Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-07T08:25:04.928Z Has data issue: false hasContentIssue false

Factors influencing the polymerization of outer fibre microtubule protein*

Published online by Cambridge University Press:  17 March 2009

R. E. Stephens
Affiliation:
Department of Biology, Brandies University, Waltham, Massachusetts, U.S.A.

Extract

Microtubule proteins have recently been prepared and characterized from a number of diverse sources. Renaud, Rowe & Gibbons (1966, 1968) have obtained a protein from acetone powders of Tetrahymena pyriformis cilia and from isolated outer fibre doublets of this same species. The protein has an actin-like amino acid composition, a minimum subunit weight of 55000, and 7·5 free sulphydryl groups per mole of monomer. Stephens (1968a) has fractionated sea-urchin flagella, following the procedure of Gibbons (1965), to obtain the isolated outer fibres and has found the protein to have properties virtually identical to those of its ciliary counterpart. Both the flagellar and the ciliary outer-fibre proteins contain 1 mole of bound guanine nucleotide per mole of protein subunit (Stephens, Renaud & Gibbons, 1967).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asakura, S., Eguchi, G. & Iino, T. (1964). Reconstitution of bacterial flagella in vitro. J. molec. Biol. 10, 4256.CrossRefGoogle ScholarPubMed
Behnke, O. (1967). Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization. J. Cell Biol. 34, 697700.CrossRefGoogle ScholarPubMed
Borisy, G. G. & Taylor, E. W. (1967). The mechanism of action of colchicine. Binding of colchicine-3H to cellular protein. Colchicine binding to sea urchin eggs and mitotic apparatus. J. Cell Biol. 34, 525–33, 535–48.CrossRefGoogle Scholar
Brenner, S. & Horne, R. W. (1959). A negative staining method for high resolution electron microscopy of viruses. Biochim. biophys. Acta 43, 103–10.CrossRefGoogle Scholar
Ellman, G. L. (1959). Tissue sulfhydryl Groups. Archs Biochem. Biophys. 82, 70–7.CrossRefGoogle ScholarPubMed
Gibbons, I. R. (1965). Chemical dissection of cilia. Archs Biol., Liège 76, 317–52.Google ScholarPubMed
Huxley, H. E. (1963). Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. molec. Biol. 7, 281308.CrossRefGoogle ScholarPubMed
Inoué, S. (1952 a). Effects of temperature on the birefringence of the mitotic spindle. Biol. Bull. mar. biol. Lab., Woods Hole 103, 316.Google Scholar
Inoué, S. (1952 b). The effect of colchicine on the microscopic and submicroscopic structure of the mitotic spindle. Expl. Cell Res. (Suppl.) 2, 305–18.Google Scholar
Inoué, S. & Sato, H. (1967). Cell motility by labile association of molecules. J. gen. Physiol. 50, 259–92.CrossRefGoogle ScholarPubMed
Inoué, S., Sato, H. & Tucker, R. W. (1963). Heavy water enhancement of mitotic spindle birefringence. Biol. Bull. mar. biol. Lab., Woods Hole 125, 380–1.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with Folin phenol reagent. J. biol. Chem. 193, 265–75.CrossRefGoogle ScholarPubMed
Metuzals, J. (1967). Helical arrangement of the subunits of the neurofibrillar bundles isolated from the leech nervous system. J. Cell Biol. 34, 690–6.CrossRefGoogle ScholarPubMed
Pease, D. C. (1963). The ultrastructure of flagellar fibrils. J. Cell Biol. 18, 313–26.CrossRefGoogle ScholarPubMed
Peters, A. & Vaughn, J. E. (1967). Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J. Cell Biol. 32, 113–19.CrossRefGoogle ScholarPubMed
Renaud, F. L., Rowe, A. J. & Gibbons, I. R. (1966). Some properties of the protein forming the outer fibres of cilia. J. Cell Biol. 31, 92A93A.Google Scholar
Renaud, F. L., Rowe, A. J. & Gibbons, I. R. (1968). Some properties of the protein forming the outer fibres of cilia. J. Cell Biol. 36, 7990.CrossRefGoogle ScholarPubMed
Schachman, H. K. (1959) Ultracentrifugation in Biochemistry. New York: Academic Press.Google Scholar
Shelanski, M. L. & Taylor, E. W. (1967). Isolation of a protein subunit from microtubules. J. Cell Biol. 34, 549–54.CrossRefGoogle ScholarPubMed
Stephens, R. E. (1967). Polymerization of microtubule protein. Symp. Soc. exp. Biol. (in the Press).Google Scholar
Stephens, R. E. (1968 a). On the structural protein of flagellar outer fibres. J. molec. Biol. 32, 277–83.CrossRefGoogle Scholar
Stephens, R. E. (1968 b). Reassociation of microtubule protein. J. molec. Biol. 33, 517–19.CrossRefGoogle ScholarPubMed
Stephens, R. E., Renaud, F. L. & Gibbons, I. R. (1967). Guanine nucleotide associated with the protein of the outer fibres of flagella and cilia. Science, N.Y. 156, 1606–8.CrossRefGoogle ScholarPubMed
Van Holde, K. E. & Baldwin, R. L. (1958). Rapid attainment of sedimentation equilibrium. J. Phys. Chem. 62, 734–43.CrossRefGoogle Scholar
Weisenberg, R., Borisy, G. G. & Taylor, E. W. (1968). In preparation.Google Scholar