Skip to main content Accessibility help
×
Hostname: page-component-74d7c59bfc-b9mx5 Total loading time: 0 Render date: 2026-02-09T23:02:14.325Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 October 2018

Rob Ellis
Affiliation:
University of Plymouth
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Bodies and Other Objects
The Sensorimotor Foundations of Cognition
, pp. 175 - 195
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abrams, R. A., Davoli, C. C., Du, F., Knapp, W. H., and Paull, D. (2008). Altered vision near the hands. Cognition, 107(3), 10351047.CrossRefGoogle ScholarPubMed
Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9(1), 147169.Google Scholar
Allport, D. A. (1987). Selection for action. Perspectives on Perception and Action, 15, 395419.Google Scholar
Ambrose, S. H. (2001). Paleolithic technology and human evolution. Science, 291(5509), 17481753.10.1126/science.1059487CrossRefGoogle ScholarPubMed
Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149(1), 91130.CrossRefGoogle Scholar
Anderson, M. L.(2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33(4), 245266.10.1017/S0140525X10000853CrossRefGoogle ScholarPubMed
Anderson, M. L.(2014). After Phrenology. Cambridge, MA: MIT Press.10.7551/mitpress/10111.001.0001CrossRefGoogle Scholar
Ansuini, C., Cavallo, A., Bertone, C., and Becchio, C. (2014). The visible face of intention: Why kinematics matters. Frontiers in Psychology, 5.CrossRefGoogle ScholarPubMed
Appadurai, A. (1988). The Social Life of Things: Commodities in Cultural Perspective. Cambridge: Cambridge University Press.Google Scholar
Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28(02), 105124.10.1017/S0140525X05000038CrossRefGoogle ScholarPubMed
Arbib, M. A.(2011). From mirror neurons to complex imitation in the evolution of language and tool use. Annual Review of Anthropology, 40, 257273.10.1146/annurev-anthro-081309-145722CrossRefGoogle Scholar
Bach, P., Bayliss, A. P., and Tipper, S. P. (2011). The predictive mirror: Interactions of mirror and affordance processes during action observation. Psychonomic Bulletin and Review, 18(1), 171176.10.3758/s13423-010-0029-xCrossRefGoogle ScholarPubMed
Bach-y-Rita, P., Collins, C. C., Saunders, S. A., White, B., and Scadden, L. (1969) Vision substitution by tactile image projection. Nature, 221, 963964.CrossRefGoogle ScholarPubMed
Bach-y-Rita, P (1972). Brain Mechanisms in Sensory Substitution. New York: Academic Press.Google Scholar
Badyaev, A. V. (2009). Evolutionary significance of phenotypic accommodation in novel environments: An empirical test of the Baldwin effect. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1520), 11251141.CrossRefGoogle ScholarPubMed
Bak, T. H., and Hodges, J. R. (2004). The effects of motor neurone disease on language: Further evidence. Brain and Language, 89(2), 354361.10.1016/S0093-934X(03)00357-2CrossRefGoogle ScholarPubMed
Baldwin, J. M. (1896). A new factor in evolution. American Naturalist, 30(354), 441451.10.1086/276408CrossRefGoogle Scholar
Baldwin, T. (2007). Reading Merleau-Ponty: On Phenomenology of Perception. London and New York: Routledge.CrossRefGoogle Scholar
Bangert, M., and Altenmüller, E. O. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4(1), 26.10.1186/1471-2202-4-26CrossRefGoogle Scholar
Barsalou, L. W., Simmons, W. K., Barbey, A. K., and Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 8491.CrossRefGoogle ScholarPubMed
Barsalou, L. W., Solomon, K. O., and Wu, L.-L. (1999). Perceptual simulation in conceptual tasks. Amsterdam Studies in the Theory and History of Linguistic Science, Series 4, 209228.Google Scholar
Barton, R. A., and Dunbar, R. I. (1997). Evolution of the social brain. In Whiten, A. and Byrne, R. W. (eds.), Machiavellian Intelligence II: Extensions and Evaluations (pp. 240263). New York: Cambridge University Press.10.1017/CBO9780511525636.010CrossRefGoogle Scholar
Bartra, R. (2014). Anthropology of the Brain: Consciousness, Culture, and Free Will. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bassolino, M., Serino, A., Ubaldi, S., and Làdavas, E. (2010). Everyday use of the computer mouse extends peripersonal space representation. Neuropsychologia, 48(3), 803811.CrossRefGoogle ScholarPubMed
Becchio, C., Sartori, L., Bulgheroni, M., and Castiello, U. (2008). The case of Dr. Jekyll and Mr. Hyde: A kinematic study on social intention. Consciousness and Cognition, 7(3), 557564.CrossRefGoogle Scholar
Beer, R. D. (2014). Dynamical systems and embedded cognition. In Frankish, K. and Ramsey, W. M. (eds), The Cambridge Handbook of Artificial Intelligence (pp. 856873). New York: Cambridge University Press.Google Scholar
Behne, T., Carpenter, M., and Tomasello, M. (2014). Young children create iconic gestures to inform others. Developmental Psychology, 50(8), 20492060.CrossRefGoogle ScholarPubMed
Bernardis, P., and Gentilucci, M. (2006). Speech and gesture share the same communication system. Neuropsychologia, 44(2), 178190.10.1016/j.neuropsychologia.2005.05.007CrossRefGoogle ScholarPubMed
Berti, A., and Frassinetti, F. (2000). When far becomes near: Remapping of space by tool use. Journal of Cognitive Neuroscience, 12 (3), 415420.CrossRefGoogle ScholarPubMed
Binkofski, F., and Buccino, G. (2004). Motor functions of the Broca’s region. Brain and Language, 89(2), 362369.CrossRefGoogle ScholarPubMed
Biro, D., Haslam, M., and Rutz, C. (2013). Tool use as adaptation. Philosophical Transactions of the Royal Society B, 368(1630) http://rstb.royalsocietypublishing.org/content/368/1630/20120408CrossRefGoogle ScholarPubMed
Blench, R. (2010). The sensory world: Ideophones in Africa and elsewhere. In Storch, A (ed.), Perception of the Invisible: Religion, Historical Semantics and the Role of Perceptive Verbs, Sprache und Geschichte in Afrika (pp. 275296). Cologne: Köppe.Google Scholar
Borghi, and Riggio, (2009). Sentence comprehension and simulation of objects temporary, canonical and stable affordances. Brain Research, 1253, 117128.10.1016/j.brainres.2008.11.064CrossRefGoogle ScholarPubMed
Borghi, and Riggio, (2015). Stable and variable affordances are both automatic and flexible. Frontiers in Human Neuroscience, 9, 351.CrossRefGoogle ScholarPubMed
Bourdieu, P. (1977). Outline of a Theory of Practice. Cambridge: Cambridge University Press.10.1017/CBO9780511812507CrossRefGoogle Scholar
Bourdieu, P.(1990). The Logic of Practice. Stanford, CA: Stanford University Press.CrossRefGoogle Scholar
Brass, M., Bekkering, H., Wohlschläger, A., and Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44(2), 124143.10.1006/brcg.2000.1225CrossRefGoogle ScholarPubMed
Broadbent, D. E. (2013). Perception and Communication. Oxford: Pergamon Press.Google Scholar
Brooks, R., and Meltzoff, A. N. (2002). The importance of eyes: How infants interpret adult looking behavior. Developmental Psychology, 38(6), 958.CrossRefGoogle ScholarPubMed
Brooks, R., and Meltzoff, A. N.(2005). The development of gaze following and its relation to language. Developmental Science, 8(6), 535543.10.1111/j.1467-7687.2005.00445.xCrossRefGoogle ScholarPubMed
Brozzoli, C., Makin, T. R., Cardinali, L., Holmes, N. P., and Farnè, A. (2011). Peripersonal space: A multisensory interface for body–object interactions. In Murray, M. M. and Wallace, M. T., M. (eds.), The Neural Bases of Multisensory Processes (pp. 449466). London: Taylor and Francis.10.1201/9781439812174-29CrossRefGoogle Scholar
Brozzoli, C., Pavani, F., Urquizar, C., Cardinali, L., and Farnè, A. (2009). Grasping actions remap peripersonal space. Neuroreport, 20(10), 913917.10.1097/WNR.0b013e32832c0b9bCrossRefGoogle ScholarPubMed
Bruineberg, J., Kiverstein, J., and Rietveld, E. (2016). The anticipating brain is not a scientist: The free-energy principle from an ecological–enactive perspective. Synthese, 1–28.Google Scholar
Bruineberg, J., and Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599.10.3389/fnhum.2014.00599CrossRefGoogle ScholarPubMed
Buccino, G., and Riggio, L. (2006). The role of the mirror neuron system in motor learning. Kinesiology, 38(1), 515.Google Scholar
Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H.-J., and Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42(2), 323334.10.1016/S0896-6273(04)00181-3CrossRefGoogle ScholarPubMed
Buxbaum, L. J., Sirigu, A., Schwartz, M. F., and Klatzky, R. (2003). Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia, 41(8), 10911113.10.1016/S0028-3932(02)00314-7CrossRefGoogle ScholarPubMed
Caggiano, V., Fogassi, L., Rizzolatti, G., Pomper, J. K., Thier, P., Giese, M. A., and Casile, A. (2011). View-based encoding of actions in mirror neurons of area f5 in macaque premotor cortex. Current Biology, 21(2), 144148.10.1016/j.cub.2010.12.022CrossRefGoogle ScholarPubMed
Caggiano, V., Fogassi, L., Rizzolatti, G., Thier, P., and Casile, A. (2009). Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science, 324(5925), 403406.10.1126/science.1166818CrossRefGoogle ScholarPubMed
Campbell, F. W., and Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 197(3), 551566.10.1113/jphysiol.1968.sp008574CrossRefGoogle Scholar
Carey, D. P., Harvey, M., and Milner, A. D. (1996). Visuomotor sensitivity for shape and orientation in a patient with visual form agnosia. Neuropsychologia, 34(5), 329337.CrossRefGoogle Scholar
Carpenter, M., Tomasello, M., and Striano, T. (2005). Role reversal imitation and language in typically developing infants and children with autism. Infancy, 8(3), 253278.10.1207/s15327078in0803_4CrossRefGoogle Scholar
Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M., and Heyes, C. (2008). Through the looking glass: Counter-mirror activation following incompatible sensorimotor learning. European Journal of Neuroscience, 28(6), 12081215.CrossRefGoogle ScholarPubMed
Catmur, C., Walsh, V., and Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17(17), 15271531.10.1016/j.cub.2007.08.006CrossRefGoogle ScholarPubMed
Cavallo, A., Koul, A., Ansuini, C., Capozzi, F., and Becchio, C. (2016). Decoding intentions from movement kinematics. Scientific Reports, 6.10.1038/srep37036CrossRefGoogle ScholarPubMed
Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3), 200219.Google Scholar
Chartrand, T. L., and Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893910.10.1037/0022-3514.76.6.893CrossRefGoogle ScholarPubMed
Chen, C. C., Henson, R. N., Stephan, K. E., Kilner, J. M., and Friston, K. J. (2009). Forward and backward connections in the brain: A DCM study of functional asymmetries. NeuroImage, 45, 453462.CrossRefGoogle Scholar
Chomsky, N. (1959). A review of B. F. Skinner’s Verbal Behavior. Language, 35(1), 2658.CrossRefGoogle Scholar
Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension. New York: Oxford University Press.CrossRefGoogle Scholar
Clark, A.(2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(03), 181204.10.1017/S0140525X12000477CrossRefGoogle ScholarPubMed
Clark, A., and Chalmers, D. (1998). The extended mind. Analysis, 58(1), 719.10.1093/analys/58.1.7CrossRefGoogle Scholar
Clark, H. H. (1996). Using Language. Cambridge: Cambridge University Press.10.1017/CBO9780511620539CrossRefGoogle Scholar
Cook, R., Bird, G., Catmur, C., Press, C., and Heyes, C. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37(02), 177192.CrossRefGoogle ScholarPubMed
Corballis, M. C. (2003). From mouth to hand: Gesture, speech, and the evolution of right-handedness. Behavioral and Brain Sciences, 26(02), 199208.CrossRefGoogle ScholarPubMed
Corballis, M. C.(2010). Mirror neurons and the evolution of language. Brain and Language, 112(1), 2535.CrossRefGoogle ScholarPubMed
Costantini, M., Ambrosini, E., Sinigaglia, C., and Gallese, V. (2011). Tool-use observation makes far objects ready-to-hand. Neuropsychologia, 49(9), 26582663.CrossRefGoogle ScholarPubMed
Costantini, M., Ambrosini, E., Tieri, G., Sinigaglia, C., and Committeri, G. (2010). Where does an object trigger an action? An investigation about affordances in space. Experimental Brain Research, 207(1–2), 95103.CrossRefGoogle ScholarPubMed
Costantini, M., Committeri, G., and Sinigaglia, C. (2011). Ready both to your and to my hands: Mapping the action space of others. PloS One, 6(4), e17923.10.1371/journal.pone.0017923CrossRefGoogle Scholar
Costantini, M., and Ferri, F. (2013). Action co-representation and social exclusion. Experimental Brain Research, 227(1), 8592.10.1007/s00221-013-3487-3CrossRefGoogle ScholarPubMed
Costantini, M., Frassinetti, F., Maini, M., Ambrosini, E., Gallese, V., and Sinigaglia, C. (2014). When a laser pen becomes a stick: Remapping of space by tool-use observation in hemispatial neglect. Experimental Brain Research, 232(10), 32333241.CrossRefGoogle Scholar
Creem, S. H., and Proffitt, D. R. (2001). Grasping objects by their handles: A necessary interaction between cognition and action. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 218.Google ScholarPubMed
Csibra, G. (2008). Action mirroring and action understanding: An alternative account. Sensorimotor Foundations of Higher Cognition. Attention and Performance, 22, 435459.Google Scholar
Damasio, A. R. (2006). Descartes’ Error: Emotion, Reason and the Human Brain. New York: Penguin.Google Scholar
Davidson, I., Noble, W., Gibson, K. R., Ingold, T., and Leavens, D. A. (1993). Tools and language in human evolution. In Gibson, K. and Ingold, T. (eds.), Tools, Language, and Cognition in Human Evolution (pp. 363388). Cambridge: Cambridge University Press.Google Scholar
de Gelder, B. (2016). Emotions and the Body. New York: Oxford University Press.10.1093/acprof:oso/9780195374346.001.0001CrossRefGoogle Scholar
De Vignemont, F., and Iannetti, G. D. (2015). How many peripersonal spaces? Neuropsychologia, 70, 327334.10.1016/j.neuropsychologia.2014.11.018CrossRefGoogle ScholarPubMed
Dennett, D. C. (1993). Consciousness Explained. New York: Penguin.Google Scholar
Di Paolo, E. A., and Thompson, E. (2014). The enactive approach. In Shapiro, L. (ed.), The Routledge Handbook of Embodied Cognition (pp. 6878). Oxford: Routledge.Google Scholar
Dove, G. (2014). Thinking in words: Language as an embodied medium of thought. Topics in Cognitive Science, 6(3), 371389.10.1111/tops.12102CrossRefGoogle Scholar
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., and May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311312.10.1038/427311aCrossRefGoogle ScholarPubMed
Dreyfus, H. L. (1972). What Computers Can’t Do. New York: Harper & Row.Google Scholar
Dreyfus, H. L.(1992). What Computers Still Can’t Do: A Critique of Artificial Reason. Cambridge, MA: MIT Press.Google Scholar
Dreyfus, H. L.(2002). Intelligence without representation – Merleau-Ponty’s critique of mental representation the relevance of phenomenology to scientific explanation. Phenomenology and the Cognitive Sciences, 1(4), 367383.10.1023/A:1021351606209CrossRefGoogle Scholar
Dreyfus, H. L.(2007). Why Heideggerian AI failed and how fixing it would require making it more Heideggerian. Artificial Intelligence, 171(18), 11371160.CrossRefGoogle Scholar
Droll, J. A., Hayhoe, M. M., Triesch, J., and Sullivan, B. T. (2005). Task demands control acquisition and storage of visual information. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 14161438.Google ScholarPubMed
Dunbar, R. I. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36(5), 562572.CrossRefGoogle ScholarPubMed
Dunbar, R. I., and Shultz, S. (2007). Understanding primate brain evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 649658.CrossRefGoogle ScholarPubMed
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172179.10.1016/j.tics.2010.01.004CrossRefGoogle ScholarPubMed
Duncan, J., and Owen, A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23(10), 475483.10.1016/S0166-2236(00)01633-7CrossRefGoogle ScholarPubMed
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N., and Emsilie, H. (2000). A neural basis for general intelligence. Science, 289(5478), 457460.10.1126/science.289.5478.457CrossRefGoogle ScholarPubMed
Edelman, G. M. (1993). Neural Darwinism: Selection and reentrant signaling in higher brain function. Neuron, 10(2), 115125.10.1016/0896-6273(93)90304-ACrossRefGoogle ScholarPubMed
Egly, R., Driver, J., and Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology General, 123, 161177.10.1037/0096-3445.123.2.161CrossRefGoogle ScholarPubMed
Ellis, R., and Humphreys, G. W. (1999). Connectionist Psychology: A Text with Readings. New York: Psychology Press.Google Scholar
Ellis, R., Swabey, D., Bridgeman, J., May, B., Tucker, M., and Hyne, A. (2013). Bodies and other visual objects: The dialectics of reaching toward objects. Psychological Research, 77(1), 3139.CrossRefGoogle ScholarPubMed
Ellis, R., and Tucker, M. (2000). Micro-affordance: The potentiation of components of action by seen objects. British Journal of Psychology, 91(4), 451471.10.1348/000712600161934CrossRefGoogle ScholarPubMed
Ellis, R., Tucker, M., Symes, E., and Vainio, L. (2007). Does selecting one visual object from several require inhibition of the actions associated with nonselected objects? Journal of Experimental Psychology: Human Perception and Performance, 33(3), 670691.Google ScholarPubMed
Evans, N., and Levinson, S. C. (2009). The myth of language universals: Language diversity and its importance for cognitive science. Behavioral and Brain Sciences, 32(5), 429448.CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Pavesi, G., and Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of neurophysiology, 73(6), 26082611.10.1152/jn.1995.73.6.2608CrossRefGoogle ScholarPubMed
Fazio, P., Cantagallo, A., Craighero, L., D’Ausilio, A., Roy, A. C., Pozzo, T., Fadiga, L., and others (2009). Encoding of human action in Broca’s area. Brain, 132(7), 19801988.10.1093/brain/awp118CrossRefGoogle ScholarPubMed
Fedorenko, E., Duncan, J., and Kanwisher, N. (2012). Language-selective and domain-general regions lie side by side within Broca’s area. Current Biology, 22(21), 20592062.10.1016/j.cub.2012.09.011CrossRefGoogle ScholarPubMed
Fischer, M. H., and Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology, 61(6), 825850.10.1080/17470210701623605CrossRefGoogle Scholar
Fodor, J. A. (1975). The Language of Thought. Cambridge, MA: Harvard University Press.Google Scholar
Fodor, J. A., and Pylyshyn, Z. W. (1981). How direct is visual perception?: Some reflections on Gibson’s ‘ecological approach’. Cognition, 9(2), 139196.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., and Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662667.10.1126/science.1106138CrossRefGoogle ScholarPubMed
Frey, S. H. (2007). What puts the how in where? Tool use and the divided visual streams hypothesis. Cortex, 43(3), 368375.CrossRefGoogle ScholarPubMed
Freyd, J. J., and Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 126.Google Scholar
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1456), 815836.10.1098/rstb.2005.1622CrossRefGoogle ScholarPubMed
Friston, K.(2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293301.10.1016/j.tics.2009.04.005CrossRefGoogle ScholarPubMed
Friston, K.(2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127138.10.1038/nrn2787CrossRefGoogle ScholarPubMed
Friston, K.(2011). What is optimal about motor control? Neuron, 72(3), 488498.10.1016/j.neuron.2011.10.018CrossRefGoogle ScholarPubMed
Friston, K., Daunizeau, J., Kilner, J. and Kiebel, S.J. (2010). Action and behavior: A free-energy formulation. Biological cybernetics, 102(3), 227260.10.1007/s00422-010-0364-zCrossRefGoogle ScholarPubMed
Friston, K., Kilner, J., and Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology-Paris, 100(1), 7087.CrossRefGoogle ScholarPubMed
Friston, K., Shiner, T., FitzGerald, T., Galea, J. M., Adams, R., Brown, H., Dolan, R. J., Moran, R., Stephan, K. E. and Bestmann, S. (2012). Dopamine, affordance and active inference. PLoS Comput Biol, 8(1), e1002327.10.1371/journal.pcbi.1002327CrossRefGoogle ScholarPubMed
Fuentes, A. (2015). Integrative anthropology and the human niche: Toward a contemporary approach to human evolution. American Anthropologist, 117(2), 302315.10.1111/aman.12248CrossRefGoogle Scholar
Gallagher, S., and Zahavi, D. (2013). The Phenomenological Mind. Oxford: Routledge.10.4324/9780203126752CrossRefGoogle Scholar
Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593610.10.1093/brain/119.2.593CrossRefGoogle ScholarPubMed
Gamble, C. (2007). Origins and Revolutions: Human Identity in Earliest Prehistory. Cambridge: Cambridge University Press.10.1017/CBO9780511618598CrossRefGoogle Scholar
Gamble, C., Gowlett, J., and Dunbar, R. (2011). The social brain and the shape of the Palaeolithic. Cambridge Archaeological Journal, 21(01), 115136.10.1017/S0959774311000072CrossRefGoogle Scholar
Garrod, S., and Pickering, M. J. (2009). Joint action, interactive alignment, and dialog. Topics in Cognitive Science, 1(2), 292304.CrossRefGoogle ScholarPubMed
Gell, A. (1992). The technology of enchantment and the enchantment of technology. In Coote, J. and Shelton, A. (eds.), Anthropology, Art and Aesthetics (pp. 4063). Oxford: Clarendon Press.CrossRefGoogle Scholar
Gell, A.(1998). Art and Agency: An Anthropological Theory. Oxford: Oxford University Press.CrossRefGoogle Scholar
Georgiou, I., Becchio, C., Glover, S., and Castiello, U. (2007). Different action patterns for cooperative and competitive behaviour. Cognition, 102(3), 415433.10.1016/j.cognition.2006.01.008CrossRefGoogle ScholarPubMed
Gerbault, P., Liebert, A., Itan, Y., Powell, A., Currat, M., Burger, J., Thomas, M. G., and others (2011). Evolution of lactase persistence: An example of human niche construction. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1566), 863877.10.1098/rstb.2010.0268CrossRefGoogle ScholarPubMed
Geschwind, N. (1970). The organization of language and the brain. Science, 170 (3961), 940944.10.1126/science.170.3961.940CrossRefGoogle ScholarPubMed
Gibson, J. J. (2014). The Ecological Approach to Visual Perception: Classic Edition. New York and Hove: Psychology Press.10.4324/9781315740218CrossRefGoogle Scholar
Gibson, K. R., Gibson, K. R., and Ingold, T. (1994). Tools, Language and Cognition in Human Evolution. Cambridge: Cambridge University Press.Google Scholar
Gindrat, A.-D., Chytiris, M., Balerna, M., Rouiller, E. M., and Ghosh, A. (2015). Use-dependent cortical processing from fingertips in touchscreen phone users. Current Biology, 25(1), 109116.CrossRefGoogle ScholarPubMed
Gislén, A., Dacke, M., Kröger, R. H. H., Abrahamsson, M., Nisson, D. and Warrant, E. J. (2003). Superior underwater vision in a human population of sea gypsies. Current Biology, 13(10), 833836.10.1016/S0960-9822(03)00290-2CrossRefGoogle Scholar
Glenberg, A. M., and Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin and Review, 9(3), 558565.CrossRefGoogle ScholarPubMed
Godfrey-Smith, P. (2017). Senders, receivers, and symbolic artifacts. Biological Theory, 12(4), 275286.10.1007/s13752-017-0276-4CrossRefGoogle Scholar
Goldenberg, G., Hermsdörfer, J., Glindemann, R., Rorden, C., and Karnath, H.-O. (2007). Pantomime of tool use depends on integrity of left inferior frontal cortex. Cerebral Cortex, 17(12), 27692776.10.1093/cercor/bhm004CrossRefGoogle ScholarPubMed
Goldin-Meadow, S. (2005). Hearing Gesture: How Our Hands Help Us Think. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Gonçalves, B., Perra, N., and Vespignani, A. (2011). Modeling users’ activity on twitter networks: Validation of Dunbar’s number. PloS One, 6(8), e22656.CrossRefGoogle ScholarPubMed
González-Perilli, F., and Ellis, R. (2015). I don’t get you: Action observation effects inverted by kinematic variation. Acta Psychologica, 157, 114121.10.1016/j.actpsy.2015.02.010CrossRefGoogle ScholarPubMed
Goodale, M. A., and Graves, J. A. (1982). Retinal locus as a factor in interocular transfer in the pigeon. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior (pp. 211240). Cambridge, MA: MIT Press.Google Scholar
Goodale, M. A., and Humphrey, G. K. (1998). The objects of action and perception. Cognition, 67(1–2), 181207.10.1016/S0010-0277(98)00017-1CrossRefGoogle ScholarPubMed
Goodale, M. A., Milner, A. D., Jakobson, L. S., and Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154156.10.1038/349154a0CrossRefGoogle Scholar
Goslin, J., Dixon, T., Fischer, M. H., Cangelosi, A., and Ellis, R. (2012). Electrophysiological examination of embodiment in vision and action. Psychological Science, 23(2), 152157.10.1177/0956797611429578CrossRefGoogle ScholarPubMed
Gould, S. J., and Vrba, E. S. (1982). Exaptation – A missing term in the science of form. Paleobiology, 8(01), 415.10.1017/S0094837300004310CrossRefGoogle Scholar
Grafton, S. T. (2010). The cognitive neuroscience of prehension: Recent developments. Experimental Brain Research, 204(4), 475491.10.1007/s00221-010-2315-2CrossRefGoogle ScholarPubMed
Greenfield, P., Andreae, J., Ryan, S., Pepperbert, I., Westergaaard, G., and Pinon, P (1994). Language, tools and brain: The ontogeny and phylogeny of hierarchically organized sequential behavior. Behavioral and Brain Sciences, 17(2), 357365.Google Scholar
Greenfield, P. M. (1991). From hand to mouth. Behavioral and Brain Sciences, 14(04), 577595.10.1017/S0140525X0007148XCrossRefGoogle Scholar
Greenfield, P. M. (1998). Language, tools, and brain revisited. Behavioral and Brain Sciences, 21(01), 159163.10.1017/S0140525X98230962CrossRefGoogle Scholar
Grèzes, J., Costes, N., and Decety, J. (1998). Top down effect of strategy on the perception of human biological motion: A PET investigation. Cognitive Neuropsychology, 15(6–8), 553582.10.1080/026432998381023CrossRefGoogle Scholar
Guan, C. Q., Meng, W., Yao, R., and Glenberg, A. M. (2013). The motor system contributes to comprehension of abstract language. PloS One, 8(9), e75183.10.1371/journal.pone.0075183CrossRefGoogle ScholarPubMed
Guiard, Y. (1987). Asymmetric division of labor in human skilled bimanual action: The kinematic chain as a model. Journal of Motor Behavior, 19(4), 486517.10.1080/00222895.1987.10735426CrossRefGoogle Scholar
Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9(9), 416423.10.1016/j.tics.2005.07.004CrossRefGoogle Scholar
Halligan, P. W., Fink, G. R., Marshall, J. C., and Vallar, G. (2003). Spatial cognition: Evidence from visual neglect. Trends in Cognitive Sciences, 7(3), 125133.10.1016/S1364-6613(03)00032-9CrossRefGoogle ScholarPubMed
Halligan, P. W., and Marshall, J. C. (1991). Left neglect for near but not far space in man. Nature, 350(6318), 498500.10.1038/350498a0CrossRefGoogle Scholar
Handy, T. C., and Mangun, G. R. (2000). Attention and spatial selection: Electrophysiological evidence for modulation by perceptual load. Perception and Psychophysics, 62, 175186.10.3758/BF03212070CrossRefGoogle ScholarPubMed
Hauser, M. D., Chomsky, N., and Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 15691579.10.1126/science.298.5598.1569CrossRefGoogle ScholarPubMed
Hecht, E. E., Gutman, D. A., Khreisheh, N., Taylor, S. V., Kilner, J., Faisal, A. A., Bradley, B. A., Chaminade, T., and Stout, D. B. (2014). Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Structure and Function, 220, 23152331.10.1007/s00429-014-0789-6CrossRefGoogle ScholarPubMed
Heft, H. (2003). Affordances, dynamic experience, and the challenge of reification. Ecological Psychology, 15(2), 149180.10.1207/S15326969ECO1502_4CrossRefGoogle Scholar
Heidegger, M. (1962 [1927]). Being and Time. Trans. John Macquarrie and Edward Robinson. New York: Harper.Google Scholar
Helmholtz, H. von. (1860). Theorie der Luftschwingungen in Röhren mit offenen Enden. Journal Für Die Reine Und Angewandte Mathematik, 57, 172.Google Scholar
Henrich, J., Heine, S. J., and Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183.10.1017/S0140525X0999152XCrossRefGoogle ScholarPubMed
Hinton, G. (2014). Where do features come from? Cognitive Science, 38(6), 10781101.10.1111/cogs.12049CrossRefGoogle ScholarPubMed
Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The ‘wake–sleep’ algorithm for unsupervised neural networks. Science, 268(5214), 11581161.10.1126/science.7761831CrossRefGoogle ScholarPubMed
Hinton, G. E., and Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, 1(3), 495502.Google Scholar
Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 15271554.10.1162/neco.2006.18.7.1527CrossRefGoogle ScholarPubMed
Hinton, G. E., and Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In Rumelhart, D. E. and McClelland, J. L. (eds.), Parallel Distributed Processing: Explorations in Microstructures of Cognition (pp. 282317). Cambridge, MA: MIT Press.Google Scholar
Hiscock, P. (2014). Learning in lithic landscapes: A reconsideration of the hominid ‘toolmaking’ niche. Biological Theory, 9(1), 2741.10.1007/s13752-013-0158-3CrossRefGoogle Scholar
Hohwy, J. (2007). Functional Integration and the mind. Synthese, 159(3), 315328.10.1007/s11229-007-9240-3CrossRefGoogle Scholar
Hohwy, J.(2013). The Predictive Mind. Oxford: Oxford University Press.10.1093/acprof:oso/9780199682737.001.0001CrossRefGoogle Scholar
Hommel, B., Colzato, L. S., and Van Den Wildenberg, W. P. (2009). How social are task representations? Psychological Science, 20(7), 794798.10.1111/j.1467-9280.2009.02367.xCrossRefGoogle ScholarPubMed
Hudson, M., Nicholson, T., Ellis, R., and Bach, P. (2015). I see what you say: Prior knowledge of others’ goals automatically biases the perception of their actions. Cognition, 146, 245250.10.1016/j.cognition.2015.09.021CrossRefGoogle ScholarPubMed
Hudson, M., Nicholson, T., Simpson, W. A., Ellis, R., and Bach, P. (2016). One step ahead: The perceived kinematics of others’ actions are biased toward expected goals. Journal of Experimental Psychology: General, 145(1), 1.Google ScholarPubMed
Hufendiek, R. (2016). Embodied Emotions: A Naturalist Approach to a Normative Phenomenon. New York: Routledge.Google Scholar
Humphrey, N. K. (1974). Vision in a monkey without striate cortex: A case study. Perception, 3(3), 241255.10.1068/p030241CrossRefGoogle Scholar
Humphrey, N. K. and Weiskrantz, L. (1967). Vision in monkeys after removal of the striate cortex. Nature, 215, 595597.10.1038/215595a0CrossRefGoogle ScholarPubMed
Humphreys, G. W., and Riddoch, J. R. (2001). Detection by action: Neuropsychological evidence for action-defined templates in search. Nature Neuroscience, 4(1), 8488.10.1038/82940CrossRefGoogle ScholarPubMed
Humphreys, G. W., Yoon, E. Y., Kumar, S., Lestou, V., Kitadono, K., Roberts, K. L., and Riddoch, M. J. (2010). The interaction of attention and action: From seeing action to acting on perception. British Journal of Psychology, 101(2), 185206.10.1348/000712609X458927CrossRefGoogle ScholarPubMed
Hurley, S., and Chater, N. (eds.) (2005). Imitation, Human Development and Culture (Vol. 2). Cambridge, MA: MIT Press.Google Scholar
Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: MIT Press.10.7551/mitpress/1881.001.0001CrossRefGoogle Scholar
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., Rizzolatti, G., and others. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol, 3(3), e79.10.1371/journal.pbio.0030079CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., and Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528.10.1126/science.286.5449.2526CrossRefGoogle ScholarPubMed
Ingold, T. (2000). The Perception of the Environment: Essays on Livelihood, Dwelling and Skill. London and New York: Routledge.Google Scholar
Ingold, T.(2013). Making: Anthropology, Archaeology, Art and Architecture. London and New York: Routledge.10.4324/9780203559055CrossRefGoogle Scholar
Iriki, A., Tanaka, M., and Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport, 7(14), 23252330.Google ScholarPubMed
Jakobson, L. S., Archibald, Y. M., Carey, D. P., and Goodale, M. A. (1991). A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia, 29(8), 803809.10.1016/0028-3932(91)90073-HCrossRefGoogle Scholar
Jeannerod, M. (1981). Intersegmental coordination during reaching at natural visual objects. Attention and Performance IX, 9, 153168.Google Scholar
Jeannerod, M.(1988) The Neural and Behavioral Organization of Goal-Directed Movements. Oxford: Clarendon Press.Google Scholar
Kahneman, D. (2012). Thinking, Fast and Slow. New York: Penguin.Google Scholar
Kendal, J., Tehrani, J. J., and Odling-Smee, J. (2011). Human niche construction in interdisciplinary focus. Philosophical Transactions of the Royal Society B, 366, 785792.10.1098/rstb.2010.0306CrossRefGoogle ScholarPubMed
Kilner, J. M., Friston, K. J., and Frith, C. D. (2007). The mirror-neuron system: A Bayesian perspective. Neuroreport, 18(6), 619623.10.1097/WNR.0b013e3281139ed0CrossRefGoogle ScholarPubMed
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671680.10.1126/science.220.4598.671CrossRefGoogle ScholarPubMed
Kita, S. (2009). Cross-cultural variation of speech-accompanying gesture: A review. Language and Cognitive Processes, 24(2), 145167.10.1080/01690960802586188CrossRefGoogle Scholar
Kivell, T. L., Kibii, J. M., Churchill, S. E., Schmid, P., and Berger, L. R. (2011). Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science, 333(6048), 14111417.10.1126/science.1202625CrossRefGoogle ScholarPubMed
Kiverstein, J., and Wheeler, M. (2012). Heidegger and Cognitive Science. New York: Palgrave Macmillan.10.1007/978-1-137-00610-3CrossRefGoogle Scholar
Koechlin, E., and Jubault, T. (2006). Broca’s area and the hierarchical organization of human behavior. Neuron, 50(6), 963974.10.1016/j.neuron.2006.05.017CrossRefGoogle ScholarPubMed
Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., and Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297(5582), 846848.10.1126/science.1070311CrossRefGoogle ScholarPubMed
Kohler, I. (1963). The formation and transformation of the perceptual world. Psychological Issues, 3(4,Monogr. No. 12), 1173.Google Scholar
Kripke, S. A. (1980). Naming and Necessity. Oxford: Blackwell.Google Scholar
Króliczak, G., and Frey, S. H. (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex, 19(10), 23962410.CrossRefGoogle ScholarPubMed
Kuzawa, C. W., and Bragg, J. M. (2012). Plasticity in human life history strategy: Implications for contemporary human variation and the evolution of genus Homo. Current Anthropology, 53(S6), S369S382.10.1086/667410CrossRefGoogle Scholar
Lakatos, I. (1978). The Methodology of Scientific Research Programmes. London and New York: Cambridge University Press.10.1017/CBO9780511621123CrossRefGoogle Scholar
Lakoff, G., and Johnson, M. (1980). The metaphorical structure of the human conceptual system. Cognitive Science, 4(2), 195208.10.1207/s15516709cog0402_4CrossRefGoogle Scholar
Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E. and Odling-Smee, J. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of the Royal Society B, 282, http://rspb.royalsocietypublishing.org/content/282/1813/20151019Google ScholarPubMed
Laland, K., Uller, T., Feldman, M., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., Odling-Smee, J., Wray, G. A., Hoekstra, H. E., Futuyma, D. J., Lenski, R. E., Mackay, T. F., Schluter, D., and Strassmann, J. E. (2014). Does evolutionary theory need a rethink? Nature, 514(7521), 161.10.1038/514161aCrossRefGoogle Scholar
Latour, B. (1999). Pandora’s Hope: Essays on the Reality of Science Studies. Cambridge, MA: Harvard University Press.Google Scholar
Latour, B.(2005). Reassembling the Social: An Introduction to Actor-Network-Theory. Oxford: Oxford university press.10.1093/oso/9780199256044.001.0001CrossRefGoogle Scholar
Latour, B.(2007). Can we get our materialism back, please? Isis, 98(1), 138142.10.1086/512837CrossRefGoogle Scholar
Leakey, M. D. (1971). Olduvai Gorge, vol. 3. Cambridge: Cambridge University Press.Google Scholar
Leavens, D. A., and Hopkins, W. D. (2005). Multimodal concomitants of manual gesture by chimpanzees (Pan troglodytes): Influence of food size and distance. Gesture, 5(1), 7590.Google Scholar
Leroi-Gourhan, A. (1993). Gesture and Speech. Cambridge, MA: MIT Press.Google Scholar
Levin, T. L., and Simons, D. J. (1997). Failure to detect changes to attended objects in motion pictures. Psychonomic Bulletin and Review, 4(4), 501506.10.3758/BF03214339CrossRefGoogle Scholar
Leyton, A. S., and Sherrington, C. S. (1917). Observations on the excitable cortex of the chimpanzee, orang-utan and gorilla. Quarterly Journal of Experimental Physiology, 11(2), 135222.CrossRefGoogle Scholar
Liberman, A. M., and Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 136.10.1016/0010-0277(85)90021-6CrossRefGoogle ScholarPubMed
Linell, P. (2004). The Written Language Bias in Linguistics: Its Nature, Origins and Transformations. London and New York: Routledge.10.4324/9780203342763CrossRefGoogle Scholar
Liszkowski, U., Carpenter, M., Striano, T., and Tomasello, M. (2006). 12- and 18-month-olds point to provide information for others. Journal of Cognition and Development, 7(2), 173187.10.1207/s15327647jcd0702_2CrossRefGoogle Scholar
Lotto, A. J., Hickok, G. S., and Holt, L. L. (2009). Reflections on mirror neurons and speech perception. Trends in Cognitive Sciences, 13(4), 110114.10.1016/j.tics.2008.11.008CrossRefGoogle ScholarPubMed
McBride, J., Sumner, P., Jackson, S. R., Bajaj, N., and Husain, M. (2013). Exaggerated object affordance and absent automatic inhibition in alien hand syndrome. Cortex, 49(8), 20402054.10.1016/j.cortex.2013.01.004CrossRefGoogle ScholarPubMed
McConkie, G. W., and Currie, C. B. (1996). Visual stability across saccades while viewing complex pictures. Journal of Experimental Psychology: Human Perception and Performance, 22(3), 563.Google ScholarPubMed
McLeod, P., Plunkett, K., and Rolls, E. T. (1998). Introduction to Connectionist Modelling of Cognitive Processes. Oxford: Oxford University Press.Google Scholar
MacGregor, N. (2011). A History of the World in 100 Objects. New York: Penguin.Google Scholar
McNair, N. A., Behrens, A. D., and Harris, I. M. (2017). Automatic recruitment of the motor system by undetected graspable objects: A motor-evoked potential study. Journal of Cognitive Neuroscience, 29(11), 19181931.10.1162/jocn_a_01165CrossRefGoogle ScholarPubMed
Malafouris, L., and Renfrew, C. (2010). The Cognitive Life of Things: Recasting the Boundaries of the Mind. Cambridge: McDonald Institute for Archaeological Research.Google Scholar
Manera, V., Becchio, C., Cavallo, A., Sartori, L., and Castiello, U. (2011). Cooperation or competition? Discriminating between social intentions by observing prehensile movements. Experimental Brain Research, 211(3–4), 547556.10.1007/s00221-011-2649-4CrossRefGoogle ScholarPubMed
Mangun, G. R., and Hillyard, S. A. (1995). Mechanisms and models of selective attention. In Rugg, M. D. and Coles, M. G. H. (eds.), Electrophysiology of Mind: Event-related Brain Potentials and Cognition (pp. 4085). New York: Oxford University Press.Google Scholar
Mark, L. S. (1987). Eyeheight-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 361370.Google ScholarPubMed
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: WH Freeman.Google Scholar
Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., and Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology/Revue canadienne de psychologie, 41(3), 365.10.1037/h0084157CrossRefGoogle ScholarPubMed
Marx, K., and Engels, F. (1970. The German Ideology. London: Lawrence & Wishart.Google Scholar
Marzke, M. W. (2013). Tool making, hand morphology and fossil hominins. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1630), https://europepmc.org/abstract/med/2410162410.1098/rstb.2012.0414CrossRefGoogle ScholarPubMed
Marzke, M. W., and Shackley, M. S. (1986). Hominid hand use in the Pliocene and Pleistocene: Evidence from experimental archaeology and comparative morphology. Journal of Human Evolution, 15(6), 439460.10.1016/S0047-2484(86)80027-6CrossRefGoogle Scholar
Mauss, M. (2006). Techniques, Technology and Civilization. Oxford: Berghahn.Google Scholar
Meltzoff, A. N. (1988). Infant imitation after a 1-week delay: Long-term memory for novel acts and multiple stimuli. Developmental Psychology, 24(4), 470.10.1037/0012-1649.24.4.470CrossRefGoogle ScholarPubMed
Meltzoff, A. N.(1990). Foundations for developing a concept of self: The role of imitation in relating self to other and the value of social mirroring, social modeling, and self practice in infancy. In Cicchetti, D. and Beeghly, M. (eds.), The John D. and Catherine T. MacArthur Foundation Series on Mental Health and Development. The Self in Transition: Infancy to Childhood (pp. 139164). Chicago: University of Chicago Press.Google Scholar
Meltzoff, A. N.(2005). Imitation and other minds: The ‘like me’ hypothesis. Perspectives on Imitation: From Neuroscience to Social Science, 2, 5577.Google Scholar
Meltzoff, A. N., and Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 7578.10.1126/science.198.4312.75CrossRefGoogle ScholarPubMed
Merleau-Ponty, M. (1967). The Structure of Behavior. Boston, MA: Beacon Press.Google Scholar
Merleau-Ponty, M.(1968). The Visible and the Invisible. Evanston, IL: Northwestern University Press.Google Scholar
Merleau-Ponty, M.(2002). Phenomenology of Perception. London and New York: Routledge.10.4324/9780203994610CrossRefGoogle Scholar
Messud, C. (2017). Matisse: The joy of things. New York Review of Books, 20 June, www.nybooks.com/daily/2017/06/20/matisse-the-joy-of-thingsGoogle Scholar
Michaels, C. F. (2003). Affordances: Four points of debate. Ecological Psychology, 15(2), 135148.10.1207/S15326969ECO1502_3CrossRefGoogle Scholar
Miller, D. (1987). Material Culture and Mass Consumption. New York: Basil Blackwell.Google Scholar
Miller, D.(2005). Materiality. Durham, NC: Duke University Press.Google Scholar
Milner, D., and Goodale, M. (2006). The Visual Brain in Action. Oxford: Oxford University Press.10.1093/acprof:oso/9780198524724.001.0001CrossRefGoogle Scholar
Mishkin, M., Ungerleider, L. G., and Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414417.10.1016/0166-2236(83)90190-XCrossRefGoogle Scholar
Molenberghs, P., Cunnington, R., and Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36(1), 341349.10.1016/j.neubiorev.2011.07.004CrossRefGoogle ScholarPubMed
Moll, H., Richter, N., Carpenter, M., and Tomasello, M. (2008). Fourteen-month-olds know what ‘we’ have shared in a special way. Infancy, 13(1), 90101.10.1080/15250000701779402CrossRefGoogle Scholar
Moll, H., and Tomasello, M. (2007). Cooperation and human cognition: The Vygotskian intelligence hypothesis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1480), 639648.10.1098/rstb.2006.2000CrossRefGoogle ScholarPubMed
Morgan, T. J. H., Uomini, N. T., Rendell, L. E., Chouinard-Thuly, L., Street, S. E., Lewis, H. M., Cross, C. P., Evans, C., Kearney, I., de la Torre, A., Whiten, A., and Laland, K. N. (2015). Experimental evidence for the co-evolution of hominin tool-making teaching and language. Nature Communications, 6, 6029.10.1038/ncomms7029CrossRefGoogle ScholarPubMed
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., and Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20(8), 750756.10.1016/j.cub.2010.02.045CrossRefGoogle ScholarPubMed
Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., and Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of Neurophysiology, 78(4), 22262230.10.1152/jn.1997.78.4.2226CrossRefGoogle ScholarPubMed
Nagell, K., Olguin, R., and Tomasello, M. (1993). Processes of social-learning in the tool use of chimpanzees (Pan troglodytes) and human children (Homo sapiens). Journal of Comparative Psychology, 107(2), 174186.10.1037/0735-7036.107.2.174CrossRefGoogle ScholarPubMed
Naish, K. R., Reader, A. T., Houston-Price, C., Bremner, A. J., and Holmes, N. P. (2013). To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences. Experimental Brain Research, 225(2), 261275.10.1007/s00221-012-3367-2CrossRefGoogle Scholar
Napier, J. R., and Tuttle, R. (1993). Hands. Princeton, NJ: Princeton University Press.10.1515/9781400845910CrossRefGoogle Scholar
Neidle, C. J. (2000). The Syntax of American Sign Language: Functional Categories and Hierarchical Structure. Cambridge, MA: MIT Press.Google Scholar
Neisser, U. (1994). Multiple systems: A new approach to cognitive theory. European Journal of Cognitive Psychology, 6, 225241.CrossRefGoogle Scholar
Newell, A. (1980). Physical symbol systems. Cognitive Science, 4(2), 135183.Google Scholar
Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., and Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10(7), 817818.10.1038/nn1911CrossRefGoogle ScholarPubMed
Newman-Norlund, R. D., Bosga, J., Meulenbroek, R. G. J., and Bekkering, H. (2008). Anatomical substrates of cooperative joint-action in a continuous motor task: Virtual lifting and balancing. Neuroimage, 41(1), 169177.10.1016/j.neuroimage.2008.02.026CrossRefGoogle Scholar
Nisbett, R. E., and Masuda, T. (2003). Culture and point of view. Proceedings of the National Academy of Sciences, 100(19), 1116311170.CrossRefGoogle ScholarPubMed
Nisbett, R. E., Peng, K., Choi, I., and Norenzayan, A. (2001). Culture and systems of thought: Holistic versus analytic cognition. Psychological Review, 108(2), 291.10.1037/0033-295X.108.2.291CrossRefGoogle ScholarPubMed
Noë, A. (2004). Action in Perception. Cambridge, MA: MIT Press.Google Scholar
Noë, A.(2010). Vision without representation. In Gangopadhyay, N., Madary, M. and Spicer, F. (eds.), Perception, Action, and Consciousness: Sensorimotor Dynamics and Two Visual Systems (pp. 245256). Oxford and New York: Oxford University Press.10.1093/acprof:oso/9780199551118.003.0013CrossRefGoogle Scholar
Norman, J. (2002). Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. Behavioral and Brain Sciences, 25(01), 7396.10.1017/S0140525X0200002XCrossRefGoogle ScholarPubMed
O’Connell, J. F., Hawkes, K., and Jones, N. B. (1999). Grandmothering and the evolution of Homo erectus. Journal of Human Evolution, 36(5), 461485.10.1006/jhev.1998.0285CrossRefGoogle ScholarPubMed
Odling-Smee, F. J., Laland, K. N., and Feldman, M. W. (2003). Niche Construction: The Neglected Process in Evolution. Princeton, NJ: Princeton University Press.Google Scholar
Orban, G. A., Claeys, K., Nelissen, K., Smans, R., Sunaert, S., Todd, J. T., Wardak, C., Durand, J., and Vanduffel, W. (2006). Mapping the parietal cortex of human and non-human primates. Neuropsychologia, 44(13), 26472667.10.1016/j.neuropsychologia.2005.11.001CrossRefGoogle ScholarPubMed
O’Regan, J. K., and Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(05), 939973.10.1017/S0140525X01000115CrossRefGoogle ScholarPubMed
O’Regan, J. K., Rensink, R. A., and Clark, J. J. (1999). Change-blindness as a result of ‘mudsplashes’. Nature, 398, 3434.CrossRefGoogle ScholarPubMed
Özçalışkan, Ş., Lucero, C., and Goldin-Meadow, S. (2016). Is seeing gesture necessary to gesture like a native speaker? Psychological Science, 27, 737747.CrossRefGoogle Scholar
Pascual-Leone, A., Amedi, A., Fregni, F., and Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377401.10.1146/annurev.neuro.27.070203.144216CrossRefGoogle ScholarPubMed
Pelegrin, J. (2005). Remarks about archaeological techniques and methods of knapping: Elements of a cognitive approach to stone knapping. Stone Knapping: The Necessary Condition for a Uniquely Hominid Behaviour, 23–33.Google Scholar
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180.10.1007/BF00230027CrossRefGoogle ScholarPubMed
Penfield, W., and Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60(4), 389443.10.1093/brain/60.4.389CrossRefGoogle Scholar
Perenin, M.-T., and Vighetto, A. (1988). Optic ataxia: A specific disruption in visuomotor mechanisms. Brain, 111(3), 643674.10.1093/brain/111.3.643CrossRefGoogle ScholarPubMed
Perry, C. J., Amarasooriya, P., and Fallah, M. (2016). An eye in the palm of your hand: Alterations in visual processing near the hand, a mini-review. Frontiers in Computational Neuroscience, 10, 37.10.3389/fncom.2016.00037CrossRefGoogle ScholarPubMed
Pinker, S. (1995). The Language Instinct: The New Science of Language and Mind. London: Penguin.Google Scholar
Pinker, S., and Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95(20), 201236.10.1016/j.cognition.2004.08.004CrossRefGoogle Scholar
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Science, 10(2), 5963.10.1016/j.tics.2005.12.004CrossRefGoogle ScholarPubMed
Previc, F. H. (1990). Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behavioral and Brain Sciences, 13(03), 519542.10.1017/S0140525X00080018CrossRefGoogle Scholar
Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6(7), 576582.10.1038/nrn1706CrossRefGoogle ScholarPubMed
Pulvermüller, F., and Fadiga, L. (2010). Active perception: sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience, 11(5), 351360.10.1038/nrn2811CrossRefGoogle ScholarPubMed
Ramenzoni, V. C., and Liszkowski, U. (2016). The social reach 8-month-olds reach for unobtainable objects in the presence of another person. Psychological Science, 27(9), 12781285.10.1177/0956797616659938CrossRefGoogle ScholarPubMed
Rao, R. P. N., and Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive field effects. Nature Neuroscience, 2(1), 7987.10.1038/4580CrossRefGoogle ScholarPubMed
Reed, E. S. (1996). Encountering the World: Toward an Ecological Psychology. New York: Oxford University Press.Google Scholar
Renfrew, C. (1996). The sapient behaviour paradox: how to test for potential. Modelling the Early Human Mind, 11–14.Google Scholar
Renfrew, C.(2008). Neuroscience, evolution and the sapient paradox: The factuality of value and of the sacred. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1499), 20412047.10.1098/rstb.2008.0010CrossRefGoogle ScholarPubMed
Rensink, R. A., O’Regan, J. K., and Clark, J. L. 1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8(5), 368373.10.1111/j.1467-9280.1997.tb00427.xCrossRefGoogle Scholar
Riddoch, M. J., Edwards, M. G., Humphreys, G. W., West, R., and Heafield, T. (1998). Visual affordances direct action: Neuropsychological evidence from manual interference. Cognitive Neuropsychology, 15(6–8), 645683.CrossRefGoogle ScholarPubMed
Rizzolatti, G., and Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188194.10.1016/S0166-2236(98)01260-0CrossRefGoogle ScholarPubMed
Rizzolatti, G., and Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.10.1146/annurev.neuro.27.070203.144230CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141.10.1016/0926-6410(95)00038-0CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., and Fazio, F. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111(2), 246252.10.1007/BF00227301CrossRefGoogle ScholarPubMed
Rizzolatti, G., Gentilucci, M., and Matelli, M. (1985). Selective spatial attention: One center, one circuit or many circuits? In Posner, M. and Marin, O. S. M. (eds.), Attention and Performance XI (pp. 251265). Hillsdale, NJ: Earlsbaum.Google Scholar
Rizzolatti, G., and Matelli, M. (2003). Two different streams form the dorsal visual system: Anatomy and functions. Experimental Brain Research, 153(2), 146157.10.1007/s00221-003-1588-0CrossRefGoogle ScholarPubMed
Rizzolatti, G., Matelli, M., and Pavesi, G. (1983). Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain, 106(3), 655673.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Scandolara, C., Matelli, M., and Gentilucci, M. (1981). Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behavioural Brain Research, 2(2), 147163.10.1016/0166-4328(81)90053-XCrossRefGoogle ScholarPubMed
Rizzolatti, G., and Sinigaglia, C. (2008). Mirrors in the Brain. Oxford: Oxford University Press.Google Scholar
Rizzolatti, G., and Sinigaglia, C.(2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264274.10.1038/nrn2805CrossRefGoogle ScholarPubMed
Rochat, P., Goubet, N., and Senders, S. J. (1999). To reach or not to reach? Perception of body effectivities by young infants. Infant and Child Development, 8(3), 129148.10.1002/(SICI)1522-7219(199909)8:3<129::AID-ICD193>3.0.CO;2-G3.0.CO;2-G>CrossRefGoogle Scholar
Rosenbaum, D. A., Vaughan, J., Barnes, H. J., and Jorgensen, M. J. (1992). Time course of movement planning: Selection of handgrips for object manipulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 1058.Google ScholarPubMed
Rumelhart, D. E., Smolensky, P., McClelland, J. L., and Hinton, G. E. (1986). Schemata and sequential thought processes in PDP models. In Parallel Distributed Processing: Explorations in the Microstructure, Vol. 2: Psychological and Biological Models (ch. 14). Cambridge, MA: MIT Press.Google Scholar
Sampaio, M., and Bach-y-Rita, P. (2001). Brain plasticity: ‘Visual’ acuity of blind persons via the tongue. Brain Research, 908, 204207.10.1016/S0006-8993(01)02667-1CrossRefGoogle ScholarPubMed
Sartori, L., Becchio, C., and Castiello, U. (2011). Cues to intention: The role of movement information. Cognition, 119(2), 242252.10.1016/j.cognition.2011.01.014CrossRefGoogle ScholarPubMed
Schick, K. D., Toth, N., Garufi, G., Savage-Rumbaugh, E. S., Rumbaugh, D., and Sevcik, R. (1999). Continuing investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). Journal of Archaeological Science, 26(7), 821832.10.1006/jasc.1998.0350CrossRefGoogle Scholar
Schmidt, R. C., Carello, C., and Turvey, M. T. (1990). Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 227.Google ScholarPubMed
Schnall, S., Zadra, J. R., and Proffitt, D. R. (2010). Direct evidence for the economy of action: Glucose and the perception of geographical slant. Perception, 39(4), 464482.10.1068/p6445CrossRefGoogle ScholarPubMed
Schütz-Bosbach, S., Haggard, P., Fadiga, L., and Craighero, L. (2008). Motor cognition: TMS studies of action generation. In Epstein, C. M., Wassermann, E. M., and Ziemann, U. (eds.), Oxford Handbook of Transcranial Stimulation (pp. 463478). Oxford: Oxford University Press.Google Scholar
Searle, J. (1980). Minds, brains and programs. Behavioral and brain sciences, 3, 417424.10.1017/S0140525X00005756CrossRefGoogle Scholar
Searle, J.(1989). Artificial intelligence and the Chinese room: An exchange. New York Review of Books, 36, 2.Google Scholar
Sebanz, N., Knoblich, G., and Prinz, W. (2003). Representing others’ actions: Just like one’s own? Cognition, 88(3), B11B21.10.1016/S0010-0277(03)00043-XCrossRefGoogle ScholarPubMed
Sebanz, N., Knoblich, G., Prinz, W., and Wascher, E. (2006). Twin peaks: An ERP study of action planning and control in coacting individuals. Journal of Cognitive Neuroscience, 18(5), 859870.10.1162/jocn.2006.18.5.859CrossRefGoogle ScholarPubMed
Senior, C., Ward, J., and David, A. S. (2002). Representational momentum and the brain: An investigation into the functional necessity of V5/MT. Visual Cognition, 9(1–2), 8192.10.1080/13506280143000331CrossRefGoogle Scholar
Shapiro, K. L., Raymond, J. E., and Arnell, K. M. (1997). The attentional blink. Trends in Cognitive Science, 1(8), 291296.10.1016/S1364-6613(97)01094-2CrossRefGoogle ScholarPubMed
Shockley, K., Santana, M.-V., and Fowler, C. A. (2003). Mutual interpersonal postural constraints are involved in cooperative conversation. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 326.Google ScholarPubMed
Simons, D. J., and Levin, T. L. (1997). Change blindness. Trends in Cognitive Science, 7(1), 261267.10.1016/S1364-6613(97)01080-2CrossRefGoogle Scholar
Simons, D. J., and Rensink, R. A. (2005). Change blindness: Past, present and future. Trends in Cognitive Science, 9(1), 1620.10.1016/j.tics.2004.11.006CrossRefGoogle ScholarPubMed
Smith, B. H., and Tompkins, R. L. (1995). Toward a life history of the Hominidae. Annual Review of Anthropology, 24(1), 257279.10.1146/annurev.an.24.100195.001353CrossRefGoogle Scholar
Smith, L. B., and Thelen, E. (2003). Development as a dynamic system. Trends in Cognitive Sciences, 7(8), 343348.10.1016/S1364-6613(03)00156-6CrossRefGoogle ScholarPubMed
Spence, C., Pavani, F., Maravita, A., and Holmes, N. (2004). Multisensory contributions to the 3-D representation of visuotactile peripersonal space in humans: Evidence from the crossmodal congruency task. Journal of Physiology-Paris, 98(1), 171189.10.1016/j.jphysparis.2004.03.008CrossRefGoogle Scholar
Spivey, M., Tyler, M., Richardson, D., and Young, E. (2000). Eye movements during comprehension of spoken scene descriptions. In Proceedings of the 22nd Annual Conference of the Cognitive Science Society. https://escholarship.org/uc/item/7z34j8zwGoogle Scholar
Sporns, O., and Edelman, G. M. (1993). Solving Bernstein’s problem: A proposal for the development of coordinated movement by selection. Child Development, 64(4), 960981.10.2307/1131321CrossRefGoogle ScholarPubMed
Steele, J., and Uomini, N. (2005). Humans, tools and handedness. In Roux, V. and Bril, B. (eds.), Stone Knapping: The Necessary Conditions for a Uniquely Hominin Behaviour (pp. 217239). Cambridge: McDonald Institute for Archaeological Research.Google Scholar
Sterelny, K. (2011). From hominins to humans: How sapiens became behaviourally modern. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1566), 809822.10.1098/rstb.2010.0301CrossRefGoogle ScholarPubMed
Sterelny, K., and Hiscock, P. (2014). Symbols, signals, and the archaeological record. Biological Theory, 9(1), 13.10.1007/s13752-013-0154-7CrossRefGoogle Scholar
Stokoe, W. C. (2001). Language in Hand: Why Sign Came before Speech. Washington, DC: Gallaudet University Press.Google Scholar
Stokoe, W. C.(2005). Sign language structure: An outline of the visual communication systems of the American deaf. Journal of Deaf Studies and Deaf Education, 10(1), 337.10.1093/deafed/eni001CrossRefGoogle ScholarPubMed
Stout, D. (2011). Stone toolmaking and the evolution of human culture and cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), 10501059.10.1098/rstb.2010.0369CrossRefGoogle ScholarPubMed
Stout, D., and Chaminade, T. (2007). The evolutionary neuroscience of tool making. Neuropsychologia, 45(5), 10911100.10.1016/j.neuropsychologia.2006.09.014CrossRefGoogle ScholarPubMed
Stout, D., Toth, N., Schick, K., and Chaminade, T. (2008). Neural correlates of Early Stone Age toolmaking: Technology, language and cognition in human evolution. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1499), 19391949.10.1098/rstb.2008.0001CrossRefGoogle ScholarPubMed
Strogatz, S. H., Abrams, D. M., McRobie, A., Eckhardt, B., and Ott, E. (2005). Theoretical mechanics: Crowd synchrony on the Millennium Bridge. Nature, 438(7064), 4344.CrossRefGoogle ScholarPubMed
Symes, E., Tucker, M., Ellis, R., Vainio, L., and Ottoboni, G. (2008). Grasp preparation improves change detection for congruent objects. Journal of Experimental Psychology: Human Perception and Performance, 34(4), 854.Google ScholarPubMed
Tarr, B., Launay, J., Cohen, E., and Dunbar, R. (2015). Synchrony and exertion during dance independently raise pain threshold and encourage social bonding. Biology Letters, 11(10), 20150767.10.1098/rsbl.2015.0767CrossRefGoogle ScholarPubMed
Tennie, C., Call, J., and Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 24052415.10.1098/rstb.2009.0052CrossRefGoogle ScholarPubMed
Thomas, L. E. (2013). Grasp posture modulates attentional prioritization of space near the hands. Frontiers in Psychology, 4, 312.10.3389/fpsyg.2013.00312CrossRefGoogle ScholarPubMed
Thomsen, M.-L. (1984). The Sumerian Language: An Introduction to Its History and Grammatical Structure (vol. 10). Copenhagen: Akademisk forlag.Google Scholar
Tomasello, M. (1996). Do apes ape? In Heyes, C. M. and Galef, B. J. (eds.), Social Learning in Animals: The Roots of Culture (pp. 319346). London: Academic Press.10.1016/B978-012273965-1/50016-9CrossRefGoogle Scholar
Tomasello, M. and Carpenter, M. (2007). Shared intentionality. Developmental Science, 10(1), 121125.10.1111/j.1467-7687.2007.00573.xCrossRefGoogle ScholarPubMed
Tomasello, M., Carpenter, M., Call, J., Behne, T., and Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(05), 675691.CrossRefGoogle ScholarPubMed
Tomasello, M., and Haberl, K. (2003). Understanding attention: 12- and 18-month-olds know what is new for other persons. Developmental Psychology, 39(5), 906.10.1037/0012-1649.39.5.906CrossRefGoogle ScholarPubMed
Tomasello, M., Kruger, A. C., and Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16(03), 495511.10.1017/S0140525X0003123XCrossRefGoogle Scholar
Toth, N. (1985). Archaeological evidence for preferential right-handedness in the Lower and Middle Pleistocene, and its possible implications. Journal of Human Evolution, 14(6), 607614.10.1016/S0047-2484(85)80087-7CrossRefGoogle Scholar
Trevarthen, C. B. (1968). Two mechanisms of vision in primates. Psychologische Forschung, 31(4), 299337.10.1007/BF00422717CrossRefGoogle ScholarPubMed
Triesch, J., Ballard, D. H., Hayhoe, M. M., and Sullivan, B. T. (2003). What you see is what you need. Journal of Vision, 3(9), 8694.10.1167/3.1.9CrossRefGoogle ScholarPubMed
Tucker, M., and Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830846.Google ScholarPubMed
Tucker, M., and Ellis, R.(2004). Action priming by briefly presented objects. Acta Psychologica, 116(2), 185203.10.1016/j.actpsy.2004.01.004CrossRefGoogle ScholarPubMed
Turvey, M. T. (1992). Affordances and prospective control: An outline of the ontology. Ecological Psychology, 4(3), 173187.10.1207/s15326969eco0403_3CrossRefGoogle Scholar
Turvey, M. T., Shaw, R. E., Reed, E. S., and Mace, W. M. (1981). Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition, 9(3), 237304.10.1016/0010-0277(81)90002-0CrossRefGoogle ScholarPubMed
Ungerleider, L. G., and Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior (pp. 549586). Cambridge, MA: MIT Press.Google Scholar
Ullman, S. (1980). Against direct perception. Behavioral and Brain Sciences, 3, 378381.10.1017/S0140525X0000546XCrossRefGoogle Scholar
Umilta, M.A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., and Rizzolatti, G. (2001). I know what you are doing: A neurophysiological study. Neuron, 31(10, 155165.CrossRefGoogle Scholar
Uskul, A. K., Kitayama, S., and Nisbett, R. E. (2008). Ecocultural basis of cognition: Farmers and fishermen are more holistic than herders. Proceedings of the National Academy of Sciences, 105(25), 85528556.10.1073/pnas.0803874105CrossRefGoogle ScholarPubMed
Vainio, L., Symes, E., Ellis, R., Tucker, M., and Ottoboni, G. (2008). On the relations between action planning, object identification, and motor representations of observed actions and objects. Cognition, 108(2), 444465.10.1016/j.cognition.2008.03.007CrossRefGoogle ScholarPubMed
Vainio, L., Tiainen, M., Tiippana, K., Komeilipoor, N., and Vainio, M. (2015). Interaction in planning movement direction for articulatory gestures and manual actions. Experimental Brain Research, 233(10), 29512959.10.1007/s00221-015-4365-yCrossRefGoogle ScholarPubMed
Vainio, L., Schulman, M., Tiippana, K., and Vainio, M. (2013). Effect of syllable articulation on precision and power grip performance. PLOS one. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.005306110.1371/journal.pone.0053061CrossRefGoogle Scholar
Varela, F. J., Rosch, E., and Thompson, E. (1992). The Embodied Mind: Cognitive Science and Human Experience. Cambridge, MA: MIT Press.Google Scholar
Vuilleumier, P., Valenza, N., Mayer, E., Reverdin, A., and Landis, T. (1998). Near and far visual space in unilateral neglect. Annals of Neurology, 43(3), 406410.10.1002/ana.410430324CrossRefGoogle ScholarPubMed
Vygotsky, L. S. (1967). Play and its role in the mental development of the child. Soviet Psychology, 5(3), 618.10.2753/RPO1061-040505036CrossRefGoogle Scholar
Vygotsky, L. S.(2012). Thought and Language. Cambridge, MA: MIT Press.Google Scholar
Warneken, F., Chen, F., and Tomasello, M. (2006). Cooperative activities in young children and chimpanzees. Child Development, 77(3), 640663.10.1111/j.1467-8624.2006.00895.xCrossRefGoogle Scholar
Warneken, F., and Tomasello, M. (2006). Altruistic helping in human infants and young chimpanzees. Science, 311(5765), 13011303.10.1126/science.1121448CrossRefGoogle Scholar
Warren, W.H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 683703.Google ScholarPubMed
Warren, W. H. Jr., and Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 371383.Google ScholarPubMed
Waxman, S. R., Fu, X., Ferguson, B., Geraghty, K., Leddon, E., Liang, J., and Zhao, M.-F. (2016). How early is infants’ attention to objects and actions shaped by culture? New evidence from 24-month-olds raised in the US and China. Cultural Psychology, 97. https://doi.org/10.3389/fpsyg.2016.00097CrossRefGoogle Scholar
Weiskrantz, L. (2009). Blindsight: A Case Study Spanning 35 Years and New Developments. Oxford: Oxford University Press.CrossRefGoogle Scholar
Weiskrantz, L., Warrington, E. K., Sanders, M. D., and Marshall, J. (1974). Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 97(4), 709728.10.1093/brain/97.1.709CrossRefGoogle ScholarPubMed
Weiss, P. H., Marshall, J. C., Wunderlich, G., Tellmann, L., Halligan, P. W., Freund, H., Zilles, , and Fink, G. R. (2000). Neural consequences of acting in near versus far space: A physiological basis for clinical dissociations. Brain, 123(12), 25312541.CrossRefGoogle ScholarPubMed
Wheeler, M. (2013). Science friction: Phenomenology, naturalism and cognitive science. Royal Institute of Philosophy Supplement, 72, 135167.CrossRefGoogle Scholar
Whiten, A., Horner, V., and De Waal, F. B. (2005). Conformity to cultural norms of tool use in chimpanzees. Nature, 437(7059), 737740.10.1038/nature04047CrossRefGoogle ScholarPubMed
Whiten, A., McGuigan, N., Marshall-Pescini, S., and Hopper, L.M. (2009). Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee, 364(1528), 24172428.Google ScholarPubMed
Wikman, P. A., Vainio, L., and Rinne, T. (2015). The effect of precision and power grips on activations in human auditory cortex, Frontiers in Neuroscience, 9, 378.10.3389/fnins.2015.00378CrossRefGoogle ScholarPubMed
Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., Thiele, A., Griffiths, T. D., Marslen-Wilson, W. D., and Petkov, C. I. (2015). Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nature Communications, 6, 8901.10.1038/ncomms9901CrossRefGoogle ScholarPubMed
Wilson, F. R. (2010). The Hand: How Its Use Shapes The Brain, Language, and Human Culture. New York: Pantheon.Google Scholar
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9(4), 625636.10.3758/BF03196322CrossRefGoogle ScholarPubMed
Wilson, M., and Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460.10.1037/0033-2909.131.3.460CrossRefGoogle ScholarPubMed
Witt, J. K. (2011). Action’s effect on perception. Current Directions in Psychological Science, 20(3), 201206.10.1177/0963721411408770CrossRefGoogle Scholar
Witt, J. K., Proffitt, D. R., and Epstein, W. (2005). Tool use affects perceived distance, but only when you intend to use it. Journal of Experimental Psychology. Human Perception and Performance, 31(5), 880888.10.1037/0096-1523.31.5.880CrossRefGoogle ScholarPubMed
Zahavi, D. (2003). Husserl’s Phenomenology. Stanford, CA: Stanford University Press.Google Scholar
Zahavi, D.(2004). Phenomenology and the project of naturalization. Phenomenology and the Cognitive Sciences, 3(4), 331347.CrossRefGoogle Scholar

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Rob Ellis, University of Plymouth
  • Book: Bodies and Other Objects
  • Online publication: 22 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781107446809.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Rob Ellis, University of Plymouth
  • Book: Bodies and Other Objects
  • Online publication: 22 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781107446809.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Rob Ellis, University of Plymouth
  • Book: Bodies and Other Objects
  • Online publication: 22 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781107446809.009
Available formats
×