Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T15:11:47.067Z Has data issue: false hasContentIssue false

Phase change materials and phase change memory

Published online by Cambridge University Press:  14 August 2014

Simone Raoux
Affiliation:
Institute Nanospectroscopy for Energy Material Design and Optimization, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany; simone.raoux@helmholtz-berlin.de
Feng Xiong
Affiliation:
Electrical Engineering, Stanford University, USA; fxiong@stanford.edu
Matthias Wuttig
Affiliation:
Physikalisches Institut and Jülich Aachen Research Alliance – Fundamentals of Future Information Technology, RWTH Aachen University, Germany; wuttig@physik.rwth-aachen.de
Eric Pop
Affiliation:
Electrical Engineering, Stanford University, USA; epop@stanford.edu
Get access

Abstract

Phase change memory (PCM) is an emerging technology that combines the unique properties of phase change materials with the potential for novel memory devices, which can help lead to new computer architectures. Phase change materials store information in their amorphous and crystalline phases, which can be reversibly switched by the application of an external voltage. This article describes the advantages and challenges of PCM. The physical properties of phase change materials that enable data storage are described, and our current knowledge of the phase change processes is summarized. Various designs of PCM devices with their respective advantages and integration challenges are presented. The scaling limits of PCM are addressed, and its performance is compared to competing existing and emerging memory technologies. Finally, potential new applications of phase change devices such as neuromorphic computing and phase change logic are outlined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gallagher, W.J., Parkin, S.S.P., IBM J. Res. Dev. 50, 5 (2006).Google Scholar
Kawahara, T., Ito, K., Takemura, R., Ohno, H., Microelectron. Reliab. 52, 613 (2012).Google Scholar
Parkin, S.S.P., Hayashi, M., Thomas, L., Science 320, 190 (2008).Google Scholar
Ishiwara, H., Okuyama, M., Arimoto, Y., Ferroelectric Random Access Memories: Fundamentals and Applications (Springer, New York, 2004).Google Scholar
Waser, R., Dittmann, R., Staikov, G., Szot, K., Adv. Mater. 21, 2632 (2009).CrossRefGoogle Scholar
Strukov, D.B., Snyder, G.S., Steward, D.R., Williams, R.S., Nature 453, 80 (2008).CrossRefGoogle Scholar
Kund, M., Beitel, G., Pinnow, C.-U., Röhr, T., Schumann, J., Symanczyk, R., Ufert, K.-D., Müller, G., IEEE Int. Electron Dev. Mtg. 754 (Washington, DC, 2005).Google Scholar
Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.-L., Lieber, C.M., Science 7, 94 (2000).Google Scholar
Cui, J.B., Sordan, R., Burghard, M., Kern, K., Appl. Phys. Lett. 81, 3260 (2002).Google Scholar
Raoux, S., Burr, G.W., Breitwisch, M.J., Rettner, C.T., Chen, Y.-C., Shelby, R.M., Salinga, M., Krebs, D., Chen, S.-H., Lung, H.-L., Lam, C.H., IBM J. Res. Dev. 52, 465 (2008).CrossRefGoogle Scholar
Ovshinsky, S.R., Phys. Rev. Lett. 22, 1450 (1968).Google Scholar
Yamada, N., Ohno, E., Akahira, N., Nishiuchi, K., Nagata, K., Jpn. J. Appl. Phys. 26 (Suppl. 26–4), 61 (1987).CrossRefGoogle Scholar
Raoux, S., Wuttig, M., Phase Change Materials: Science and Application (Springer, New York, 2009).Google Scholar
Silva, J.L.F.D., Walsh, A., Lee, H.L., Phys. Rev. B: Condens. Matter 78, 224111 (2008).CrossRefGoogle Scholar
Servalli, G., IEEE Int. Electron Dev. Mtg. 113 (Washington, DC, 2009).Google Scholar
Krebs, D., Raoux, S., Rettner, C.T., Burr, G.W., Salinga, M., Wuttig, M., Appl. Phys. Lett. 95, 082101 (2009).Google Scholar
Chen, Y.C., Rettner, C.T., Raoux, S., Burr, G.W., Chen, S.H., Shelby, R.M., Salinga, M., Risk, W., Happ, T.D., McClelland, G.M., Breitwisch, M., Schrott, A., Philipp, J.B., Lee, M.H., Cheek, R., Nirschl, T., Lamorey, M., Chen, C.F., Joseph, E., Zaidi, S., Yee, B., Lung, H.L., Bergmann, R., Lam, C., IEEE Int. Electron Dev. Mtg. 777 (San Francisco, CA, 2006).Google Scholar
Cheng, H.-Y., Raoux, S., Jordan-Sweet, J.L., J. Appl. Phys. 115, 093101 (2014).CrossRefGoogle Scholar
Cheng, H.-Y., Hsu, T.H., Raoux, S., Wu, J.Y., Du, P.Y., Breitwisch, M., Zhu, Y., Lai, E.K., Joseph, E., Mittal, S., Cheek, R., Schrott, A., Lai, S.C., Lung, H.L., Lam, C., IEEE Int. Electron Dev. Mtg. 3.4.1 (Washington, DC, 2011).Google Scholar
Pauling, L., The Nature of the Chemical Bond (Cornell University Press, New York, 1939).Google Scholar
Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., Wuttig, M., Nat. Mater. 7, 653 (2008).CrossRefGoogle Scholar
Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J., Wuttig, M., Nat. Mater. 7, 972 (2008).Google Scholar
Kalb, J., Wuttig, M., Spaepen, F., J. Mater. Res. 22, 748 (2007).Google Scholar
Orava, J., Greer, A.L., Gholipour, B., Hewak, D.W., Smith, C.E., Nat. Mater. 11, 279 (2012).CrossRefGoogle Scholar
Salinga, M., Carria, E., Kaldenbach, A., Börnhöfft, M., Benke, J., Mayer, J., Wuttig, M., Nat. Commun. 4, 2371 (2013).Google Scholar
Bruns, G., Merkelbach, P., Schlockermann, C., Salinga, M., Wuttig, M., Happ, T.D., Philipp, J.B., Kund, M., Appl. Phys. Lett. 95, 043108 (2009).Google Scholar
Wang, W.J., Shi, L.P., Zhao, R., Lim, K.G., Lee, H.K., Chong, T.C., Wu, Y.H., Appl. Phys. Lett. 93, 043121 (2008).Google Scholar
Loke, D., Lee, T.H., Wang, W.J., Shi, L.P., Zhao, R., Yeo, Y.C., Chong, T.C., Elliott, S.R., Science 336, 1566 (2012).Google Scholar
Ielmini, D., Zhang, Y., J. Appl. Phys. 102, 054517 (2007).Google Scholar
Capelli, A., Piccinini, E., Xiong, F., Behnam, A., Brunetti, R., Rudan, M., Pop, E., Jacoboni, C., Appl. Phys. Lett. 103, 083503 (2013).Google Scholar
Tyson, S., Wicker, G., Lowrey, T., Hudgens, S., Hunt, K., Proc. IEEE Aerosp. Conf. 5, 385 (2000).Google Scholar
Cho, S.L., Yi, J.H., Ha, Y.H., Kuh, B.J., Lee, C.M., Park, J.H., Nam, S.D., Horii, H., Cho, B.O., Ryoo, K.C., Park, S.O., Kim, H.S., Chung, U.I., Moon, J.T., Ryu, B.I., Symp. VLSI Technol. 96 (2005).Google Scholar
Breitwisch, M., Nirschl, T., Chen, C.F., Zhu, Y., Lee, M.H., Lamorey, M., Burr, G.W., Joseph, E., Schrott, A., Philipp, J.B., Cheek, R., Happ, T.D., Chen, S.H., Zaidi, S., Flaitz, P., Bruley, J., Dasaka, R., Rajendran, B., Rossnagel, S., Yang, M., Chen, Y.C., Bergmann, R., Lung, H.L., Lam, C., Symp. VLSI Technol. 6B-3 (2007).Google Scholar
Pavan, P., Bez, R., Olivo, P., Zanoni, E., Proc. IEEE 85, 1248 (1997).Google Scholar
Burr, G.W., Kurdi, B.N., Scott, J.C., Lam, C.H., Gopalakrishnan, K., Shenoy, R.S., IBM J. Res. Dev. 52, 449 (2008).Google Scholar
Cheng, H.Y., BrightSky, M., Raoux, S., Chen, C.F., Du, P.Y., Wu, J.Y., Lin, Y.Y., Hsu, T.H., Zhu, Y., Kim, S., Lung, H.L., Lam, C., IEEE Int. Electron Dev. Mtg. 30.6.1 (Washington, DC, 2013).Google Scholar
Navarro, G., Coue, M., Kiouseloglou, A., Noe, P., Fillot, F., Delaye, V., Persico, A., Roulle, A., Bernard, M., Sabbione, C., Blanchier, D., Sousa, V., Perniola, L., Maitrejean, S., Cabrini, A., Torelli, G., Zuliani, P., Annunziata, R., Palumbo, E., Borghi, M., Reimbold, G., De Salvo, B., IEEE Int. Electron Dev. Mtg. 21.5.1 (Washington, DC, 2013).Google Scholar
Cheng, H.-Y., Raoux, S., Nguyen, K.V., Shenoy, R.S., BrightSky, M., Appl. Phys. Lett. in press (2014).Google Scholar
Kim, I.S., Cho, S.L., Im, D.H., Cho, E.H., Kim, D.H., Oh, G.H., Ahn, D.H., Park, S.O., Nam, S.W., Moon, J.T., Chung, C.H., Symp VLSI Technol. 203 (2010).Google Scholar
Raoux, S., Shelby, R.M., Jordan-Sweet, J., Munoz, B., Salinga, M., Chen, Y.-C., Shih, Y.-H., Lai, E.-K., Lee, M.-H., Microelectron. Eng. 85, 2330 (2008).CrossRefGoogle Scholar
Caldwell, M.A., Rauox, S., Wang, R.Y., Wong, H.-S.P., Milliron, D.J., J. Mater. Chem. 20, 1285 (2010).Google Scholar
Hamann, H.F., O’Boyle, M., Martin, Y.C., Rooks, M., Wickramasinghe, K., Nat. Mater. 5, 383 (2006).Google Scholar
Satoh, H., Sugawara, K., Tanaka, K., J. Appl. Phys. 99, 2 (2006).Google Scholar
Xiong, F., Liao, A., Pop, E., Appl. Phys. Lett. 95, 243103 (2009).Google Scholar
Gotoh, T., Sugawara, K., Tanaka, K., J. Appl. Phys. 43, L818 (2004).CrossRefGoogle Scholar
Raoux, S., Jordan-Sweet, J.L., Kellock, A.J., J. Appl. Phys. 103, 114310 (2008).Google Scholar
Suh, D.S., Lee, E., Kim, K.H.P., Noh, J.S., Shin, W.C., Kang, Y.S., Kim, C., Khang, Y., Yoon, H.R., Jo, W., Appl. Phys. Lett. 90, 2 (2007).Google Scholar
Choi, H.S., Seol, K.S., Takeuchi, K., Fujita, J., Ohki, Y., J. Appl. Phys. 44, 7720 (2005).CrossRefGoogle Scholar
Raoux, S., Cheng, H.-Y., Jordan-Sweet, J.L., Munoz, B., Hitzbleck, M., Appl. Phys. Lett. 94, 183144 (2009).Google Scholar
Lee, S.H., Ko, D.K., Jung, Y., Agarwal, R., Appl. Phys. Lett. 89, 22 (2006).Google Scholar
Yu, D., Brittman, S., Lee, J.S., Falk, A.L., Park, H., Nano Lett. 8, 3429 (2008).CrossRefGoogle Scholar
Liu, J., Anantram, M.P., J. Appl. Phys. 113, 063711 (2013).CrossRefGoogle Scholar
Sun, X.H., Yu, B., Ng, G., Nguyen, T.D., Meyyappan, M., Appl. Phys. Lett. 89, 23 (2006).Google Scholar
Sun, X.H., Yu, B., Ng, G., Meyyappan, M., J. Phys. Chem. C 111, 2421 (2007).CrossRefGoogle Scholar
Burr, G.W., Breitwisch, M.J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lastras, L.A., Padilla, A., Rajendran, B., Raoux, S., Shenoy, R.S., J. Vac. Sci. Technol. B 28, 223 (2010).Google Scholar
Reifenberg, J.P., Panzer, M.A., Kim, S., Gibby, A.M., Zhang, Y., Wong, S., Wong, H.-S. P., Pop, E., Goodson, K.E., Appl. Phys. Lett. 91, 111904 (2007).Google Scholar
Roy, D., Zandt, M.A.A., Wolters, R.A.M., IEEE Electron Devices Lett. 31, 1293 (2010).CrossRefGoogle Scholar
Xiong, F., Liao, A.D., Estrada, D., Pop, E., Science 332, 568 (2011).CrossRefGoogle Scholar
Xiong, F., Bae, M.H., Dai, Y., Liao, A.D., Behnam, A., Carrion, E.A., Hong, S., Ielmini, D., Pop, E., Nano Lett. 13, 464 (2013).Google Scholar
Nirschl, T., Philipp, J.B., Happ, T.D., Burr, G.W., Rajendran, B., Lee, M.-H., Schrott, A., Yang, M., Breitwisch, M., Chen, C.-F., Joseph, E., Lamorey, M., Cheek, R., Chen, S.-H., Zaidi, S., Raoux, S., Chen, Y.C., Zhu, Y., Bergmann, R., Lung, H.-L., Lam, C., IEEE Int. Electron Dev. Mtg. 461 (Washington, DC, 2007).Google Scholar
Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Hudgens, S., Bez, R., IEEE Int. Electron Dev. Mtg. 699 (Washington, DC, 2003).Google Scholar
Im, D.H., Lee, J.I., Cho, S.L., An, H.G., Kim, D.H., Kim, I.S., Park, H., Ahn, D.H., Horii, H., Park, S.O., Chung, U.-I., Moon, J.T., IEEE Int. Electron Dev. Mtg. 211 (San Francisco, CA, 2008).Google Scholar
Kang, M.J., Park, T.J., Kwon, Y.W., Ahn, D.-H., Kang, Y.S., Jeong, H.-S., Ahn, S.-J., Song, Y.J., Kim, B.C., Nam, S.-W., Kang, H.-K., Jeong, G.-T., Chung, C.-H., IEEE Int. Electron Dev. Mtg. (IEDM), 39 (2011).Google Scholar
Wong, H.-S.P., Raoux, S., Kim, S.B., Liang, J., Reifenberg, J.P., Rajendran, B., Asheghi, M., Goodson, K.E., Proc. IEEE 98, 2201 (2010).Google Scholar
Liang, J.L., Jeyasingh, R.G.D., Chen, H.Y., Wong, H.-S.P., IEEE Trans. Electron Devices 59, 1155 (2012).Google Scholar
Bozorg-Grayeli, E., Annu. Rev. Heat Transfer 16, 397 (2013).Google Scholar
Kim, C., Suh, D.-S., Kim, K.H.P., Kang, Y.-S., Lee, T.-Y., Khang, Y., Cahill, D.G., Appl. Phys. Lett. 92, 013109 (2008).Google Scholar
Redaelli, A., Pirovano, A., Benvenuti, A., Lacaita, A.L., J. Appl. Phys. 103, 111101 (2008).Google Scholar
Lacaita, A.L., Redaelli, A., Microelectron. Eng. 109, 351 (2013).Google Scholar
Jackson, B.L., Rajendran, B., Corrado, G.S., Breitwisch, M., Burr, G.W., Cheek, R., Gopalakrishnan, K., Raoux, S., Rettner, C.T., Padilla, A., Schrott, A.G., Shenoy, R.S., Kurdi, B.N., Lam, C.H., Modha, D.S., ACM J. Emerg. Technol. 9, 12 (2013).Google Scholar
Suri, M., Bichler, O., Querlioz, D., Cueto, O., Perniola, L., Sousa, V., Vuillaume, D., Gamrat, C., De Salvo, B., IEEE Int. Electron Dev. Mtg. 4.4.1 (Washington, DC, 2011).Google Scholar
Kuzum, D., Jeyasingh, R.G.D., Lee, B., Wong, H.-S.P., Nano Lett. 12, 2179 (2012).Google Scholar
Suri, M., Bichler, O., Querlioz, D., Traor, B., Cueto, O., Perniola, L., Sousa, V., Vuillaume, D., Gamrat, C., De Salvo, B., J. Appl. Phys. 112, 054904 (2012).Google Scholar
Suh, D.-S., Kim, C., Kim, K.H.P., Kang, Y.-S., Lee, T.-Y., Khang, Y., Park, T.S., Yoon, Y.-G., Im, J., Ihm, J., Appl. Phys. Lett. 96, 123115 (2010).Google Scholar
Rosenthal, T., Schneider, M.N., Stiewe, C., Markus, D., Oeckler, O., Chem. Mater. 23, 4349 (2011).Google Scholar
Bozorg-Grayeli, E., Reifenberg, J.P., Asheghi, M., Wong, H.-S.P., Goodson, K.E., Annu. Rev. Heat Transfer 15, 1437 (2012).Google Scholar
Grosse, K.L., Xiong, F., Hong, S., King, W.P., Pop, E., Appl. Phys. Lett. 102, 193503 (2013).Google Scholar
Sittner, E.-R., Siegert, K.S., Jost, P., Schlockermann, C., Lange, F.R., Wuttig, M., Phys. Status Solidi 210, 147 (2013).Google Scholar
Lee, J., Asheghi, M., Goodson, K.E., Nanotechnology 23, 205201 (2012).Google Scholar