We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this comprehensive textbook about robot grasping, readers will discover an integrated look at the major concepts and technical results in robot grasp mechanics. A large body of prior research, including key theories, graphical techniques, and insights on robot hand designs, is organized into a systematic review, using common notation and a common analytical framework. With introductory and advanced chapters that support senior undergraduate and graduate level robotics courses, this book provides a full introduction to robot grasping principles that are needed to model and analyze multi-finger robot grasps, and serves as a valuable reference for robotics students, researchers, and practicing robot engineers. Each chapter contains many worked-out examples, exercises with full solutions, and figures that highlight new concepts and help the reader master the use of the theories and equations presented.
With this groundbreaking text, discover how wireless artificial intelligence (AI) can be used to determine position at centimeter level, sense motion and vital signs, and identify events and people. Using a highly innovative approach that employs existing wireless equipment and signal processing techniques to turn multipaths into virtual antennas, combined with the physical principle of time reversal and machine learning, it covers fundamental theory, extensive experimental results, and real practical use cases developed for products and applications. Topics explored include indoor positioning and tracking, wireless sensing and analytics, wireless power transfer and energy efficiency, 5G and next-generation communications, and the connection of large numbers of heterogeneous IoT devices of various bandwidths and capabilities. Demo videos accompanying the book online enhance understanding of these topics. Providing a unified framework for wireless AI, this is an excellent text for graduate students, researchers, and professionals working in wireless sensing, positioning, IoT, machine learning, signal processing and wireless communications.
The new research field of Ambient/Active Assisted Living (AAL) is quickly evolving. Ambient Integrated Robotics provides an easy-to-understand medical perspective to architects, designers, and engineers, bridging the different disciplines and showing how they fuse together to create the future of AAL technology. Using robotics as an example, the book illustrates how embedding its subsystems results in unique ambient technology that can be used to help people, particularly in adapting to the needs of the unwell and elderly populations. You will be provided with the knowledge and tools to contribute to the future of AAL. The Cambridge Handbooks on Construction Robotics series gives professionals, researchers, lecturers, and students basic conceptual and technical skills and strategies to manage, research, or teach the implementation of advanced automation, and robot-technology-based processes and technologies in construction. Books discuss progress in robot systems theory and demonstrates their integration using real applications and projections.
Within the rapidly-growing arena of 'virtual worlds', such as Massively Multiplayer Online Games (MMOs), individuals behave in particular ways, influence one another, and develop complex relationships. This setting can be a useful tool for modeling complex social systems, cognitive factors, and interactions between groups and within organizations. To study these worlds effectively requires a cross-disciplinary approach that integrates social science theories with big data analytics. This broad-based book offers a comprehensive and holistic perspective on the field. It brings together research findings from an international team of experts in computer science (artificial intelligence, game design, and social computing), psychology, and the social sciences to help researchers and practitioners better understand the fundamental processes underpinning social behavior in virtual worlds such as World of Warcraft, Rift, Eve Online, and Travian.
Cyber Mercenaries explores the secretive relationships between states and hackers. As cyberspace has emerged as the new frontier for geopolitics, states have become entrepreneurial in their sponsorship, deployment, and exploitation of hackers as proxies to project power. Such modern-day mercenaries and privateers can impose significant harm undermining global security, stability, and human rights. These state-hacker relationships therefore raise important questions about the control, authority, and use of offensive cyber capabilities. While different countries pursue different models for their proxy relationships, they face the common challenge of balancing the benefits of these relationships with their costs and the potential risks of escalation. This book examines case studies in the United States, Iran, Syria, Russia, and China for the purpose of establishing a framework to better understand and manage the impact and risks of cyber proxies on global politics.
Computer vision has widespread and growing application including robotics, autonomous vehicles, medical imaging and diagnosis, surveillance, video analysis, and even tracking for sports analysis. This book equips the reader with crucial mathematical and algorithmic tools to develop a thorough understanding of the underlying components of any complete computer vision system and to design such systems. These components include identifying local features such as corners or edges in the presence of noise, edge preserving smoothing, connected component labeling, stereopsis, thresholding, clustering, segmentation, and describing and matching both shapes and scenes. The extensive examples include photographs of faces, cartoons, animal footprints, and angiograms, and each chapter concludes with homework exercises and suggested projects. Intended for advanced undergraduate and beginning graduate students, the text will also be of use to practitioners and researchers in a range of applications.
Commonsense psychology refers to the implicit theories that we all use to make sense of people's behavior in terms of their beliefs, goals, plans, and emotions. These are also the theories we employ when we anthropomorphize complex machines and computers as if they had humanlike mental lives. In order to successfully cooperate and communicate with people, these theories will need to be represented explicitly in future artificial intelligence systems. This book provides a large-scale logical formalization of commonsense psychology in support of humanlike artificial intelligence. It uses formal logic to encode the deep lexical semantics of the full breadth of psychological words and phrases, providing fourteen hundred axioms of first-order logic organized into twenty-nine commonsense psychology theories and sixteen background theories. This in-depth exploration of human commonsense reasoning for artificial intelligence researchers, linguists, and cognitive and social psychologists will serve as a foundation for the development of humanlike artificial intelligence.
A key aspect of robotics today is estimating the state, such as position and orientation, of a robot as it moves through the world. Most robots and autonomous vehicles depend on noisy data from sensors such as cameras or laser rangefinders to navigate in a three-dimensional world. This book presents common sensor models and practical advice on how to carry out state estimation for rotations and other state variables. It covers both classical state estimation methods such as the Kalman filter, as well as important modern topics such as batch estimation, the Bayes filter, sigmapoint and particle filters, robust estimation for outlier rejection, and continuous-time trajectory estimation and its connection to Gaussian-process regression. The methods are demonstrated in the context of important applications such as point-cloud alignment, pose-graph relaxation, bundle adjustment, and simultaneous localization and mapping. Students and practitioners of robotics alike will find this a valuable resource.
Scientific Python is a significant public domain alternative to expensive proprietary software packages. This book teaches from scratch everything the working scientist needs to know using copious, downloadable, useful and adaptable code snippets. Readers will discover how easy it is to implement and test non-trivial mathematical algorithms and will be guided through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the language's capabilities. The author also shows how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. In this new edition, several chapters have been re-written to reflect the IPython notebook style. With an extended index, an entirely new chapter discussing SymPy and a substantial increase in the number of code snippets, researchers and research students will be able to quickly acquire all the skills needed for using Python effectively.
Social Signal Processing is the first book to cover all aspects of the modeling, automated detection, analysis, and synthesis of nonverbal behavior in human-human and human-machine interactions. Authoritative surveys address conceptual foundations, machine analysis and synthesis of social signal processing, and applications. Foundational topics include affect perception and interpersonal coordination in communication; later chapters cover technologies for automatic detection and understanding such as computational paralinguistics and facial expression analysis and for the generation of artificial social signals such as social robots and artificial agents. The final section covers a broad spectrum of applications based on social signal processing in healthcare, deception detection, and digital cities, including detection of developmental diseases and analysis of small groups. Each chapter offers a basic introduction to its topic, accessible to students and other newcomers, and then outlines challenges and future perspectives for the benefit of experienced researchers and practitioners in the field.
Cyberpsychology is a relatively new discipline that is growing at an alarming rate. While a number of cyberpsychology-related journals and books have emerged, none directly address the neuroscience behind it. This book proposes a framework for integrating neuroscience and cyberpsychology for the study of social, cognitive, and affective processes, and the neural systems that support them. A brain-based cyberpsychology can be understood as a branch of psychology that studies the neurocognitive, affective, and social aspects of humans interacting with technology, as well as the affective computing aspects of humans interacting with computational devices or systems. As such, a cyberpsychologist working from a brain-based cyberpsychological framework studies both the ways in which persons make use of devices and the neurocognitive processes, motivations, intentions, behavioural outcomes, and effects of online and offline uses of technology. Cyberpsychology and the Brain brings researchers into the vanguard of cyberpsychology and brain research.
The field of artificial intelligence (AI) and the law is on the cusp of a revolution that began with text analytic programs like IBM's Watson and Debater and the open-source information management architectures on which they are based. Today, new legal applications are beginning to appear and this book - designed to explain computational processes to non-programmers - describes how they will change the practice of law, specifically by connecting computational models of legal reasoning directly with legal text, generating arguments for and against particular outcomes, predicting outcomes and explaining these predictions with reasons that legal professionals will be able to evaluate for themselves. These legal applications will support conceptual legal information retrieval and allow cognitive computing, enabling a collaboration between humans and computers in which each does what it can do best. Anyone interested in how AI is changing the practice of law should read this illuminating work.
Human and Machine Hearing is the first book to comprehensively describe how human hearing works and how to build machines to analyze sounds in the same way that people do. Drawing on over thirty-five years of experience in analyzing hearing and building systems, Richard F. Lyon explains how we can now build machines with close-to-human abilities in speech, music, and other sound-understanding domains. He explains human hearing in terms of engineering concepts, and describes how to incorporate those concepts into machines for a wide range of modern applications. The details of this approach are presented at an accessible level, to bring a diverse range of readers, from neuroscience to engineering, to a common technical understanding. The description of hearing as signal-processing algorithms is supported by corresponding open-source code, for which the book serves as motivating documentation.
Providing a unique bridge between the foundations of analytical mechanics and application to multi-body dynamical systems, this textbook is particularly well suited for graduate students seeking an understanding of the theoretical underpinnings of analytical mechanics, as well as modern task space approaches for representing the resulting dynamics that can be exploited for real-world problems in areas such as biomechanics and robotics. Established principles in mechanics are presented in a thorough and modern way. The chapters build up from general mathematical foundations, an extensive treatment of kinematics, and then to a rigorous treatment of conservation and variational principles in mechanics. Parallels are drawn between the different approaches, providing the reader with insights that unify his or her understanding of analytical dynamics. Additionally, a unique treatment is presented on task space dynamical formulations that map traditional configuration space representations into more intuitive geometric spaces.
Learn how Single-Task Construction Robots (STCRs) can improve productivity in the construction industry with this cross-disciplinary text. This third volume in The Cambridge Handbooks in Construction Robotics series discusses the STCRs employed on construction sites since the development of the approach in the 1980s, presents current applications, and highlights upcoming trends in the construction automation and robotics field. Two hundred different types of STCR are presented, from the simplest models comprising simple manipulators and mobile platforms, to those utilizing more sophisticated technologies such as aerial robotics, swarm robotics, exoskeletons, additive manufacturing technologies, self-assembling building structures, and humanoid robotics. Real-world case studies demonstrate the different application scenarios for each approach, and highlight the key implementation and management issues. With an easy-to-follow structure, and including hundreds of color illustrations, it provides an excellent toolkit for professional engineers, researchers, and students.
Are psychometric tests valid for a new reality of artificial intelligence systems, technology-enhanced humans, and hybrids yet to come? Are the Turing Test, the ubiquitous CAPTCHAs, and the various animal cognition tests the best alternatives? In this fascinating and provocative book, José Hernández-Orallo formulates major scientific questions, integrates the most significant research developments, and offers a vision of the universal evaluation of cognition. By replacing the dominant anthropocentric stance with a universal perspective where living organisms are considered as a special case, long-standing questions in the evaluation of behavior can be addressed in a wider landscape. Can we derive task difficulty intrinsically? Is a universal g factor - a common general component for all abilities - theoretically possible? Using algorithmic information theory as a foundation, the book elaborates on the evaluation of perceptual, developmental, social, verbal and collective features and critically analyzes what the future of intelligence might look like.
Can you tell the difference between talking to a human and talking to a machine? Or, is it possible to create a machine which is able to converse like a human? In fact, what is it that even makes us human? Turing's Imitation Game, commonly known as the Turing Test, is fundamental to the science of artificial intelligence. Involving an interrogator conversing with hidden identities, both human and machine, the test strikes at the heart of any questions about the capacity of machines to behave as humans. While this subject area has shifted dramatically in the last few years, this book offers an up-to-date assessment of Turing's Imitation Game, its history, context and implications, all illustrated with practical Turing tests. The contemporary relevance of this topic and the strong emphasis on example transcripts makes this book an ideal companion for undergraduate courses in artificial intelligence, engineering or computer science.
This book presents a significant advancement in the theory and practice of knowledge engineering, the discipline concerned with the development of intelligent agents that use knowledge and reasoning to perform problem solving and decision-making tasks. It covers the main stages in the development of a knowledge-based agent: understanding the application domain, modeling problem solving in that domain, developing the ontology, learning the reasoning rules, and testing the agent. The book focuses on a special class of agents: cognitive assistants for evidence-based reasoning that learn complex problem-solving expertise directly from human experts, support experts, and nonexperts in problem solving and decision making, and teach their problem-solving expertise to students. A powerful learning agent shell, Disciple-EBR, is included with the book, enabling students, practitioners, and researchers to develop cognitive assistants rapidly in a wide variety of domains that require evidence-based reasoning, including intelligence analysis, cybersecurity, law, forensics, medicine, and education.
Autonomous AI systems need complex computational techniques for planning and performing actions. Planning and acting require significant deliberation because an intelligent system must coordinate and integrate these activities in order to act effectively in the real world. This book presents a comprehensive paradigm of planning and acting using the most recent and advanced automated-planning techniques. It explains the computational deliberation capabilities that allow an actor, whether physical or virtual, to reason about its actions, choose them, organize them purposefully, and act deliberately to achieve an objective. Useful for students, practitioners, and researchers, this book covers state-of-the-art planning techniques, acting techniques, and their integration which will allow readers to design intelligent systems that are able to act effectively in the real world.
This unique book on intelligence analysis covers several vital but often overlooked topics. It teaches the evidential and inferential issues involved in 'connecting the dots' to draw defensible and persuasive conclusions from masses of evidence: from observations we make, or questions we ask, we generate alternative hypotheses as explanations or answers; we make use of our hypotheses to generate new lines of inquiry and discover new evidence; and we test the hypotheses with the discovered evidence. To facilitate understanding of these issues and enable the performance of complex analyses, the book introduces an intelligent analytical tool, called Disciple-CD. Readers will practice with Disciple-CD and learn how to formulate hypotheses; develop arguments that reduce complex hypotheses to simpler ones; collect evidence to evaluate the simplest hypotheses; and assess the relevance and the believability of evidence, which combine in complex ways to determine its inferential force and the probabilities of the hypotheses.