Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T17:58:42.781Z Has data issue: false hasContentIssue false

Chapter 10 - Segre classes and varieties of linear spaces

Published online by Cambridge University Press:  05 March 2016

David Eisenbud
Affiliation:
University of California, Berkeley
Joe Harris
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Keynote Questions

  1. (a) Let v1, …, v2n be general tangent vector fields on ℙn. At how many points of ℙn is there a nonzero cotangent vector annihilated by all the vi? (Answer on page 366.)

  2. (b) If f is a general polynomial of degree d = 2m - 1 in one variable over a field of characteristic 0, then there is a unique way to write f as a sum of m d-th powers of linear forms (Proposition 10.15). If f and g are general polynomials of degree d = 2m in one variable, how many linear combinations of f and g are expressible as a sum of m d-th powers of linear forms? (Answer on page 377.)

  3. (c) If C ⊂ ℙ4 is a general rational curve of degree d, how many 3-secant lines does C have? (Answer on page 379.)

  4. (d) If C ⊂ ℙ3 is a general rational curve of degree d, what is the degree of the surface swept out by the 3-secant lines to C? (Answer on page 380.)

Segre classes

Our understanding of the Chow rings of projective bundles makes accessible the computation of the classes of another natural series of loci associated to a vector bundle.

We start with a naive question. Suppose that ε is a vector bundle on a scheme X and that ε is generated by global sections. How many global sections does it actually take to generate ε? More generally, what sort of locus is it where a given number of general global sections fail to generate ε locally?

We can get a feeling for these questions as follows. First, consider the case where ε is a line bundle. In this case, each regular section corresponds to a divisor of class c1(ε). If ε is generated by its global sections, the linear series of these divisors is base point free, so a general collection of i of them will intersect in a codimension-i locus of class c1(ε)i. That is, the locus where i general sections of ε fail to generate ε has “expected” codimension i and class c1(ε)i.

Type
Chapter
Information
3264 and All That
A Second Course in Algebraic Geometry
, pp. 362 - 388
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×