Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T14:45:30.456Z Has data issue: false hasContentIssue false

12 - Graphene–BN Heterostructures

from Part I

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 219 - 237
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

12.5 References

Ando, T., “Screening effect and impurity scattering in monolayer graphene,” Journal of the Physics Society Japan, vol. 75, 074716, July 2006.Google Scholar
Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S., and Williams, E. D., “Atomic structure of graphene on SiO2,” Nano Letters, vol. 7, no. 6, pp. 16431648, 2007.CrossRefGoogle ScholarPubMed
Morozov, S., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D., Jaszczak, J., and Geim, A., “Giant intrinsic carrier mobilities in graphene and its bilayer,” Physical Review Letters, vol. 100, no. 1, 16602, 2008.CrossRefGoogle ScholarPubMed
Fratini, S. and Guinea, F., “Substrate-limited electron dynamics in graphene,” Physical Review B, vol. 7, 195415, 2008.Google Scholar
Chen, J., Jang, C., Adam, S., Fuhrer, M., Williams, E., and Ishigami, M., “Charged-impurity scattering in graphene,” Nature Physics, vol. 4, no. 5, pp. 377381, 2008.Google Scholar
Chen, J., Jang, C., Xiao, S., Ishigami, M., and Fuhrer, M., “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology, vol. 3, no. 4, pp. 206209, 2008.CrossRefGoogle ScholarPubMed
Hwang, E., Adam, S., and Das Sarma, S., “Carrier transport in two-dimensional graphene layers,” Physical Review Letters, vol. 98, 186806, 2007.Google Scholar
Martin, J., Akerman, N., Ulbricht, G., Lohmann, T., Smet, J. H., von Klitzing, K., and Yacoby, A., “Observation of electron–hole puddles in graphene using a scanning single-electron transistor,” Nature Physics, vol. 4, pp. 144148, November 2008.Google Scholar
Bolotin, K., Sikes, K., Hone, J., Stormer, H., and Kim, P., “Temperature-dependent transport in suspended graphene,” Physical Review Letters, vol. 101, 096802, August 2008.Google Scholar
Du, X., Skachko, I., Barker, A., and Andrei, E., “Approaching ballistic transport in suspended graphene,” Nature Nanotechnology, vol. 3, no. 8, pp. 491495, 2008.Google Scholar
Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., and Hone, J., “Boron nitride substrates for high-quality graphene electronics,” Nature Nanotechnology, vol. 5, no. 10, pp. 722726, 2010.Google Scholar
Watanabe, K., Taniguchi, T., and Kanda, H., “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nature Materials, vol. 3, pp. 404409, May 2004.Google Scholar
Giovannetti, G., Khomyakov, P., Brocks, G., Kelly, P., and Van Den Brink, J., “Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations,” Physical Review B, vol. 76, 073103, August 2007.Google Scholar
Lui, C., Liu, L., Mak, K., Flynn, G., and Heinz, T., “Ultraat graphene,” Nature, vol. 462, no. 19, pp. 339341, 2009.Google Scholar
Young, A., Dean, C., Meric, I., Sorgenfrei, S., Ren, H., Watanabe, K., Taniguchi, T., Hone, J., Shepard, K., and Kim, P., “Electronic compressibility of layer-polarized bilayer graphene,” Physical Review B, vol. 85, 235458, June 2012.Google Scholar
Meric, I., Han, M., Young, A., Ozyilmaz, B., Kim, P., and Shepard, K., “Current saturation in zero-band gap, top-gated graphene field-effect transistors,” Nature Nanotechnology, vol. 3, no. 11, pp. 654659, 2008.Google Scholar
Schwierz, F., “Graphene transistors,” Nature Nanotechnology, vol. 5, pp. 487496, May 2010.Google Scholar
Geim, A. K. and Grigorieva, I. V., “Van der Waals heterostructures,” Nature, vol. 499, pp. 419425, July 2013.Google Scholar
Mayorov, A. S., Elias, D. C., Mucha-Kruczynski, M., Gorbachev, R. V., Tudorovskiy, T., Zhukov, A., Morozov, S. V., Katsnelson, M. I., Fal’ko, V. I., Geim, A. K., and Novoselov, K. S., “Interaction-driven spectrum reconstruction in bilayer graphene,” Science, vol. 333, pp. 860863, August 2011.Google Scholar
Wang, L., Meric, I., Huang, P. Y., Gao, Q., Gao, Y., Tran, H., Taniguchi, T., Watanabe, K., Campos, L. M., Muller, D. A., Guo, J., Kim, P., Hone, J., Shepard, K. L., and Dean, C. R., “One-dimensional electrical contact to a two-dimensional material,” Science, vol. 342, no. 6158, pp. 614617, 2013.Google Scholar
Maher, P., Wang, L., Gao, Y., Forsythe, C., Taniguchi, T., Watanabe, K., Abanin, D., Papi, Z., Cadden-Zimansky, P., Hone, J., Kim, P., and Dean, C. R., “Tunable fractional quantum Hall phases in bilayer graphene,” Science, vol. 345, no. 6192, pp. 6164, 2014.CrossRefGoogle ScholarPubMed
Matsuda, Y., Deng, W.-Q., and Goddard, W. A. III, “Contact resistance for end-contacted metal–graphene and metal-nanotube interfaces from quantum mechanics,” Journal of Physical Chemistry C, vol. 114, no. 41, pp. 1784517850, 2010.CrossRefGoogle Scholar
Leonard, F. and Talin, A. A., “Electrical contacts to one- and two-dimensional nanomaterials,” Nature Nanotechnology, vol. 6, no. 12, pp. 773783, 2011.Google Scholar
Cho, K., Gong, C., Lee, G., Wang, W., Shan, B., Vogel, E. M., and Wallace, R. M., “First-principles and quantum transport studies of metal–graphene end contacts,” MRS Proceedings, vol. 1259, no. 1, 2010.Google Scholar
Wu, Y., Wang, Y., Wang, J., Zhou, M., Zhang, A., Zhang, C., Yang, Y., Hua, Y., and Xu, B., “Electrical transport across metal/two-dimensional carbon junctions: edge versus side contacts,” AIP Advances, vol. 2, no. 1, 012132, 2012.CrossRefGoogle Scholar
Smith, J. T., Franklin, A. D., Farmer, D. B., and Dimitrakopoulos, C. D., “Reducing contact resistance in graphene devices through contact area patterning,” ACS Nano, vol. 7, no. 4, pp. 36613667, 2013.CrossRefGoogle ScholarPubMed
Moon, J. S., Antcli_e, M., Seo, H. C., Curtis, D., Lin, S., Schmitz, A., Milosavljevic, I., Kiselev, A. A., Ross, R. S., Gaskill, D. K., Campbell, P. M., Fitch, R. C., Lee, K. M., and Asbeck, P., “Ultra-low resistance ohmic contacts in graphene field effect transistors,” Applied Physics Letters, vol. 100, no. 20, p. 203512, 2012.Google Scholar
Berdebes, D., Low, T., Sui, Y., Appenzeller, J., and Lundstrom, M. S., “Substrate gating of contact resistance in graphene transistors,” IEEE Transactions on Electron Devices, vol. 58, no. 11, pp. 39253932, 2011.Google Scholar
Giovannetti, G., Khomyakov, P., Brocks, G., Karpan, V., van den Brink, J., and Kelly, P., “Doping graphene with metal contacts,” Physical Review Letters, vol. 101, p. 026803, 2008.Google Scholar
Xia, F., Perebeinos, V., Lin, Y.-m., Wu, Y., and Avouris, P., “The origins and limits of metal graphene junction resistance,” Nature Nanotechnology, vol. 6, no. 3, pp. 179184, 2011.Google Scholar
Hwang, E. and Das Sarma, S., “Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene,” Physical Review B, vol. 77, p. 115449, March 2008.Google Scholar
Bennett, B. R., Magno, R., Boos, J. B., Kruppa, W., and Ancona, M. G., “Antimonide-based compound semiconductors for electronic devices: a review,” Solid-State Electronics, vol. 49, no. 12, pp. 18751895, 2005.Google Scholar
Orr, J., Gilbertson, A., Fearn, M., Croad, O., Storey, C., Buckle, L., Emeny, M., Buckle, P., and Ashley, T., “Electronic transport in modulation-doped InSb quantum well heterostructures,” Physical Review B, vol. 77, no. 16, p. 165334, 2008.Google Scholar
Mayorov, A. S., Elias, D. C., Mucha-Kruczynski, M., Gorbachev, R. V., Tudorovskiy, T., Zhukov, A., Morozov, S. V., Katsnelson, M. I., Fal’ko, V. I., Geim, A. K., and Novoselov, K. S., “Interaction-driven spectrum reconstruction in bilayer graphene,” Science, vol. 333, no. 6044, pp. 860863, 2011.CrossRefGoogle ScholarPubMed
Datta, S., Electronic Transport in Mesoscopic Systems. Cambridge University Press: London, 1995.Google Scholar
Yang, W., Chen, G., Shi, Z., Liu, C. C., Zhang, L., and Xie, G., “Epitaxial growth of single-domain graphene on hexagonal boron nitride,” Nature Materials, vol. 12, pp. 792797, 2013.Google Scholar
Petrone, N., Dean, C. R., Meric, I., van der Zande, A. M., Huang, P. Y., Wang, L., Muller, D., Shepard, K. L., and Hone, J., “Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene,” Nano Letters, vol. 12, pp. 27512756, June 2012.Google Scholar
Taychatanapat, T., Watanabe, K., Taniguchi, T., and Jarillo-Herrero, P., “Electrically tunable transverse magnetic focusing in graphene,” Nature Physics, vol. 9, p. 225, 2013.Google Scholar
Wang, L., Chen, Z., Dean, C. R., Taniguchi, T., Watanabe, K., Brus, L. E., and Hone, J., “Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure,” ACS Nano, vol. 6, no. 10, pp. 93149319, 2012.Google Scholar
Yankowitz, M., Xue, J., Cormode, D., Sanchez-Yamagishi, J. D., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., Jacquod, P., and LeRoy, B. J., “Emergence of superlattice Dirac points in graphene on hexagonal boron nitride,” Nature Physics, vol. 8, pp. 382386, March 2012.Google Scholar
Dean, C. R., Wang, L., Maher, P., Forsythe, C., Ghahari, F., Gao, Y., Katoch, J., Ishigami, M., Moon, P., Koshino, M., Taniguchi, T., Watanabe, K., Shepard, K. L., Hone, J., and Kim, P., “Hofstadter’s buttery and the fractal quantum Hall effect in moir_e superlattices,” Nature, vol. 497, no. 7451, pp. 598602, 2013.Google Scholar
Wang, L., Gao, Y., Wen, B., Han, Z., Taniguchi, T., Watanabe, K., Koshino, M., Hone, J., and Dean, C. R., “Evidence for a fractional fractal quantum Hall effect in graphene superlattices,” Science, vol. 350, pp. 12311234, 2015.Google Scholar
Xue, J., Sanchez-Yamagishi, J., Bulmash, D., Jacquod, P., Deshpande, A., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., and LeRoy, B. J., “Scanning tunnelling microscopy and spectroscopy of ultra-at graphene on hexagonal boron nitride,” Nature Materials, vol. 10, pp. 282285, February 2011.Google Scholar
Decker, R., Wang, Y., Brar, V. W., Regan, W., Tsai, H. Z., Wu, Q., Gannett, W., Zettl, A., and Crommie, M. F., “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Letters, vol. 11, no. 6, pp. 22912295, 2011.Google Scholar
Ponomarenko, L. A., Gorbachev, R. V., Yu, G. L., Elias, D. C., Jalil, R., Patel, A. A., Mishchenko, A., Mayorov, A. S., Woods, C. R., Wallbank, J. R., Mucha-Kruczynski, M., Piot, B. A., Potemski, M., Grigorieva, I. V., Novoselov, K. S., Guinea, F., Fal’ko, V. I., and Geim, A. K., “Cloning of Dirac fermions in graphene superlattices,” Nature, vol. 497, no. 7451, pp. 594597, 2013.Google Scholar
Hunt, B., Sanchez-Yamagishi, J. D., Young, A. F., Yankowitz, M., LeRoy, B. J., Watanabe, K., Taniguchi, T., Moon, P., Koshino, M., Jarillo-Herrero, P., and Ashoori, R. C., “Massive Dirac fermions and Hofstadter buttery in a van der Waals heterostructure,” Science, vol. 340, no. 6139, pp. 14271430, 2013.Google Scholar
Bistritzer, R. and MacDonald, A., “Moiré butteries in twisted bilayer graphene,” Physical Review B, vol. 84, 035440, July 2011.Google Scholar
Li, G., Luican, A., Lopes dos Santos, J. M. B., Castro Neto, A. H., Reina, A., Kong, J., and Andrei, E. Y., “Observation of Van Hove singularities in twisted graphene layers,” Nature Physics, vol. 6, pp. 109113, November 2009.Google Scholar
Wallbank, J. R., Patel, A. A., Mucha-Kruczynski, M., Geim, A. K., and Fal’ko, V. I., “Generic miniband structure of graphene on a hexagonal substrate,” ArXiv e-prints, 2012.Google Scholar
Hofstadter, D., “Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields,” Physical Review B, vol. 14, no. 6, pp. 22392249, 1976.Google Scholar
Woods, C. R., Britnell, L., Eckmann, A., Ma, R. S., Lu, J. C., Guo, H. M., Lin, X., Yu, G. L., Cao, Y., Gorbachev, R. V., Kretinin, A. V., Park, J., Ponomarenko, L. A., Katsnelson, M. I., Gornostyrev, Y. N., Watanabe, K., Taniguchi, T., Casiraghi, C., Gao, H.-J., Geim, A. K., and Novoselov, K. S., “Commensurate–incommensurate transition in graphene on hexagonal boron nitride,” Nature Physics, vol. 10, pp. 451456, June 2014.Google Scholar
Amet, F., Bestwick, A. J., Williams, J. R., Balicas, L., Watanabe, K., Taniguchi, T., and Goldhaber-Gordon, D., “Composite fermions and broken symmetries in graphene,” Nature Communications, vol. 6, 5838, January 2015.CrossRefGoogle ScholarPubMed
Chen, Z.-G., Shi, Z., Yang, W., Lu, X., Lai, Y., Yan, H., Wang, F., Zhang, G., and Li, Z., “Observation of an intrinsic band gap and Landau level renormalization in graphene/boron–nitrate heterostructures,” Nature Communications, vol. 5, July 2014.Google Scholar
Gorbachev, R. V., Song, J. C. W., Yu, G. L., Kretinin, A. V., Withers, F., Cao, Y., Mishchenko, A., Grigorieva, I. V., Novoselov, K. S., Levitov, L. S., and Geim, A. K., “Detecting topological currents in graphene superlattices,” Science, vol. 346, no. 6208, pp. 448451, 2014.Google Scholar
Cui, X., Lee, G., Kim, Y. D., Arefe, G., Huang, P. Y., Lee, C., Chenet, D. A., Zhang, X., Wang, L., Ye, F., Pizzocchero, F., Jessen, B. S., Watanabe, K., Taniguchi, T., Muller, D. A., Low, T., Kim, P., and Hone, J., “Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform,” Nature Nanotechnology, vol. 10, no. 6, pp. 534540, 2015.Google Scholar
Tsen, A. W., Hunt, B., Kim, Y. D., Yuan, Z. J., Jia, S., Cava, R. J., Hone, J., Kim, P., Dean, C. R., and Pasupathy, A. N., “Nature of the quantum metal in a two-dimensional crystalline superconductor,” Nature Physics, vol. 12, pp. 208212, 2016.Google Scholar
Li, L., Ye, G. J., Tran, V., Fei, R., Chen, G., Wang, H., Wang, J., Watanabe, K., Taniguchi, T., Yang, L., Chen, X. H., and Zhang, Y., “Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films,” Nature Nanotechnology, vol. 10, no. 7, pp. 608613, 2015.Google Scholar
Fallahazad, B., Movva, H., Kim, K., Larentis, S., Taniguchi, T., Watanabe, K., Banerjee, S., and Tutuc, E., “Shubnikov–de Haas oscillations of high mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility,” Physical Review Letters, vol. 116, no. 8, 2016.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×