Skip to main content Accessibility help
×
Hostname: page-component-7dd5485656-dk7s8 Total loading time: 0 Render date: 2025-10-30T06:47:00.362Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  aN Invalid Date NaN

Roberto Verzicco
Affiliation:
Università degli Studi di Roma ‘Tor Vergata’, Gran Sasso Science Institute, L’Aquila, and University of Twente, Enschede
Marco D. de Tullio
Affiliation:
Politecnico di Bari
Francesco Viola
Affiliation:
Gran Sasso Science Institute, L’Aquila
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abraham, F. 1970. Functional dependence of drag coefficient of a sphere on Reynolds number. Physics of Fluids, 13, 21942195.10.1063/1.1693218CrossRefGoogle Scholar
Aftosmis, M. J., Berger, M., and Melton, J. E. 1998. Adaptive Cartesian mesh generation. In: Thompson, J., Soni, B., and Weatherill, N. (eds.), Handbook of Grid Generation. Vol. 57. CRC Press.Google Scholar
Aftosmis, M. J., Delanaye, M., and Haimes, R. 1999. Automatic generation of ready surface triangulations from CAD geometry. AIAA Paper, 1999776.Google Scholar
Aftosmis, M. J., Berger, M. J., and Adomavicius, G. 2000. A parallel multilevel method for adaptively refines Cartesian grids with embedded boundaries. In: AIAA Paper 2000-0808.10.2514/6.2000-808CrossRefGoogle Scholar
Almgren, A. S., Nell, J. B., Colella, P., and Marthaler, T. 1997. A Cartesian grid projection method for the incompressible Euler equations in complex geometries. SIAM, Journal of Scientific Computing, 18(5), 12891309.10.1137/S1064827594273730CrossRefGoogle Scholar
Alva, G., Lin, Y., and Fang, G. 2018. An overview of thermal energy storage systems. Energy, 144, 341.10.1016/j.energy.2017.12.037CrossRefGoogle Scholar
Anderson, J. D. 1995. Computational Methods for Fluid Dynamics. McGraw-Hill.Google Scholar
Anderson, J. L. 1989. Colloidal transport by interfacial forces. Annual Review of Fluid Mechanics, 21, 6199.10.1146/annurev.fl.21.010189.000425CrossRefGoogle Scholar
Angot, P., Bruneau, C. H., and Frabrie, P. 1999. A penalization method to take into account obstacles in viscous flows. Numerische Matematik, 81, 497520.10.1007/s002110050401CrossRefGoogle Scholar
Balaras, E. 2004. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Computers & Fluids, 33(3), 375404.10.1016/S0045-7930(03)00058-6CrossRefGoogle Scholar
Balaras, E., Benocci, C., and Piomelli, U. 1996. Two-layer approximate boundary conditions for large-eddy simulations. AIAA Journal, 34, 11111119.10.2514/3.13200CrossRefGoogle Scholar
Basdevant, C., and Sadourny, R. 1983. Modélisation des échelles virtuelles dans la simulation numérique des écoulements turbulents tridimentionnels. Journal Mécanique Théorique Appliqué, 243269.Google Scholar
Batchelor, G. K. 1982. The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Beam, R. M. P., and Warming, R. F. 1976. An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. Journal of Computational Physics, 22, 87110.10.1016/0021-9991(76)90110-8CrossRefGoogle Scholar
Beeson, M. 2012. Triangle tiling I: The tile is similar to ABC or has a right angle. arXiv preprint arXiv:1206.2231.Google Scholar
Belmonte, A., Elsenberg, H., and Moses, E. 1998. From flutter to tumble: inertial drag and Froude similarity in falling paper. Physical Review Letters, 81, 345348.10.1103/PhysRevLett.81.345CrossRefGoogle Scholar
Benek, J. A., Steger, J. L., Dougherty, F. C., and Buning, P. G. 1986. Chimera: A Grid-Embedding Technique. Tech. rept. Report No. AEDC–85–64. Arnold Air Force Station.Google Scholar
Bernardini, M., Modesti, D., and Pirozzoli, S. 2016. On the suitability of the immersed boundary method for the simulation of high-Reynolds-number separated turbulent flows. Computers & Fluids, 130, 8493.10.1016/j.compfluid.2016.02.018CrossRefGoogle Scholar
Beyer, R. P., and LeVeque, R. J. 1992. Analysis of a one-dimensional model for the immersed boundary method. SIAM Journal on Numerical Analysis, 29(2), 332364.10.1137/0729022CrossRefGoogle Scholar
Bijl, H., Lucor, D., Mishra, S., and Schwab, C. 2013. Uncertainty Quantification in Computational Fluid Dynamics. Springer.Google Scholar
Blake, W. K. 1975. Statistical Description of Pressure and Velocity Fields of the Trailing Edge of a Flat Surface. Tech. rept. Report No. DTNSRDC–4241. David Taylor Naval Ship R. & D. Center, Bethesda, Maryland.Google Scholar
Blass, A., Zhu, X., Verzicco, R., Lohse, D., and Stevens, R. A. J. M. 2020. Flow organization and heat transfer in turbulent wall sheared thermal convection. Journal of Fluid Mechanics, 897, A22.10.1017/jfm.2020.378CrossRefGoogle ScholarPubMed
Borazjani, I., and Sotiropoulos, F. 2009. Vortex induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region. Journal of Fluid Mechanics, 621, 321364.10.1017/S0022112008004850CrossRefGoogle ScholarPubMed
Borazjani, I., Ge, L., and Sotiropoulos, F. 2008. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. Journal of Computational Physics, 227, 75877620.10.1016/j.jcp.2008.04.028CrossRefGoogle ScholarPubMed
Brackbill, J. U., Kothe, D. B., and Zemach, C. 1992. A continuum method for modeling surface tension. Journal of Computational Physics, 100, 335354.10.1016/0021-9991(92)90240-YCrossRefGoogle Scholar
Briscolini, M., and Santangelo, P. 1989. Development of the mask method for incompressible unsteady flow. Journal of Computational Physics, 84, 5775.10.1016/0021-9991(89)90181-2CrossRefGoogle Scholar
Cabot, W., and Moin, P. 2000. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. iFlow, Turbulence and Combustion, 63, 269291.10.1023/A:1009958917113CrossRefGoogle Scholar
Cao, S., Chen, L., and Guo, R. 2023. Immersed virtual element methods for electromagnetic interface problems in three dimensions. Mathematical Models and Methods in Applied Sciences, 33, 455503.10.1142/S0218202523500112CrossRefGoogle Scholar
Capizzano, F., Alterio, L., Russo, S., and de Nicola, C. 2019. A hybrid RANS-LES Cartesian method based on a skew-symmetric convective operator. Journal of Computational Physics, 390, 359379.10.1016/j.jcp.2019.04.002CrossRefGoogle Scholar
Carraturo, M., Kollmannsberger, S., Reali, A., Auricchio, F., and Rank, E. 2021. An immersed boundary approach for residual stress evaluation in selective laser melting processes. Additive Manifacturing, 46, 102077.Google Scholar
Cenedese, C., and Straneo, F. 2023. Icebergs melting. Annual Review of Fluid Mechanics, 55, 377402.10.1146/annurev-fluid-032522-100734CrossRefGoogle Scholar
Chen, W., Zou, S., Cai, Q., and Yang, Y. 2023. An explicit and non-iterative moving least-squares immersed-boundary method with low boundary velocity error. Journal of Computational Physics, 474, 111803.10.1016/j.jcp.2022.111803CrossRefGoogle Scholar
Chung, T. J. 2002. Computational Fluid Dynamics. Cambridge University Press.10.1017/CBO9780511606205CrossRefGoogle Scholar
Codony, D., Marco, O., Fernàndez-Mèndez, S., and Arias, I. 2019. An immersed boundary hierarchical B-spline method for flexoelectricity. Computer Methods in Applied Mechanics and Engineering, 354, 750782.10.1016/j.cma.2019.05.036CrossRefGoogle Scholar
Coirier, W. J. 1994. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier–Stokes Equations. Tech. rept. NASA TM106754. NASA.Google Scholar
Cortez, R. 2000. A vortex/impulse method for immersed boundary motion in high Reynolds number flows. Journal of Computational Physics, 160, 385400.10.1006/jcph.2000.6474CrossRefGoogle Scholar
Cortez, R., and Minion, M. 2000. The blob projection method for immersed boundary problems. Journal of Computational Physics, 161(1), 428453.10.1006/jcph.2000.6502CrossRefGoogle Scholar
Cottet, H., and Maitre, E. 2004. A level-set formulation of immersed boundary methods for fluid–structure interaction problems. Comptes Rendus Matematique, 338, 581586.Google Scholar
Couston, L. A., Hester, E. W., Favier, B., Taylor, J. R., Holland, P. R., and Jenkins, A. 2021. Topography generation by melting and freezing in a turbulent shear flow. Journal of Fluid Mechanics, 911, A44.10.1017/jfm.2020.1064CrossRefGoogle Scholar
Cristallo, A., and Verzicco, R. 2006. Combined immersed boundary/large-eddy-simulations of incompressible three dimensional complex flows. Flow, Turbulence and Combustion, 77(14), 326.10.1007/s10494-006-9034-6CrossRefGoogle Scholar
Curtis, S., Best, A., and Manocha, D. 2016. Menge: A modular framework for simulating crowd movement. Collective Dynamics, 1(A1), 140.10.17815/CD.2016.1CrossRefGoogle Scholar
de Graaf, J., Rempfer, G., and Holm, C. 2015. Diffusiophoretic self-propulsion for partially catalytic spherical colloids. IEEE Transactions of Nanobiosciences, 14, 272288.10.1109/TNB.2015.2403255CrossRefGoogle ScholarPubMed
de Tullio, M. D., and Pascazio, G. 2016. A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness. Journal of Computational Physics, 325, 201225.10.1016/j.jcp.2016.08.020CrossRefGoogle Scholar
de Tullio, M. D., De Palma, P., Iaccarino, G., Pascazio, G., and Napolitano, M. 2007. An immersed boundary method for compressible flows using local grid refinement. Journal of Computational Physics, 225, 20982117.10.1016/j.jcp.2007.03.008CrossRefGoogle Scholar
Dihn, Q. V., Glowinski, R., He, J., Kwock, V., Pan, T. W., and Periaux, J. 1992. Lagrange multiplier approach to fictitious domain methods: Application to fluid dynamics and electromagnetics. Pages 151–194 of: Proc. of V Int. Symp. Domain Decomp. Meth. for PDE.Google Scholar
Durbin, P. 2021. Advanced Approaches in Turbulence. Elsevier.Google Scholar
Durbin, P., and Iaccarino, G. 2002. An approach to local refinement of structured grids. Journal of Computational Physics, 181(2), 639653.10.1006/jcph.2002.7147CrossRefGoogle Scholar
Elghaoui, M., and Pasquetti, R. 1996. A spectral embedding method applied to the advection–diffusion equation. Journal of Computational Physics, 125, 464476.10.1006/jcph.1996.0108CrossRefGoogle Scholar
Epstein, B., Luntz, A., and Nachson, A. 1992. Cartesian Euler methods for arbitrary aircraft configurations. AIAA Journal, 30, 679687.10.2514/3.10972CrossRefGoogle Scholar
Evans, M. W., and Harlow, F. H. 1957. The Particle In Cell Method for Hydrodynamic Calculations. Tech. rept. Report No. LAMS-2139. Los Alamos Scientific Laboratories.Google Scholar
Fadlun, E. A., Verzicco, R., Orlandi, P., and Mohd-Yusof, J. 2000. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 161(1), 3560.10.1006/jcph.2000.6484CrossRefGoogle Scholar
Fedosov, D. A., Caswell, B., and Karniadakis, G. E. 2010. Systematic coarse-graining of spectrin-level red blood cell models. Computer Methods in Applied Mechanics and Engineering, 199(2932), 19371948.10.1016/j.cma.2010.02.001CrossRefGoogle ScholarPubMed
Feng, Z. G., and Michaelides, E. 2004. The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. Journal of Computational Physics, 195, 602628.10.1016/j.jcp.2003.10.013CrossRefGoogle Scholar
Ferziger, J. H., and Peric, M. 2002. Computational Methods for Fluid Dynamics. Springer.10.1007/978-3-642-56026-2CrossRefGoogle Scholar
Fish, F. E., Schreiber, C. M., Moored, K. W., Liu, G., Dong, H., and Bart-Smith, H. 2016. Hydrodynamic performance of aquatic flapping: Efficiency of underwater flight in the manta. Aerospace, 3(3), 20.10.3390/aerospace3030020CrossRefGoogle Scholar
Fish, J., and Belytschko, T. 2007. A First Course in Finite Elements. Vol. 1. John Wiley & Sons Limited.10.1002/9780470510858CrossRefGoogle Scholar
Fletcher, C. A. J. 1996. Computational Techniques For Fluid Dynamics. Vol. 1. Springer.Google Scholar
Fornberg, B. 1988. Steady viscous flow past a sphere at high Reynolds numbers. Journal of Fluid Mechanics, 190, 471489.10.1017/S0022112088001417CrossRefGoogle Scholar
Forrer, H., and Jeltsch, R. 1998. A higher-order boundary treatment for Cartesian-grid methods. Journal of Computational Physics, 140(2), 259277.10.1006/jcph.1998.5891CrossRefGoogle Scholar
Garland, R. 1982. Microcomputers and Children in the Primary School. Falmer Press.Google Scholar
Ge, L., and Sotiropoulos, F. 2007. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. Journal of Computational Physics, 225, 17821809.10.1016/j.jcp.2007.02.017CrossRefGoogle ScholarPubMed
Gentry, R. A., Martin, R. E., and Daly, B. J. 1966. An Eulerian differencing method for unsteady compressible flow problems. Journal of Computational Physics, 1, 87118.10.1016/0021-9991(66)90014-3CrossRefGoogle Scholar
Geraci, G., de Tullio, M. D., and Iaccarino, G. 2017. Polynomial chaos assessment of design tolerances for vortex-induced vibrations of two cylinders in tandem. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 31, 185198.10.1017/S0890060417000075CrossRefGoogle Scholar
Germano, M. 1992. Turbulence: The filtering approach. Journal of Fluid Mechanics, 238, 325336.10.1017/S0022112092001733CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids, 3, 17601765.10.1063/1.857955CrossRefGoogle Scholar
Giannetti, F., and Luchini, P. 2007. Structural sensitivity of the first instability of the cylinder wake. Journal of Fluid Mechanics, 581, 167197.10.1017/S0022112007005654CrossRefGoogle Scholar
Gilmanov, A., and Sotiropoulos, F. 2005. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. Journal of Computational Physics, 207, 457492.10.1016/j.jcp.2005.01.020CrossRefGoogle Scholar
Glowinski, R., Pan, T. W., and Périaux, J. 1998. Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Computational Methods Applied to Mechanical Engineering, 151, 181194.10.1016/S0045-7825(97)00116-3CrossRefGoogle Scholar
Goldstein, D., Handler, R., and Sirovich, L. 1993. Modeling a no-slip flow boundary with an external force field. Journal of Computational Physics, 105, 354366.10.1006/jcph.1993.1081CrossRefGoogle Scholar
Goldstein, H., Pool, C., and Safko, J. 2001. Classical Mechanics, 3rd ed. Addison-Wesley.Google Scholar
Goldstine, H. H. 1980. The Computer from Pascal to von Neumann. Princeton University Press.Google Scholar
Golestanian, R., Liverpool, T., and Adjari, A. 2007. Designing phoretic micro- and nano-swimmers. New Journal of Physics, 9(5), 126.10.1088/1367-2630/9/5/126CrossRefGoogle Scholar
Gonzalez, O., and Stuart, A. M. 2008. A First Course in Continuum Mechanics. Vol. 42. Cambridge University Press.Google Scholar
Griffiths, R. W. 2000. The dynamics of lava flows. Annual Review of Fluid Mechanics, 32, 477518.10.1146/annurev.fluid.32.1.477CrossRefGoogle Scholar
Gsell, S., and Favier, J. 2021. Direct-forcing immersed-boundary method: A simple correction preventing boundary slip error. Journal of Computational Physics, 435.10.1016/j.jcp.2021.110265CrossRefGoogle Scholar
Guilmineau, E., and Queutey, P. 2002. A numerical simulation of vortex shedding from an oscillating circular cylinder. Journal of Fluids and Structures, 16(6), 773794.10.1006/jfls.2002.0449CrossRefGoogle Scholar
Guy, R. D., and Hartenstine, D. A. 2010. On the accuracy of direct forcing immersed boundary methods with projection methods. Journal of Computational Physics, 229(7), 24792496.10.1016/j.jcp.2009.10.027CrossRefGoogle Scholar
Hammer, P. E., Sacks, M. S., Pedro, J., and Howe, R. D. 2011. Mass-spring model for simulation of heart valve tissue mechanical behavior. Annals of Biomedical Engineering, 39(6), 16681679.10.1007/s10439-011-0278-5CrossRefGoogle ScholarPubMed
Harlow, F. H., and Whelch, J. E. 1971. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8(12), 21822189.10.1063/1.1761178CrossRefGoogle Scholar
Hartmann, E. 1998. A marching method for the triangulation of surfaces. Visual Computer, 14, 95108.10.1007/s003710050126CrossRefGoogle Scholar
Heinrich, J. C., and Vionnet, C. A. 1995. The penalty method for the Navier–Stokes equations. Archives of Computational Methods in Engineering, 2, 5165.10.1007/BF02904995CrossRefGoogle Scholar
Hester, E. W., Couston, L. A., Favier, B., Burns, K. J., and Vasil, G. M. 2020. Improved phase–field models of melting and dissolution in multi-component flows. Proceedings of Royal Society A, 476, 20200508.Google ScholarPubMed
Hirt, C. W., and Nichols, B. D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201225.10.1016/0021-9991(81)90145-5CrossRefGoogle Scholar
Hoefnagels, P. B. J., Wei, P., Narezo Guzman, D., Sun, C., Lohse, D., and Ahlers, G. 2017. Large-scale flow and Reynolds numbers in the presence of boiling in locally heated turbulent convection. Physical Review Fluids, 2, 074604.10.1103/PhysRevFluids.2.074604CrossRefGoogle Scholar
Holzapfel, G. A. 2002. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science. Kluwer Academic Publishers.Google Scholar
Huang, W. X., and Sung, H. J. 2010. Three-dimensional simulation of a flapping flag in a uniform flow. Journal of Fluid Mechanics, 653, 301336.10.1017/S0022112010000248CrossRefGoogle Scholar
Iaccarino, G., and Verzicco, R. 2003. Immersed boundary technique for turbulent flow simulations. Applied Mechanics Reviews, 56, 331347.10.1115/1.1563627CrossRefGoogle Scholar
Irons, B., and Tuck, R. C. 1969. A version of the Aitken acceleration for computer implementation. International Journal for Numerical Methods in Engineering, 1, 275277.10.1002/nme.1620010306CrossRefGoogle Scholar
Kalitzin, G. 1997. Validation and development of two-equation turbulence models. Validation of CFD codes and assessment of turbulence models. In: Haase, W. et al. (eds.), Notes on Numerical Fluid Mechanics Series. Vol. 57. Vieweg.Google Scholar
Kalitzin, G., and Iaccarino, G. 2002. Turbulence Modeling in an Immersed-Boundary RANS Method. Tech. rept. CTR Annual Research Briefs, NASA Ames/Stanford University, 1997. CTR/NASA.Google Scholar
Kalitzin, G., Iaccarino, G., and Khalighi, B. 2003. Towards an immersed boundary solver for RANS simulations. AIAA Paper, 2003770.Google Scholar
Kalitzin, G., Medic, G., Iaccarino, G., and Durbin, P. 2005. Near-wall behavior of RANS turbulence models and implications for wall functions. Journal of Computational Physics, 204, 265291.10.1016/j.jcp.2004.10.018CrossRefGoogle Scholar
Kang, S. 2015. An improved near-wall modeling for large-eddy simulation using immersed boundary methods. International Journal Numerical Methods in Fluids, 78, 7688.10.1002/fld.4008CrossRefGoogle Scholar
Kang, S., Iaccarino, G., and Moin, P. 2009. Accurate immersed-boundary reconstructions for viscous flow simulations. AIAA Journal, 47(7), 17501760.10.2514/1.42187CrossRefGoogle Scholar
Kantor, Y., and Nelson, D. R. 1987. Phase transitions in flexible polymeric surfaces. Physical Review A, 36(8), 4020.10.1103/PhysRevA.36.4020CrossRefGoogle ScholarPubMed
Kempe, T., and Fröhlich, J. 2012. An improved immersed boundary method with direct forcing for the simulation of particle laden flows. Journal of Computational Physics, 231(9), 36633684.10.1016/j.jcp.2012.01.021CrossRefGoogle Scholar
Khandra, K., Angot, P., Parneix, S., and Caltagirone, J. P. 2000. Fictitious domain approach for numerical modelling of Navier–Stokes equations. International Journal of Numerical Methods in Fluids, 34, 651684.10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D3.0.CO;2-D>CrossRefGoogle Scholar
Kim, J., and Moin, P. 1985. Application of a fractional-step method to incompressible Navier–Stokes equations. Journal of Computational Physics, 59, 308323.10.1016/0021-9991(85)90148-2CrossRefGoogle Scholar
Kim, J., Kim, D., and Choi, H. 2001. An immersed-boundary finite-volume method for simulations of flow in complex geometries. Journal of Computational Physics, 171, 6085.10.1006/jcph.2001.6778CrossRefGoogle Scholar
Kirkpatrick, M. P., Armfield, S. W., and Kent, J. H. 2003. A representation of curved boundaries for the solution of the Navier–Stokes equations on a staggered three-dimensional Cartesian grid. Journal of Computational Physics, 184(1), 136.10.1016/S0021-9991(02)00013-XCrossRefGoogle Scholar
Kuznetsov, Y. A. 2001. Domain decomposition and fictitious domain methods with distributed Lagrange multipliers. Pages 67–75 of: Proc. of XIII Int. Conf. Domain Decomp. Meth.Google Scholar
Kwak, D., Chang, J. L. C., Shanks, S. P., and Chakravarthy, S. R. 1986. A three-dimensional incompressible Navier–Stokes flow solver using primitive variables. AIAA Journal, 24(3), 390396.10.2514/3.9279CrossRefGoogle Scholar
Larsson, J., Kawai, S., Bodart, J., and Bermejo-Moreno, I. 2016. Large eddy simulation with modeled wall-stress: Recent progress and future directions. Mechanical Engineering Reviews, 3, 00418.10.1299/mer.15-00418CrossRefGoogle Scholar
Launder, B. E., and Sandham, N. D. 2002. Closure Strategies for Turbulent and Transitional Flows. Cambridge University Press.10.1017/CBO9780511755385CrossRefGoogle Scholar
Lax, P. D., and Richtmyer, R. D. 1956. Survey of the stability of linear finite difference equations. Communications in Pure and Applied Mathematics, 9, 267293.10.1002/cpa.3160090206CrossRefGoogle Scholar
Lee, H., and Choi, H. 2015. A discrete-forcing immersed boundary method for the fluid-structure interaction of an elastic slender body. Journal of Computational Physics, 309, 529546.10.1016/j.jcp.2014.09.028CrossRefGoogle Scholar
Lee, H., and Liu, Y. 2023. A ghost-point based second order accurate finite difference method on uniform orthogonal grids for electromagnetic scattering around curved perfect electric conductors with corners. Journal of Computational Physics, 490, 112314.10.1016/j.jcp.2023.112314CrossRefGoogle Scholar
Li, J., Dao, M., Lim, C. T., and Suresh, S. 2005. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophysical Journal, 88(5), 37073719.10.1529/biophysj.104.047332CrossRefGoogle ScholarPubMed
Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids, 4, 633635.10.1063/1.858280CrossRefGoogle Scholar
Liu, G.-R., and Gu, Y.-T. 2005. An Introduction to Meshfree Methods and their Programming. Springer Science & Business Media.Google Scholar
Liu, H. R., Ng, C. S., Chong, K. L., Lohse, D., and Verzicco, R. 2021. An efficient phase– field method for turbulent multiphase flows. Journal of Computational Physics, 446, 110659.10.1016/j.jcp.2021.110659CrossRefGoogle Scholar
Lorstadt, D., Francois, M., Shyy, W., and Fuchs, L. 2004. Assessment of volume of fluid and immersed boundary methods for droplet computations. International Journal for Numerical Methods in Fluids, 46, 109125.10.1002/fld.746CrossRefGoogle Scholar
Louda, P., Kozel, K., and Prihoda, J. 2008. Numerical solution of 2D and 3D viscous incompressible steady and unsteady flows using artificial compressibility method. International Journal for Numerical Methods in Fluids, 56, 13991407.10.1002/fld.1709CrossRefGoogle Scholar
Lu, R., Yu, P., and Sui, Y. 2024. A computational study of cell membrane damage and intracellular delivery in a cross-slot microchannel. Soft Matter, 20, 40574071.10.1039/D4SM00047ACrossRefGoogle Scholar
Luo, A. A., Sachdev, A. K., and Apelian, D. 2022. Alloy development and process innovations for light metals casting. Journal of Materials Processing Technology, 306, 117606.10.1016/j.jmatprotec.2022.117606CrossRefGoogle Scholar
Lupo, G., Gruber, A., Brandt, L., and Duwig, C. 2020. Direct numerical simulation of spray droplet evaporation in hot turbulent channel flow. International Journal of Heat and Mass Transfer, 160, 120184.10.1016/j.ijheatmasstransfer.2020.120184CrossRefGoogle Scholar
Mahesh, K., and Moin, P. 1998. Direct numerical simulation: A tool in turbulence research. Annual Review of Fluid Mechanics, 30, 539578.Google Scholar
Mathieu, J., and Scott, J. 2000. An Introduction to Turbulent Flow. Cambridge University Press.10.1017/CBO9781316529850CrossRefGoogle Scholar
McQueen, D. M., and Peskin, C. S. 1989. A three-dimensional computational method for blood flow in the heart II. Contractile fibers. Journal of Computational Physics, 82, 289297.10.1016/0021-9991(89)90050-8CrossRefGoogle Scholar
Menter, F. M. 1993. Zonal two-equation kω turbulence models for aerodynamic flows. IAA Paper, 290693.Google Scholar
Mittal, R., and Iaccarino, G. 2005. Immersed boundary methods. Annual Review of Fluid Mechanics, 37, 239261.10.1146/annurev.fluid.37.061903.175743CrossRefGoogle Scholar
Mittal, R., and Moin, P. 1997. Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA Journal, 35, 14351437.10.2514/2.253CrossRefGoogle Scholar
Mohd-Yusof, J. 1997. Combined Immersed Boundaries/B-Splines Methods for Simulations of Flows in Complex Geometries. Tech. rept. CTR Annual Research Briefs, NASA Ames/Stanford University, 1997. CTR/NASA.Google Scholar
Mok, D. P., Wall, W. A., and Ramm, E. 2001. Accelerated iterative substructuring schemes for instationary fluid–structure interaction. Computational Fluid and Solid Mechanics, 13251328.Google Scholar
Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Pages 809–836 of: Computer Graphics Forum, vol. 25(4). Wiley Online Library.Google Scholar
Nyquist, H. 1928. Certain topics in telegraph transmission theory. Transactions of the AIEE., 47(2), 617644.Google Scholar
Orlandi, P. 2012. Fluid Flow Phemomena: A Numerical Toolkit. Vol. 55. Springer Science & Business Media.Google Scholar
Orlandi, P., and Leonardi, S. 2006. DNS of turbulent channel flows with two- and three-dimensional roughness. Journal of Turbulence, N73.Google Scholar
O’Rourke, J. 1998. Computational Geometry in C. Cambridge University Press.10.1017/CBO9780511804120CrossRefGoogle Scholar
Pember, R. B., Bell, P., Colella, P., Crutchfield, W. Y., and Welcome, M. L. 1995. An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. Journal of Computational Physics, 120, 278304.10.1006/jcph.1995.1165CrossRefGoogle Scholar
Peskin, C. S. 1972a. Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 10, 252271.10.1016/0021-9991(72)90065-4CrossRefGoogle Scholar
Peskin, C. S. 1972b. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25, 220252.10.1016/0021-9991(77)90100-0CrossRefGoogle Scholar
Peskin, C. S. 2002. The immersed boundary method. Acta Numerica, 479517.Google Scholar
Peskin, C. S., and McQueen, D. M. 1989. A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid. Journal of Computational Physics, 81, 372405.10.1016/0021-9991(89)90213-1CrossRefGoogle Scholar
Piomelli, U. 2008. Wall-layer models for large-eddy simulations. Progress in Aerospace Science, 44, 437446.10.1016/j.paerosci.2008.06.001CrossRefGoogle Scholar
Pitsch, H., and Duchamp de Lageneste, L. 2002. Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proceedings of the Combustion Institute, 29(2), 20022008.10.1016/S1540-7489(02)80244-9CrossRefGoogle Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
Popinet, S. 2003. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics, 190(2), 572600.10.1016/S0021-9991(03)00298-5CrossRefGoogle Scholar
Prosperetti, A., and Og̃uz, H. N. 2001. Physalis: A new o (N) method for the numerical simulation of disperse systems: Potential flow of spheres. Journal of Computational Physics, 167, 196216.10.1006/jcph.2000.6667CrossRefGoogle Scholar
Prouvost, L., Belme, A., and Fuster, D. 2024. A metric-based adaptive mesh refinement criterion under constrain for solving elliptic problems on quad/octree grids. Journal of Computational Physics, 506, 112941.10.1016/j.jcp.2024.112941CrossRefGoogle Scholar
Quadrio, M., Frohnapfel, B., and Hasegawa, Y. 2016. Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow? European Journal of Mechanics B/Fluids, 55(2), 286293.10.1016/j.euromechflu.2015.09.005CrossRefGoogle Scholar
Rai, M., and Moin, P. 1991. Direct simulations of turbulent flow using finite-difference schemes. Journal of Computational Physics, 96(1), 1553.Google Scholar
Rajamuni, M. M., Thompson, M. C., and Hourigan, K. 2018. Transverse flow-induced vibrations of a sphere. Journal of Fluid Mechanics, 837, 931966.10.1017/jfm.2017.881CrossRefGoogle Scholar
Rich, M. 1963. A Method for Eulerian Fluid Dynamics,. Tech. rept. Report No. LAMS-2826. Los Alamos Scientific Laboratories.Google Scholar
Roma, A. M., Peskin, C. S., and Berger, M. J. 1999. An adaptive version of the immersed boundary method. Journal of Computational Physics, 153(2), 509534.10.1006/jcph.1999.6293CrossRefGoogle Scholar
Saiki, E. M., and Biringen, S. 1996. Numerical simulations of a cylinder in uniform flow: Application of a virtual boundary method. Journal of Computational Physics, 123, 450465.10.1006/jcph.1996.0036CrossRefGoogle Scholar
Sapahi, F., Verzicco, R., Lohse, D., and Krug, D. 2024. Mass transport at gas-evolving electrodes. Journal of Fluid Mechanics, 983, A19.10.1017/jfm.2024.51CrossRefGoogle Scholar
Saulev, V.K. 1963. On the solution of some boundary value problems on high performance computers by fictitious domain method. Siberian Mathematical Journal, 4, 912925.Google Scholar
Schillinger, D., Harari, I., Hsu, M.-C., Kamensky, D., Stoter, S. K. F., Yu, Y., and Zhao, Y. 2016. The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Computer Methods in Applied Mechanics and Engineering, 309, 625652.10.1016/j.cma.2016.06.026CrossRefGoogle Scholar
Schlichting, H. 1968. Boundary Layer Theory. McGraw-Hill.Google Scholar
Schmidt, M. 1993. Cutting cubes – visualizing implicit surfaces by adaptive polygonization. Visual Computer, 10, 101115.10.1007/BF01901946CrossRefGoogle Scholar
Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal, 27(3), 379423.10.1002/j.1538-7305.1948.tb01338.xCrossRefGoogle Scholar
Smagorinsky, J. 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91, 99164.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Smolinski, M. S., Hamburg, M. A., and Lederberg, J. 2003. Microbial Threats to Health: Emergence, Detection, and Response. The National Academies Press.Google Scholar
Sotiropoulos, F., and Yang, X. 2014. Immersed boundary methods for simulating fluid– structure interaction. Progress in Aerospace Sciences, 65, 121.10.1016/j.paerosci.2013.09.003CrossRefGoogle Scholar
Spandan, V., Lohse, D., de Tullio, M. D., and Verzicco, R. 2018. A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed boundary simulations. Journal of Computational Physics, 375, 228239.10.1016/j.jcp.2018.08.040CrossRefGoogle Scholar
Su, S.-W., Lai, M.-C., and Lin, C.-A. 2007. An immersed boundary technique for simulating complex flows with rigid boundary. Computers & Fluids, 36(2).10.1016/j.compfluid.2005.09.004CrossRefGoogle Scholar
Sun, L., Yao, W., Robinson, T., Simao, M., and Armstrong, C. 2020. A framework of gradient-based shape optimization using feature-based CAD parameterization. AIAA Paper, 20200889.Google Scholar
Sussman, M., and Puckett, E. G. 2000. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162, 301337.10.1006/jcph.2000.6537CrossRefGoogle Scholar
Tadmor, E. B., Miller, R. E., and Elliott, R. S. 2012. Continuum Mechanics and Ther-modynamics. Cambridge University Press.Google Scholar
Taira, K., and Colonius, T. 2007. The immersed boundary method: A projection approach. Journal of Computational Physics, 225, 21182137.10.1016/j.jcp.2007.03.005CrossRefGoogle Scholar
ten Cate, A., Nieuwstad, C. H., Derksen, J. J., and Van den Akker, H. E. A. 2002. Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Physics of Fluids, 14, 40124025.10.1063/1.1512918CrossRefGoogle Scholar
Tennekes, H., and Lumley, J. L. 1972. A First Course in Turbulence. MIT Press.10.7551/mitpress/3014.001.0001CrossRefGoogle Scholar
Tessicini, F., Iaccarino, G., Fatica, M., Wang, M., and Verzicco, R. 2002. Wall modeling for large-eddy simulation using an immersed boundary method. Center for Turbulence Research Annual Research Briefs, 2002, 181187.Google Scholar
Thompson, J. F., Soni, B. K., and Wheatherhill, N. P. 1999. Handbook of Grid Generation. CRC Press.Google Scholar
Tian, F. B., Dai, H., Luo, H., Doyle, F. J., and Rousseau, B. 2014. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. Journal of Computational Physics, 258, 451469.10.1016/j.jcp.2013.10.047CrossRefGoogle Scholar
Tryggvason, G., Scardovelli, R., and Zaleski, S. 2011. Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Tseng, Y. H., and Ferziger, J. H. 2003. A ghost-cell immersed boundary method for flow in complex geometry. Journal of Computational Physics, 192, 593623.10.1016/j.jcp.2003.07.024CrossRefGoogle Scholar
Udaykumar, H. S., Mittal, R., and Shyy, W. 1999. Computation of solid–liquid phase fronts in the sharp interface limit on fixed grids. Journal of Computational Physics, 153(2), 535574.10.1006/jcph.1999.6294CrossRefGoogle Scholar
Udaykumar, H. S., Mittal, R., Rampunggoon, P., and Khanna, A. 2001. A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. Journal of Computational Physics, 174(1), 345380.10.1006/jcph.2001.6916CrossRefGoogle Scholar
Uhlmann, M. 2005. An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209, 448476.10.1016/j.jcp.2005.03.017CrossRefGoogle Scholar
Usyk, T. P., Mazhari, R., and McCulloch, A. D. 2000. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. Journal of Elasticity and the Physical Science of Solids, 61, 143164.Google Scholar
Vagnoli, Giovanni, Scarpolini, Martino A, Verzicco, Roberto, and Viola, Francesco. 2025. A local and explicit forcing correction for Lagrangian immersed boundary methods. Computer Physics Communications, 109741.Google Scholar
van Driest, E. R. 1956. On turbulent flow near a wall. Journal of the Aeronautical Science, 23, 10071011.10.2514/8.3713CrossRefGoogle Scholar
Van Gelder, A. 1998. Approximate simulation of elastic membranes by triangulated spring meshes. Journal of Graphics Tools, 3(2), 2141.10.1080/10867651.1998.10487490CrossRefGoogle Scholar
Vanella, M., and Balaras, E. 2009. A moving-least-squares reconstruction for embedded-boundary formulations. Journal of Computational Physics, 228(18), 66176628.10.1016/j.jcp.2009.06.003CrossRefGoogle Scholar
Verzicco, R. 2002. Sidewall finite-conductivity effects in confined turbulent thermal convection. Journal of Fluid Mechanics, 473, 201210.10.1017/S0022112002002501CrossRefGoogle Scholar
Verzicco, R. 2023. Immersed boundary methods: A historical perspective and a future outlook. Annual Review of Fluid Mechanics, 55, 129155.10.1146/annurev-fluid-120720-022129CrossRefGoogle Scholar
Verzicco, R, and Orlandi, P. 1996. A finite-difference scheme for three-dimensional in-compressible flows in cylindrical coordinates. Journal of Computational Physics, 123(2), 402414.10.1006/jcph.1996.0033CrossRefGoogle Scholar
Verzicco, R., Orlandi, P., Mohd-Yusof, J., and Haworth, D. 2000. Large-eddy simulation in complex geometric configurations using boundary body forces. AIAA Journal, 38, 427433.10.2514/2.1001CrossRefGoogle Scholar
Verzicco, R., Fatica, M., Iaccarino, G., and Orlandi, P. 2004. Flow in an impeller-stirred tank using an immersed-boundary method. AIChE Journal, 50, 11091118.10.1002/aic.10117CrossRefGoogle Scholar
Viecelli, J. 1969. A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique. Journal of Computational Physics, 4, 543551.10.1016/0021-9991(69)90019-9CrossRefGoogle Scholar
Viecelli, J. 1971. A computing method for incompressible flows bounded by moving walls. Journal of Computational Physics, 8, 119143.10.1016/0021-9991(71)90039-8CrossRefGoogle Scholar
Viola, F., Meschini, V., and Verzicco, R. 2020. Fluid–structure-electrophysiology interaction (FSEI) in the left-heart: A multi-way coupled computational model. European Journal of Mechanics-B/Fluids, 79, 212232.10.1016/j.euromechflu.2019.09.006CrossRefGoogle Scholar
Viola, F., Del Corso, G., and Verzicco, R. 2023a. High-fidelity model of the human heart: An immersed boundary implementation. Physical Review Fluids, 8(10), 100502.10.1103/PhysRevFluids.8.100502CrossRefGoogle Scholar
Viola, F., Del Corso, G., De Paulis, R., and Verzicco, R. 2023b. GPU accelerated digital twins of the human heart open new routes for cardiovascular research. Scientific Reports, 13(1), 8230.10.1038/s41598-023-34098-8CrossRefGoogle ScholarPubMed
Wan, H., Dong, H., and Liang, Z. 2012. Vortex formation of freely falling plates. Pages 1–10 of: Aerospace Exposition, Tennessee, Jan. 9–12, 2012. American Institute of Aeronautics and Astronautics.Google Scholar
Wang, M., and Moin, P. 2000. Computation of trailing-edge flow and noise using large-eddy simulation. AIAA Journal, 38, 20012009.10.2514/2.895CrossRefGoogle Scholar
Wang, S., Vanella, M., and Balaras, E. 2019. A hydrodynamic stress model for simulating turbulence/particle interactions with immersed boundary methods. Journal of Computational Physics, 382, 240263.10.1016/j.jcp.2019.01.010CrossRefGoogle Scholar
Welch, J. E., Harlow, F. H., Shannon, J. P., and Daly, B. J. 1965. The MAC Method: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces. Tech. rept. Report No. LA-3425. Los Alamos Scientific Laboratories.10.2172/4563173CrossRefGoogle Scholar
Wie, B. 1998. Space Vehicle Dynamics and Control. AIAA.Google Scholar
Wilcox, D. C. 1998. Turbulence Modelling for CFD, 2nd edn. DCW Industries, Inc.Google Scholar
Worster, M. G., Batchelor, G. K., and Moffat, H. K. 2000. Solidification of fluids. Perspectives in Fluid Mechanics, 742, 393446.Google Scholar
Xia, Z., Connington, K. W., Rapaka, S., Yue, P., Feng, J. J., and Chen, S. 2009. Flow patterns in the dedimentation of an elliptical particle. Journal of Fluid Mechanics, 625, 249272.10.1017/S0022112008005521CrossRefGoogle Scholar
Yanenko, N. N. 1967. Fractional-Step Methods for Multi-dimensional Solutions. Nauka Press.Google Scholar
Yang, R., Howland, C., Liu, H. R., Verzicco, R., and Lohse, D. 2023a. Bistability in radiatively heated melt ponds. Physical Review Letters, 131, 234002.10.1103/PhysRevLett.131.234002CrossRefGoogle ScholarPubMed
Yang, R., Howland, C., Liu, H. R., Verzicco, R., and Lohse, D. 2023b. Ice melting in salty water: Layering and non-monotonic dependence on the mean salinity. Journal of Fluid Mechanics, 969, R2.10.1017/jfm.2023.582CrossRefGoogle Scholar
Yang, X. I. A., Sadique, J., Mittal, R., and Meneveau, C. 2015. Integral wall model for large eddy simulations of wall-bounded turbulent flows. Physics of Fluids, 27, 025112.10.1063/1.4908072CrossRefGoogle Scholar
Yang, Y., and Balaras, E. 2006. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. Journal of Computational Physics, 215, 1240.10.1016/j.jcp.2005.10.035CrossRefGoogle Scholar
Ye, T., Mittal, R., Udaykumar, H. S., and Shyy, W. 1999. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics, 156(2), 209240.10.1006/jcph.1999.6356CrossRefGoogle Scholar
Yildiran, I. N., Beratlis, N., Capuano, F., Loke, Y.-H., Squires, K., and Balaras, E. 2024. Pressure boundary conditions for immersed-boundary models. Journal of Computational Physics, 510.10.1016/j.jcp.2024.113057CrossRefGoogle Scholar
Zhang, D., Huang, Q.-G., Pan, G., Yang, L.-M., and Huang, W.-X. 2022a. Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming. Journal of Fluid Mechanics, 930, A28.10.1017/jfm.2021.917CrossRefGoogle Scholar
Zhang, W., Shahmardi, A., Choi, K., Tammisola, O., Brandt, L., and Mao, X. 2022b. A phase-field method for three-phase flows with icing. Journal of Computational Physics, 458, 111104.10.1016/j.jcp.2022.111104CrossRefGoogle Scholar
Zhang, Z., and Prosperetti, A. 2005. A second-order method for three-dimensional particle simulation. Journal of Computational Physics, 210, 292324.10.1016/j.jcp.2005.04.009CrossRefGoogle Scholar
Zhong, K., Howland, C. J., Lohse, D., and Verzicco, R. 2025. A front-tracking immersed-boundary framework for simulating Lagrangian melting problems. Journal of Computational Physics, 525, 113762.10.1016/j.jcp.2025.113762CrossRefGoogle Scholar
Zhu, X., Chen, Y., Chong, K. L., Lohse, D., and Verzicco, R. 2024. A boundary condition-enhanced direct-forcing immersed boundary method for simulations of three-dimensional phoretic particles in incompressible flows. Journal of Computational Physics, 509, 113028.10.1016/j.jcp.2024.113028CrossRefGoogle Scholar

Accessibility standard: WCAG 2.1 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.1 of the Web Content Accessibility Guidelines (WCAG), covering newer accessibility requirements and improved user experiences and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Roberto Verzicco, Università degli Studi di Roma ‘Tor Vergata’, Gran Sasso Science Institute, L’Aquila, and University of Twente, Enschede, Marco D. de Tullio, Politecnico di Bari, Francesco Viola, Gran Sasso Science Institute, L’Aquila
  • Book: An Introduction to Immersed Boundary Methods
  • Online publication: 30 October 2025
  • Chapter DOI: https://doi.org/10.1017/9781009128438.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Roberto Verzicco, Università degli Studi di Roma ‘Tor Vergata’, Gran Sasso Science Institute, L’Aquila, and University of Twente, Enschede, Marco D. de Tullio, Politecnico di Bari, Francesco Viola, Gran Sasso Science Institute, L’Aquila
  • Book: An Introduction to Immersed Boundary Methods
  • Online publication: 30 October 2025
  • Chapter DOI: https://doi.org/10.1017/9781009128438.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Roberto Verzicco, Università degli Studi di Roma ‘Tor Vergata’, Gran Sasso Science Institute, L’Aquila, and University of Twente, Enschede, Marco D. de Tullio, Politecnico di Bari, Francesco Viola, Gran Sasso Science Institute, L’Aquila
  • Book: An Introduction to Immersed Boundary Methods
  • Online publication: 30 October 2025
  • Chapter DOI: https://doi.org/10.1017/9781009128438.012
Available formats
×