid learn-
ing [21] takes this to the extreme. It is applies a fast depth-first branch-and-
bound search without solving LPs for a limited number of nodes, initializing,
among other statistics, inference values.

1.7 Measuring the Impact of Primal Heuristics

When implementing optimization software, two questions naturally arise: how
does the new code perform with respect to existing code, and which are the
best settings for a particular algorithm? This goes back to the early days of
operations research. Hoffman et al. reported a first computational experiment
to compare different implementations of linear programming algorithms in
1953 [95]. Just as researchers and software vendors want to distinguish their
code on general test sets, a user wants to tune their optimization software for
a particular set of problems. However, all parties require suitable criteria for
measuring the performance of a software implementation.

In mathematical programming, the running time to optimality, the number of
branch-and-bound nodes and the number of simplex or interior point iterations
are commonly used performance measures. All of these mostly depend on the
convergence of the dual bound since, in practice, it typically takes much longer
until the dual bound converges to the optimal value than it takes to find a primal
solution of the optimal value. This is not only an empirical observation, but also
indicated by complexity theory. Finding a solution for a certain objective value
is NP-complete, but proving a certain bound is co-NP-complete and thereby

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

26 Introduction and Concepts

most likely not even in NP, is hence arguably harder! Feasibility certificates
(hence solutions) are of linear size, but a MIP optimality certificate is not – it
can be an exponential tree or set of cuts.

Furthermore, measures such as time to optimality or number of branch-and-
bound nodes make most sense for instances that can actually be solved within a
given time limit – whereas employing heuristics is particularly worthwhile for
hard instances that cannot be solved to proven optimality within a reasonable
time.

For primal heuristics, it seems logical to consider measures that consider
primarily the primal bound and that are independent of an eventual timeout.
Examples of such measures are the time needed to find a first feasible solu-
tion, an optimal solution, or a solution within a certain gap to optimality (see,
e.g., [96]). Each of these has its individual strengths and weaknesses. The time
to first solution entirely disregards the solution quality: for about one quarter
(23/87) of the Miplib 2010 [106] benchmark instances, a trivial solution of all
variables set to their lower bound (or all to their upper bound) is feasible, but
most of the time such a solution does not provide valuable information to the
user – it corresponds to obvious extreme cases such as utilizing all available
resources when trying to minimize the number of used resources or producing
no goods when trying to maximize the amount of produced goods. Particularly
when analyzing heuristics embedded in a complete solver, the time to the first
solution mainly measures the time needed for preprocessing and solving the
root node relaxation; the MIP solvers CPLEX, Gurobi and Xpress find solu-
tions for the vast majority of the Miplib 2010 benchmark instances during root
node processing. Instead, the time to optimal solution ignores that slightly sub-
optimal but practically sufficient solutions might have been found long before.
Finally, taking the time to a certain gap is an attempt to balance this, but the
choice of the threshold is arbitrary by design.

Altogether, the most important consideration for primal heuristics is the
trade-off between speed and solution quality. None of the above performance
measures gives a complete assessment of this trade-off. In [17], Berthold in-
troduces a new performance measure that takes into account the whole solu-
tion process, and is especially targeted at benchmarking primal heuristics. It
measures the progress of the primal bound’s convergence toward the optimal
solution over the entire solving time.

Assume the objective function values of intermediate incumbent solutions
and the points in time when they have been found to be given – for a particular
MIP solver, a certain problem instance and a fixed computational environment.
This information can be gathered from the log files that standard MIP solvers
produce.

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.7 Measuring the Impact of Primal Heuristics 27

Definition 1.6 (primal gap function) Let tmax ∈ R>0 be a limit on the solution
time of a MIP solver. Its primal gap function p : [0, tmax] 7→ [0, 1] is defined as
follows:

p(t) :=

1, if no incumbent until time t,

γp(x̃(t)), with x̃(t) being the incumbent at time t, otherwise.

Here, γp is the primal gap as defined in Definition 1.3. The primal gap func-
tion p(t) is a step function that changes whenever a new incumbent is found. It
is monotonically decreasing, one at t = 0, and zero from the point at which the
optimal solution is found.

Definition 1.7 (primal integral) Let T ∈ [0, tmax] and let ti ∈ [0,T] for i ∈
{1, . . . , I − 1} be the points in time when a new incumbent solution is found,
t0 = 0, tI = T . The primal integral P(T) of a run is defined as

P(T) :=

T∫
t=0

p(t) dt =

I∑
i=1

p(ti−1) · (ti − ti−1).

The fraction P(tmax)/tmax can be seen as the average solution quality during
the search process. In other words, the smaller P(tmax) is, the better is the ex-
pected quality of the incumbent solution if the solver is stopped at an arbitrary
point in time.

Berthold [17] suggests using P(tmax)/tmax for measuring the quality of pri-
mal heuristics. This measure features two simple, but important attributes.
First, whenever a better solution is found at the same point in time, P(tmax)
decreases. Second, whenever the same solution is found at an earlier point in
time, P(tmax) decreases. Briefly, the primal integral favors finding good solu-
tions early. For the performance measures discussed so far, at most one of these
two attributes holds in general.

Consider Figure 1.5 for a visualization of the primal integral. The thick red
line shows the development of the primal bound when using heuristics; the
red-shaded area corresponds to the primal integral of that solution process.
The thick green line shows the development of the primal bound when not
using heuristics; the green-shaded (plus the red-shaded) area corresponds to
the primal integral of that solution process. The primal integral of the run with
heuristics is smaller (hence better) since solutions with a small gap are found
earlier.

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

28 Introduction and Concepts

Figure 1.5 Visualization of the primal integral for two solution processes of the
same instance.

1.8 Quiz

It’s quiz time! This section is designed to test your understanding of the con-
cepts covered in this chapter. Each question is followed by four possible an-
swers, only one of which is correct. If you are unsure about some questions,
you might find it helpful to work through the corresponding section again.
Remember, sometimes the process of elimination can be as valuable a tool
as direct problem-solving. By engaging with this quiz, you’ll reinforce your
knowledge and identify areas requiring further study. Take your time, think
carefully and check the answers in the Appendix when you are done.

Question 1 The feasible region of the LP relaxation of a MIP is a polyhedron

� only if all variables are bounded;
� always;
� only if there are no equalities;
� never.

Question 2 Consider a simple binary knapsack problem in standard form (all
positive data):

� all variables are up-locked;

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

1.8 Quiz 29

� all variables are down-locked;
� all variables have zero locks;
� all variables are both up- and down-locked.

Question 3 In an LP-based branch-and-bound algorithm, the primal-dual gap
between the current best primal bound and current best dual bound

� changes erratically;
� is monotonically decreasing and reaches zero when the algorithm termi-

nates;
� is monotonically increasing and reaches one when the algorithm termi-

nates;
� stays constant, as it is a property of the instance;

Question 4 Within the context of branch and bound, primal heuristics are

� useless, branch and bound is an exact method and does not need heuris-
tics;

� required for branch and bound to converge;
� practically relevant and effective at reducing the primal gap;
� irrelevant for the optimality proof.

Question 5 Consider an integer program with all binary variables. Constraint
propagation is

� a complete and polynomial inference scheme;
� a complete but non-polynomial inference scheme;
� an incomplete but polynomial inference scheme;
� an incomplete and non-polynomial inference scheme.

Question 6 In a MIP context, a greedy heuristic followed by a local search
procedure

� is guaranteed to find a feasible solution;
� always finds the optimal solution if the local search neighborhood is a

2-opt;
� is guaranteed to find a feasible solution with a O(log n) worst-case ap-

proximation ratio;
� has no guarantees.

Question 7 The primal integral

� is independent of the chosen time limit;
� can only be approximated with a finite summation;
� is a measure balancing solution quality and runtime;
� is always a number in [0, 1].

https://doi.org/10.1017/9781009574792.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009574792.002

