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Abstract

In the present work, a new hybrid approach combining particle swarm optimization (PSO)
algorithm with recurrent dynamic neural network (RDNN), which is described as PSO-
RDNN algorithm, is proposed for multi-performance optimization of machining parameters
in finish turning of hardened AISI D2. The suggested optimization problem is solved using
the weighted sum technique. Process parameters including cutting speed and feed rate are
optimized for minimizing operation cost, maximizing tool life, and producing parts with
acceptable surface roughness. Based on experimental results, two neural network models
were developed for predicting tool flank wear and surface roughness during the machining
process. Based on trained neural networks and structured hybrid algorithm, optimum cutting
parameters were obtained. The coefficient of determination for trained neural networks was
calculated as R2 = 0.9893 and R2 = 0.9879 for predicted flank wear and surface roughness,
respectively, which proves the efficiency of trained neural models in real industrial applica-
tions. Furthermore, the offered methodology returns a Pareto optimality graph, which repre-
sents optimized cutting variables for several various cutting conditions.

Nomenclature

a Depth of cut
c1 Cognitive factor of particles in PSO methodology
c2 Social factor of particles in PSO methodology
Cl Labor cost
C0 Overhead cost
Cp Operation cost

Cmin
p Minimum operation cost

Cmax
p Maximum operation cost

Ct Tool cost
F Function of multi-objective problem
f Feed rate
fmin Minimum feed rate
fmax Maximum feed rate

Cmax
p Best position of other particles in population in PSO methodology

MRR Material removal rate
R2 Coefficient of determination
RMSE Root mean square error

p(t)best id Best position of particle in PSO methodology

randi Random variable in PSO methodology
Ra Surface roughness
Ramax Maximum permissible surface roughness
Rai+1 Predicted surface roughness after Δt seconds
T Tool life
Tmin Minimum tool life
Tmax Maximum tool life
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Tc Tool change time
Ti Tool idle time
Tp Production rate
Ts Tool setup time
V Volume of the removed material
v Cutting speed
vmin Minimum cutting speed
vmax Maximum cutting speed

Vid
(t) Velocity of particles in PSO methodology

VBi Current tool flank wear
VBi+1 Predicted tool flank wear after Δt seconds
VBmax Maximum measured tool flank wear
w1,w2 Weights of multi-objective problem

X(t)
id Current position of particles in PSO methodology

X(t+1)
id New position of particles in PSO methodology

Δt Time of machining

Introduction

Finish turning of hardened materials with hardness greater than
45 Rockwell C (HRC), which is called hard turning, has brought
significant profit to manufacturers in various production indus-
tries (Namlu et al., 2021). Asan efficient and low-cost alternative
to traditional finishing processes such as grinding, hard turning
decreases the manufacturing costs and production time and elimi-
nates usage of environmentally harmful coolant (Pourmostaghimi
et al., 2020). One of the most important aspects of the hard turn-
ing process is the resulted surface roughness. The roughness of the
machined surface not only determines the transmission precision
but also influences the mechanical performance of components
through wear resistance and fatigue strength (Paturi et al.,
2018). Because of the high hardness of work pieces, large cutting
forces and temperatures at the tool-work piece interface can be
encountered in hard turning. This issue can intensify tool wear
rate during a turning process that leads to the damage of part sur-
face and results in dimensional or geometrical imperfections
(Panday et al., 2018). Therefore, to promote the efficiency of
hard turning in terms of tool life, material removal rate (MRR),
machining economics, and surface quality, utmost care must be
taken in selecting cutting parameters. Conventionally, the cutting
parameters are selected conservatively based on the information
given in tool manufacturers’ manuals or operator’s experience.
However, these values are starting parameters and cannot offer
the optimum cutting condition throughout the machining process
(Pourmostaghimi and Zadshakoyan, 2020). Accordingly, optimi-
zation of cutting parameters to obtain acceptable surface quality
and minimum operation cost is an inevitable choice in today’s
manufacturing industry. Because of these reasons, many investi-
gations can be found in the literature. The tool steel known as
AISI D2 is considered to be a high Carbon high Chromium
cold work tool steel classified in the category of difficult to cut
materials. This heat-treatable steel which offers hardness in the
wide range of applications, is commonly used in different manu-
facturing industries that is mill rolls, blanking dies, punches, spin-
ning tools, and shear blades (Sharma and Sidhu, 2014). Hard
cutting of AISI D2 presents major problems with respect to the
current state of machining technology. Therefore, it has been
attempted to present an enabling technology for hard turning
AISI D2 tool steel (Dumitrescu et al., 2006).

Dureja et al. reported a comprehensive evaluation of various
modeling and optimization techniques performed in hard turning

processes. They also discussed the integration of various modeling
and optimization techniques to achieve desired goals (Dureja
et al., 2016). Manivel and Gandhinathan utilized ANOVA tech-
nique and signal-to-noise ratio to optimize cutting parameters
in the hard turning process. Their research aimed to produce
parts with minimum surface quality and maximum tool life
(Manivel and Gandhinathan, 2016). Rashid et al. (2016) studied
the application of signal-to-noise ratio, ANOVA, and multiple
regression analysis to minimize surface roughness in the hard
turning process. Sharma and Pandey (2016) focused on the selec-
tion of optimized cutting parameters and vibration to achieve mini-
mum residual stresses in machined work pieces. Benlahmidi et al.
considered the effect of cutting parameters and work piece hard-
ness on surface roughness and cutting power in the hard turning
process. The results led to an innovative approach based on RSM
and ANOVA techniques to obtain optimum cutting parameters
(Benlahmidi et al., 2017). Mia and Dhar studied the effect of mate-
rial hardness and high-pressure coolant jet in hard turning on sur-
face roughness and cutting temperature. Optimization of
parameters was performed using the signal-to-noise ratio and
Taguchi optimization technique (Mia and Dhar, 2017a). Mia and
Dhar in another study presented a predictive model for surface
roughness using artificial neural networks and support vector
regression. The input parameters were cutting speed, feed rate,
and material hardness. Using desirability function and GA, the
optimum cutting parameters corresponding to minimal surface
roughness were calculated (Mia and Dhar, 2017b).

Abbas et al. minimized machining time considering specified
surface roughness in turning of high-strength steel using the
Pareto optimization method. In order to predict surface rough-
ness of machined work piece, they used a multilayer perceptron.
Then, a Pareto frontier was applied to determine the optimum
cutting conditions (Abbas et al., 2017). Mia et al. presented a
study on the surface roughness, tool wear, and material removal
rate in the hard turning process. They obtained optimum cutting
parameters to reach optimal values for defined performance
indexes (Mia et al., 2018). Narayanan et al. (2018) focused on
maximizing MRR and minimizing surface roughness by choosing
the optimal turning parameters in hard turning processes using
carbide insert. Kuntoglu et al. conducted a systematic study to
determine the optimum cutting conditions, analysis of vibration
and surface roughness under different cutting speeds, feed rates,
and cutting edge angles using response surface methodology
(RSM). They resulted in an acceptable agreement between pre-
dicted and measured values with the developed model to predict
surface roughness and vibration during turning of AISI 5140
within a 10% error range. The optimum parameters were deter-
mined in order to obtain minimum vibration for all components
and surface roughness (Kuntoğlu et al., 2020). Kuntoglu et al.
studied the optimization of different sensorial criteria via the
Tool Condition Monitoring System. In their research, an optimi-
zation approach was used implementing five different sensors,
namely dynamometer, vibration, acoustic emission, temperature
and motor current sensors, to a lathe. After that, an response sur-
face methodology-based optimization approach was applied to
the measured variables (Kuntoğlu et al., 2020). Although carbon
boron nitride (CBN) and ceramic inserts are commonly used in
hard turning process, the high cost associated with such tool
materials, in comparison with coated carbide inserts, makes
them economically unjustifiable (Bouacha et al., 2014). This
matter highlighted the economic feature of hard turning more
than ever. As a result, some of the researchers made effort to
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use carbide inserts in the hard turning process (Manivel and
Gandhinathan, 2016).

Since hard turning has been considered a cost-effective alter-
native to other expensive finishing processes; therefore, the cost
of operation and final surface roughness of work pieces are of
great importance. On the other hand, because of high stresses
and temperatures occurred in hard turning, the tool wear rate is
intensive. This issue affects resulted surface roughness negatively
(Jena et al., 2019). Furthermore, the multi-objective optimization
of hard turning process to achieve optimal operation cost and tool
life considering resultant surface roughness is extremely vital in
hard turning processes. Despite previous investigations in the
field of optimization of hard turning processes, no comprehensive
research regarding multi-performance optimization of cost and
tool life has been reported. The negative effect of tool wear on sur-
face roughness is another important issue that is ignored in the
majority of performed researches. Another important problem
of previous researches is the shortage of using intelligent tech-
niques in modeling and optimization of the hard turning process,
despite proved capabilities of these methods.

Due to the drawbacks of these commonly performed studies,
there is still a deep need to perform a thorough research in the
field of optimization of the hard turning process considering dif-
ferent machining characteristics such tool life and machined sur-
face and their effect on the production costs. In this regard, the
new methodology is presented in this paper to multi-performance
optimization of cost and tool life in the hard turning process of
AISI D2, which has widely been used in automotive industrial
applications, considering the effect of tool wear on resulted sur-
face roughness using intelligent modeling and optimization tech-
niques. Another novel aspect of this work is the application of a
new hybrid algorithm which considers the effect of tool life and
surface roughness on final manufactured parts and simultane-
ously presents optimum cutting parameters. The main advantage
of the proposed methodology over previous works is that it incor-
porates a Pareto front optimality graph that facilitate the process
of cutting parameters selection according to defined decision-
making strategies. For this, a new hybrid algorithm combining
the PSO algorithm with RDNN (PSO-RDNN algorithm) along
with the weighted sum technique was proposed. Using recurrent
dynamic neural network (RDNN) in modeling of flank wear
ensures that the real condition of turning process would be
reflected. Based on experimental results, two neural networks
were trained for predicting tool flank wear and surface roughness
during the turning process. Using the offered methodology, the
optimum process parameters (cutting speed and feed rate) that
resulted in minimum operation cost, maximum tool life, and
acceptable surface roughness were calculated and the Pareto
optimality graph to represent optimized cutting variables was
obtained. The paper is organized as follows: Section “Hybrid
PSO-RDNN optimization methodology” describes optimization
methodology. Section “Experimentation” is experimentation. In
the section “Results and Discussion”, the results of the experi-
ments will be represented and discussed. Section “Conclusion”
contains conclusion.

Hybrid PSO-RDNN optimization methodology

Recurrent dynamic neural network

Recently, intelligent modeling and control techniques such as
genetic programming (GP) (Zadshakoyan and Pourmostaghimi,

2015, 2018), support vector machine (Hu et al., 2019), fuzzy
logic (Mars et al., 2020), regression trees (Juez-Gil et al., 2019),
k-nearest neighbors algorithm (k-NN) (Grzenda and Bustillo,
2019), artificial neural networks (Bustillo et al., 2021), and
ANFIS models (Qazani et al., 2022) have found popularity in var-
ious engineering areas. Among these methods, ANN has attracted
the special attention of researchers. Because of its parallel struc-
ture, ANN is faster than other algorithms. Furthermore, since
ANN is independent from parameters, the parameter variations
cannot influence the results of modeling. In comparison with tra-
ditional methods such as regression, ANNs are more global and
more flexible. Moreover, ANNs have good learning and adapta-
tion capability, which makes them widely applicable in system
modeling, image processing, decision making, and function opti-
mization (Nametala et al., 2020). Recurrent dynamic neural net-
work (RDNN) is a type of ANN, which has more complexity in
structure compared with static neural networks. Because of special
interconnections between network elements, RDNNs can analyze
time-dependent data (Wu et al., 2018).

RDNNs are suitable for modeling and prediction of time ser-
ies. In other words, when any input data is transferred to a certain
network element, it can be memorized and recalled with subse-
quent inputs. Therefore, past information can be employed to
predict both current and future system states (Amozegar and
Khorasani, 2016). This unique ability of RDNN can be effectively
utilized in modeling of flank wear. A simple RDNN is shown in
Figure 1.

In the present study, two neural networks were trained as
follows:

1. A three-layer RDNN with 10 neurons in each hidden layer was
trained to predict tool flank wear (VBi+1) during the turning
process. Inputs of this network were current tool flank wear
(VBi), cutting speed (v), feed rate ( f ), and time of machining
(Δt) in which flank wear grows from VBi to VBi+1.

2. A three-layer feed forward neural network with 10 neurons in
each hidden layer was trained to predict surface roughness
(Rai) during the process. Inputs of this network were tool
flank wear (VBi), cutting speed (v), and feed rate ( f ).

Particle swarm optimization

In recent years, nature inspired metaheuristic algorithms have
been widely used in the optimization of engineering and

Fig. 1. Schematic view of RDNN (Amozegar and Khorasani, 2016).
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manufacturing issues. In this regard, successful applications of
some algorithms such as SA (Khanghah et al., 2015), GA
(Rahman et al., 2017), PSO (Pourmostaghimi and Zadshakoyan,
2019), and artificial bee colony (ABC) (Prasanth and Raj, 2017)
in the optimization of hard turning has been reported. Among
them, PSO has found special popularity because of easy program-
ming and implementation routine, handling complex objective
functions, ability in finding global minima, and flexibility in inte-
grating with other modeling and optimization algorithms to form
a hybrid optimization algorithm (Weiss-Cohen et al., 2017). PSO
is a population-based search algorithm and is composed of parti-
cles. Each particle represents a solution to the problem, which is
assumed to be solved. These particles try to find the answer in
search space by changing their positions. Each particle has two
factors: fitness and velocity. The fitness of each particle is deter-
mined by the objective function to be optimized. The velocity
of particle shows its movement direction and is defined as follows
(Wang et al., 2018):

V (t+1)
id = wV (t)

id + c1rand1( p
(t)
best id − X(t)

id )

+ c2rand2(g
(t)
best id − X(t)

id ). (1)

In which X(t)
id and V (t)

id represent respectively the position and
velocity of particle i in d dimensional space. p(t)best id and g(t)best id
stand for the best position of particle i and the best position of
other particles in population until generation t, respectively.
Inertia weight factor w regulates the dynamic of movement of
each particle. In Eq. (1), rand1 and rand2 are random variables
selected from the range [0 1], c1 is a cognitive factor, and c2 is a
social factor of particles. The particles update their positions
using the calculated velocity as follows (Wang et al., 2018):

X(t+1)
id = X(t)

id + V (t−1)
id , (2)

where X(t+1)
id and X(t)

id are the new position and previous position
of particle i. The optimization process continues until the best
solution is obtained or desired iteration is reached (Wang et al.,
2018). The parameters configuration used in the PSO implemen-
tation stage in this research is given in Table 1.

Process model

To optimize tool life and operation cost in the hard turning pro-
cess, a new hybrid algorithm combining the PSO algorithm with
RDNN (PSO-RDNN algorithm) is proposed. The core part of the
proposed structure is an artificial modeling unit in which two pre-
viously trained neural networks are employed respectively to pre-
dict tool flank wear and surface roughness during the turning
process. A schematic view of neural networks is illustrated in
Figure 2. The first neural network is an RDNN for predicting
tool flank wear during machining. For a certain v and f, and for

known VBi, VBi+1 in next Δt seconds of machining can be pre-
dicted. Since the gradually increasing tool flank wear has a man-
ner similar to time series (Yao and Fang, 1992), by using RDNN
in the modeling of flank wear, the real condition of the turning
process is reflected. The second neural network is applied to pre-
dict surface roughness during the machining process. The output
of the first neural network, VBi+1, along with the same v and f are
inputs of the second neural network. This network determines the
roughness values in Δt intervals.

Operation cost can be expressed as follows (Zuperl and Cus,
2003):

Cp = Tp
Ct

T
+ C1 + C0

( )
(3)

In which T is tool life. The parameters Ct, C1, and C0 stand for
tool cost, labor cost, and overhead cost, respectively. Their values
are given in Table 2. Tp is the production rate and can be formu-
lated as (Zuperl and Cus, 2003):

Tp = Ts + V
1+ Tc/T
MRR

( )
+ Ti, (4)

where V is the volume of the removed material. Ts, Tc, and Ti

parameters are the tool setup time, tool change time, and tool
idle time, respectively. The value for Ts, Tc, and Ti parameters
are shown in Table 2.

MRR is obtained as follows:

MRR = 1000× v × f × a. (5)

Multi-objective optimization

Several methods and techniques have been proposed to multi-
objective optimization of machining operations with conflicting
objectives. For instance, teaching–learning-based optimization
algorithm (Lin et al., 2015), gray relational analysis (Mia et al.,
2017), response surface methodology (Bagaber and Yusoff,
2017), and nondominated sorting methods (Wang et al., 2014).
Each method has its characteristics and uses the special procedure
to solve problems. In this research, two conflicting objectives,
operation cost, Cp, and tool life, T, were optimized using the
weighted sum approach. Any increase in cutting parameters
leads to a decrease in operation cost and tool life. On the contrary,
decreased cutting parameters would increase both operation cost
and tool life. It is aimed at machining processes to decrease opera-
tional cost and increase tool life simultaneously. Accordingly,
multi-objective problem is defined and different weights for
objective functions are applied to obtain different Pareto optimal
solutions. Since the objective functions usually are different in
dimension, it is also necessary to normalize objective functions.
Therefore, the defined multi-objective problem in the weighted
sum method in this research can be explained as follows:

F(Cp, MRR) = w1∗ T − Tmin

Tmax − Tmin
− w2∗

Cp − Cmin
p

Cmax
p − Cmin

p

, (6)

where

w1 + w2 = 1 (7)

Table 1. PSO parameters configuration

Population size 20

Range of inertia weight 0.6–0.8

Cognitive factor 2

Social factor 2

Stopping criteria Maximum generation of 100
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Cmax
p , Cmax

p , Tmax, Tmin are maximum and minimum operation
cost and maximum and minimum tool life obtained in experi-
ments, respectively, w1 and w2 are weights. Some constraints on
process parameters are taken into account as follows:

vmin ≤ v ≤ vmax, (8)

fmin ≤ f ≤ fmax. (9)

Surface roughness has to be smaller than the permissible value
(Ramax):

Ra ≤ Ramax (10)

The flowchart of the suggested PSO-RDNN optimization
methodology is shown in Figure 3. The optimization process
starts with the generation of the first random population in the
PSO operation unit, considering the constraints given by Eqs
(8)–(10).

For each member composed of v and f, and considering Δt =
5 s and VB0 = 0, flank wear VB1 is calculated using RDNN. If the
obtained flank wear, VB1, was less than defined maximum flank
wear, VBmax, the value for surface roughness, Ra1, would be

calculated. For members with acceptable roughness (Ra1 <
Ramax), the process of optimization will continue. For the next
Δt = 5 s, the same operations would be performed. Since the lim-
itations of the process is values defined for tool life (T ) or surface
roughness (Ramax), if in any stage of the process the flank wear or
surface roughness values violated from defined limitations, the
optimization will be terminated and for corresponding cutting
parameters the tool life and operation cost will be calculated. If
the optimum condition or a specific number of generations is
reached, the optimum cutting parameters will be reported.
Otherwise, applying PSO operators, the new population will be
created. The same process will be repeated for new population
until obtaining optimum cutting speed and feed rate that result
in the optimal tool life and operation cost. This process is per-
formed for different set of weights (w1 and w2). Then, a Pareto
optimal set of solutions is extended to evaluate both objectives
simultaneously with the optimal decision variables and regarding
defined constraints.

Experimentation

An EMCOTURN CNC lathe was employed to perform hard turn-
ing experiments in dry cutting condition. An AISI D2 alloy steel
round bar (diameter of 60 mm and length of 250 mm) with the fol-
lowing chemical composition were machined: 1.53% C; 0.367% Si;
0.344% Mn; 11.537% Cr; 0.94% Mo; 1.02% V. After heat treatment
and tempering (quenching in a vacuum atmosphere at 1000–1030°
C and two-stage tempering at 600°C), an average hardness of 46 ± 1
HRC for parts was achieved. The selected insert was a TiN-coated
tungsten carbide tool type TNMG220408 with grade NC3030. The
geometry of insert include: −6° rake angle, 6° clearance angle, 60°
major cutting edge angle, −6° cutting edge inclination angle, and
0.8 mm nose radius. Utilized insert along with relevant tool holder
are shown in Figure 4.

Since the research was designed for finish hard turning, the
depth of cut was selected to be 1 mm. To train neural networks,
experimental tests were performed in various cutting conditions.

Fig. 2. View of artificial modeling unit applied in modeling of machining characteristics VBi+1 and Rai+1.

Table 2. The value of cutting coefficients (Zuperl and Cus, 2003)

Parameter Value

Ct 13.55$

C1 0.31 $/min

C0 0.31 $/min

Ts 0.12 min

Tc 0.26 min

Ti 0.04 min

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5
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Fig. 3. Flowchart of proposed hybrid optimization methodology.

Fig. 4. Tool holder, tool insert type TNMG220408, and
measured tool flank wear.
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Cutting speeds (v) were 40, 60, and 80 m/min and selected values
for feed rate ( f ) were 0.02, 0.04, and 0.06 mm/rev. For each cut-
ting couple, 12 tests were performed until the end of tool life
(VBmax = 0.3 mm). The sampling times for selected cutting param-
eters are shown in Figure 5. Permissible maximum surface rough-
ness (Ramax) was considered 0.4 μm. Some extra tests also were
carried on to validate the accuracy of trained neural networks.
Because of the high wear rate in initial moments of the turning pro-
cess, more data were collected in this period to enhance the precision
of trained neural networks. Two statistical measures including coef-
ficient of determination, R2, and root mean square error, RMSE,
were employed to fitness evaluation of trained neural networks.

To measure tool flank wear, a light source microscope with a
magnification of 36× equipped with an imaging processing soft-
ware was utilized. An illustration of tool insert and measured
tool flank wear is shown in Figure 4. A Taylor Hobson S100 sur-
face profilometer was employed to assess the roughness of
machined parts. The selected value for cut-off length for assessing
surface roughness was 0.5 mm. The final obtained value for both
tool flank wear and surface roughness is the mean of three regard-
ing measured values which is performed according to the given
sampling times in Figure 4. The experimental setup is demon-
strated in Figure 6.

Results and discussion

Neural networks

In this research, two neural networks were trained to predict out-
put characteristics of the turning process. The first was a recurrent
dynamic neural network to predict tool flank wear in the next Δt
seconds (VBi+1). The second network was a three-layer feed-
forward network trained to predict the value of surface roughness
during the turning process (Rai+1). This network was used to
avoid the process of selecting cutting parameters that could result
in unacceptable surface roughness. According to specified cutting
parameters, 100 tests were designated to train neural networks.
Also, 12 validation tests were performed to assess the correctness
of the proposed intelligent models.

In Table 3, the results of measurements for flank wear and sur-
face roughness for validation tests were compared with regarding
values obtained from neural models. The accuracy of neural mod-
els in terms of R2, coefficient of determination, and RMSE, root
mean square error, for both the training and validation tests is
shown in Table 4. The given results show that trained neural net-
works have acceptable accuracy to be used in real industrial appli-
cations with confidence.

Fig. 5. Cutting parameters and corresponding sampling times.

Fig. 6. Experimental setup: (a) CNC machine tool and (b) surface profilometer.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7
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In Figure 7, experimentally obtained values for tool life regard-
ing various cutting speeds and feed rates are shown. As can be
seen, any increase in cutting speed decreases tool life notably.
The effect of feed rate on tool wear is less than the effect of cutting
speed. According to the illustration, the maximum tool life corre-
sponds with minimum cutting speed and feed rate. Another
important point that can be concluded from Figure 7 is the effect
of feed rate in various cutting speeds. In lower cutting speeds,
increasing the feed rate results more rapid tool flank wear com-
pared with that of higher speeds.

The same results have been reported by Özel et al. (2007) and
Gaitonde et al. (2009).

Optimization results

Considering different values for w1 and w2, defined multi-
objective problem according to Eq. (6) was solved using the
weighted sum method. To find optimum cutting parameters,
the suggested hybrid PSO-RDNN algorithm was employed and
various optimal solutions corresponding to selected w1 and w2

varying from 1 to 10, were obtained as summarized in Table 5.
Tool life and surface roughness values for corresponding cutting
speeds and feed rates were measured after finishing the process.
As can be seen, all resulted values for roughness are in a permis-
sible range (Ra <0.4 μm).

The results given in Table 5 reveal the effect of weights on the
optimization process. According to the defined multi-objective
problem, for w1 = 1 and w2 = 0, the cost function is equal to

tool life. In this condition, operation cost has no importance
and the optimization process searched for cutting speeds and
feed rates that resulted in higher tool life. Therefore, low values
for cutting speed and feed rate were selected. This matter
decreased MRR and increased operation cost notably. On the con-
trary, when w1 = 0 and w2 = 1, Eq. (6) gives operation cost.
Selected cutting parameters resulted in lower operation costs,
and therefore, tool life decreased drastically. Based on the infor-
mation given for operation cost and tool life in Table 5, the
Pareto front of solution space is illustrated in Figure 8. Between
the two mentioned optimum conditions, various values were
defined for w1 and w2. By increasing the value of w1 and conse-
quently decreasing of w2, various ranges of optimum condition
could be obtained. It can be induced that an increasing value of
w1 corresponds with relative increasing the cutting speed and
feed rate and decreasing the resulted tool life.

Point 1 corresponds to the minimum cutting speed and feed
rate. As it can be seen, any increase in cutting parameters
decreases tool life and operation costs simultaneously. At point
11, which corresponds to maximum cutting speed and feed
rate, the minimum tool life and operation cost would be achieved.
Considering the obtained Pareto front specifies two different
zones. From points 1 to 3 (zone 1), the steep gradient in the
Pareto front can be seen. In this zone, a significant decrease in
tool life and a moderate decrease in operation cost can be
detected. From points 4 to 11 (zone 2), operation cost decreased
more severely and the tool life has a small decrease. Given Pareto
front and corresponding cutting information makes the analysis
of selected parameters and decision making regarding with hard
turning process easier. First, in the cases that the tool life is
more important, cutting parameters associated with zone 1
should be selected. However, this important point needs to be
considered that lower values of cutting speed and feed rate lead
to low MRR and high operation costs. Secondly, in conditions
in which high production volume and lower operation cost are
of great importance and tool life can be neglected, cutting param-
eters corresponding to zone 2 should be chosen in machining
operation. In this case, because of the higher values of selected
cutting speeds and feed rates, high MRR could be achieved.

Table 3. Measured and predicted values using neural networks

Test No.
Cutting speed

(m/min)
Feed

(mm/rev) Time (s) VBi (mm)

Flank wear, VBi+1 (mm) Surface roughness, Rai+1 (μm)

Measured RDNN predicted Measured ANN predicted

1 40 0.04 20 0.269 0.288 0.281 0.51 0.5359

2 60 0.02 20 0.245 0.314 0.292 0.45 0.467

3 60 0.04 5 0.108 0.137 0.144 0.27 0.281

4 80 0.02 5 0.206 0.221 0.2296 0.28 0.288

5 40 0.035 15 0.232 0.271 0.2491 0.4 0.413

6 50 0.05 10 0.091 0.132 0.1248 0.38 0.3877

7 70 0.03 15 0.149 0.19 0.1798 0.23 0.215

8 85 0.06 5 0.092 0.126 0.1142 0.42 0.4411

9 40 0.04 10 0.126 0.143 0.1295 0.32 0.3341

10 60 0.02 5 0.08 0.099 0.1102 0.18 0.1622

11 60 0.06 20 0.209 0.25 0.2342 0.46 0.497

12 80 0.04 10 0.081 0.131 0.149 0.31 0.342

Table 4. The accuracy of intelligent models for training and validation data sets

Training data set Validation data set

R2 RMSE R2 RMSE

RDNN model for flank
wear (VBi+1)

0.9893 0.0114 0.9321 0.0244

ANN model for surface
roughness

0.9879 0.0154 0.9553 0.0203
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Conclusion

In this work, a new hybrid algorithm referred to as the
PSO-RDNN algorithm combined with the weighted sum tech-
nique was applied for multi-objective optimization of machining
parameters in finish turning of hardened AISI D2. Cutting speed
and feed rate were optimized for maximizing tool life and mini-
mizing operation cost with operation constraints on cutting
parameters and surface roughness. Experimental-based neural
network models were developed for predicting tool flank wear

and surface roughness during the process. The following conclu-
sions can be made:

1. The coefficient of determination for trained neural networks was
calculated as R2 = 0.9893 and R2 = 0.9879 for predicted flank
wear and surface roughness, respectively, which showed the effi-
ciency of trained neural models in real industrial applications.

2. Based on trained neural networks and structured hybrid algo-
rithm, optimum cutting parameters were obtained. The

Fig. 7. Tool life in various cutting speeds and feed
rates.

Table 5. Pareto optimal solutions for tool life and operation cost as outcomes of the optimization process

No. w1 w2 Cutting speed (m/min) Feed rate (mm/rev) Operation cost $ Tool life (s) Surface roughness (μm)

1 1 0 40 0.02 1.9 190 0.381

2 0.9 0.1 43.2 0.023 1.87 182 0.379

3 0.8 0.2 48.6 0.026 1.77 162 0.393

4 0.7 0.3 51.7 0.031 1.49 128 0.386

5 0.6 0.4 56.2 0.036 1.32 112 0.391

6 0.5 0.5 61.6 0.041 1.2 99 0.395

7 0.4 0.6 63.1 0.043 1.09 88 0.378

8 0.3 0.7 67.9 0.048 1 80 0.382

9 0.2 0.8 72 0.053 0.92 72 0.392

10 0.1 0.9 77.9 0.057 0.81 68 0.388

11 0 1 80 0.06 0.71 63 0.392
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suggested optimizing methodology also returns a Pareto
optimality graph, which represents optimized cutting variables.
The Pareto front line offers a notable amount of decisive infor-
mation to handle cutting parameters in a logical manner.
Confirmation experiments also showed the reliability of the
proposed methodology in optimization of the hard finish turn-
ing process.

It was found that increasing cutting speed and feed rate
accompany with increasing with MRR, but it also decrease tool
life severely. On the other hand, by decreasing these parameters,
tool life could be increased, although MRR decreased drastically.
Therefore, using obtained Pareto front graph could help research-
ers to select cutting conditions according to their financial and
technical strategies.

Since the machining of hardened material is commonly per-
formed with CBN and ceramic inserts, it is advisable that the pre-
sented optimization methodology to be executed by mentioned
tools to evaluate the effectiveness of the proposed technique.
Also as future work, the proposed methodology should be
expanded to include more comprehensive performance indexes
such as MRR, production rate, and machining time. More realistic
constraints also need to be considered such as cutting force and
cutting power in hard turning processes.
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