Skip to main content
  • Print publication year: 2017
  • Online publication date: June 2017

25 - Predictions of Single-Layer Honeycomb Structures from First Principles

from Part III
Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

2D Materials
  • Online ISBN: 9781316681619
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
[1]Kresse, G, Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science. 1996 July, 6(1): 1550.
[2]Heyd, J, Scuseria, GE, Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. The Journal of Chemical Physics. 2006 June 7, 124(21): 219906.
[3]Shishkin, M, Kresse, G. Self-consistent GW calculations for semiconductors and insulators. Physical Review B. 2007 June 4, 75(23): 235102.
[4]Takeda, K, Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Physical Review B. 1994 November 15, 50(20): 14916–22.
[5]Durgun, E, Tongay, S, Ciraci, S. Silicon and III–V compound nanotubes: Structural and electronic properties. Physical Review B. 2005 August 12, 72(7): 075420.
[6]Cahangirov, S, Topsakal, M, Aktürk, E, Şahin, H, Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Physical Review Letters. 2009 June 12, 102(23): 236804.
[7]Cahangirov, S, Topsakal, M, Ciraci, S. Armchair nanoribbons of silicon and germanium honeycomb structures. Physical Review B. 2010 May 25, 81(19): 195120.
[8]Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New Journal of Physics. 2012 March 1, 14(3): 033003.
[9]Vogt, P, De Padova, P, Quaresima, C, Avila, J, Frantzeskakis, E, Asensio, MC, et al. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Physical Review Letters. 2012 April 12, 108(15): 155501.
[10]Cahangirov, S, Audiffred, M, Tang, P, Iacomino, A, Duan, W, Merino, G, et al. Electronic structure of silicene on Ag(111): Strong hybridization effects. Physical Review B. 2013 July 18, 88(3): 035432.
[11]Feng, B, Ding, Z, Meng, S, Yao, Y, He, X, Cheng, P, et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nanoletters. 2012 June 4, 12: 3507–11.
[12]Chen, L, Liu, C-C, Feng, B, He, X, Cheng, P, Ding, Z, et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Physical Review Letters. 2012 August 3, 109(5): 056804.
[13]Cahangirov, S, Özçelik, VO, Xian, L, Avila, J, Cho, S, Asensio, MC, et al. Atomic structure of the 3 × 3 phase of silicene on Ag(111). Physical Review B. 2014 July 28. 90(3): 035448.
[14]Kaltsas, D, Tsetseris, L. Stability and electronic properties of ultrathin films of silicon and germanium. Physical Chemistry Chemical Physics. 2013, 15(24): 9710–15.
[15]Özçelik, VO, Ciraci, S. Local reconstructions of silicene induced by adatoms. The Journal of Physical Chemistry C. 2013 December 2, 117: 26305–15.
[16]Vogt, P, Capiod, P, Berthe, M, Resta, A, De Padova, P, Bruhn, T, et al. Synthesis and electrical conductivity of multilayer silicene. Applied Physics Letters. 2014 January 13, 104(2): 021602.
[17]Cahangirov, S, Özçelik, VO, Rubio, A, Ciraci, S. Silicite: The layered allotrope of silicon. Physical Review B. 2014 August 22, 90(8): 085426.
[18]De Padova, P, Ottaviani, C, Quaresima, C, Olivieri, B. 24 h stability of thick multilayer silicene in air. 2D Materials. 2014, 1: 021003.
[19]Tao, L, Cinquanta, E, Chiappe, D, Grazianetti, C, Fanciulli, M, Dubey, M, et al. Silicene field-effect transistors operating at room temperature. Nature Nanotechnology. 2015 March 1;10(3):227–31.
[20]Dávila, ME, Xian, L, Cahangirov, S, Rubio, A, Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New Journal of Physics. 2014 September 1, 16(9): 095002.
[21]Özçelik, VO, Kecik, D, Durgun, E, Ciraci, S. Adsorption of group IV elements on graphene, silicene, germanene, and stanene: Dumbbell formation. The Journal of Physical Chemistry C. 2014 December 19. 119: 845–53.
[22]Derivaz, M, Dentel, D, Stephan, R, Hanf, M-C, Mehdaoui, A, Sonnet, P, et al. Continuous germanene layer on Al(111). Nanoletters. 2015 March 30, 15: 2510–16.
[23]Zhu, F-F, Chen, W-J, Xu, Y, Gao, C-L, Guan, D-D, Liu, C-H, et al. Epitaxial growth of two-dimensional stanene. Nature Materials. 2015 October 1, 14(10): 1020–5.
[24]Bekaroglu, E, Topsakal, M, Cahangirov, S, Ciraci, S. First-principles study of defects and adatoms in silicon carbide honeycomb structures. Physical Review B. 2010 February 24, 81(7): 075433.
[25]Shaikhutdinov, S, Freund, HJ. Ultrathin silica films on metals: The long and winding road to understanding the atomic structure. Advanced Materials. 2013 January 4, 25(1): 4967.
[26]Özçelik, VO, Cahangirov, S, Ciraci, S. Stable single-layer honeycomblike structure of silica. Physical Review Letters. 2014 June 20, 112(24): 246803.
[27]Şahin, H, Cahangirov, S, Topsakal, M, Bekaroglu, E, Aktürk, E, Senger, RT, et al. Monolayer honeycomb structures of group-IV elements and III–V binary compounds: First-principles calculations. Physical Review B. 2009 October 28, 80(15): 155453.
[28]Yang, B, Boscoboinik, JA, Yu, X, Shaikhutdinov, S, Freund, HJ. Patterned defect structures predicted for graphene are observed on single-layer silica films. Nanoletters. 2013 August 14, 13: 4422–7.
[29]Özçelik, VO, Durgun, E, Ciraci, S. Modulation of electronic properties in laterally and commensurately repeating graphene and boron nitride composite nanostructures. The Journal of Physical Chemistry C. 2015 June 2, 119: 13248–56.
[30]Tusche, C, Meyerheim, HL, Kirschner, J. Observation of depolarized ZnO(0001) monolayers: Formation of unreconstructed planar sheets. Physical Review Letters. 2007 July 13, 99(2): 026102.
[31]Topsakal, M, Cahangirov, S, Bekaroglu, E, Ciraci, S. First-principles study of zinc oxide honeycomb structures. Physical Review B. 2009 December 11, 80(23): 235119.
[32]Özçelik, VO, Ciraci, S. Size dependence in the stabilities and electronic properties of α-graphyne and its boron nitride analogue. The Journal of Physical Chemistry C. 2013 January 23, 117: 2175–82.
[33]Li, L, Yu, Y, Ye, GJ, Ge, Q, Ou, X, Wu, H, et al. Black phosphorus field-effect transistors. Nature Nanotechnology. 2014 May 1, 9(5): 372–7.
[34]Zhu, Z, Tománek, D. Semiconducting layered blue phosphorus: A computational study. Physical Review Letters. 2014 May 1, 112(17): 176802.
[35]Aktürk, , Özçelik, VO, Ciraci, S. Single-layer crystalline phases of antimony: Antimonenes. Physical Review B. 2015 June 25, 91(23): 235446.
[36]Özçelik, VO, Aktürk, , Durgun, E, Ciraci, S. Prediction of a two-dimensional crystalline structure of nitrogen atoms. Physical Review B. 2015 September 15, 92(12): 125420.
[37]Ataca, C, Şahin, H, Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C. 2012 April 16, 116: 8983–99.
[38]Mak, KF, Lee, C, Hone, J, Shan, J, Heinz, TF. Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters. 2010 September 24, 105(13): 136805.
[39]Wang, Z, Zhao, K, Li, H, Liu, Z, Shi, Z, Lu, J, et al. Ultra-narrow WS2 nanoribbons encapsulated in carbon nanotubes. Journal of Materials Chemistry. 2011, 21(1): 171–80.
[40]Coleman, JN, Lotya, M, O’Neill, A, Bergin, SD, King, PJ, Khan, U, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011 February, 331(6017): 568–71.
[41]Radisavljevic, B, Radenovic, A, Brivio, J, Giacometti, V, Kis, A. Single-layer MoS2 transistors. Nature Nanotechnology. 2011 March 1, 6(3): 147–50.