Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T22:55:13.932Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 October 2018

Rob Ellis
Affiliation:
University of Plymouth
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Bodies and Other Objects
The Sensorimotor Foundations of Cognition
, pp. 175 - 195
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, R. A., Davoli, C. C., Du, F., Knapp, W. H., and Paull, D. (2008). Altered vision near the hands. Cognition, 107(3), 10351047.Google Scholar
Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9(1), 147169.Google Scholar
Allport, D. A. (1987). Selection for action. Perspectives on Perception and Action, 15, 395419.Google Scholar
Ambrose, S. H. (2001). Paleolithic technology and human evolution. Science, 291(5509), 17481753.Google Scholar
Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149(1), 91130.CrossRefGoogle Scholar
Anderson, M. L.(2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33(4), 245266.Google Scholar
Anderson, M. L.(2014). After Phrenology. Cambridge, MA: MIT Press.Google Scholar
Ansuini, C., Cavallo, A., Bertone, C., and Becchio, C. (2014). The visible face of intention: Why kinematics matters. Frontiers in Psychology, 5.Google Scholar
Appadurai, A. (1988). The Social Life of Things: Commodities in Cultural Perspective. Cambridge: Cambridge University Press.Google Scholar
Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28(02), 105124.Google Scholar
Arbib, M. A.(2011). From mirror neurons to complex imitation in the evolution of language and tool use. Annual Review of Anthropology, 40, 257273.Google Scholar
Bach, P., Bayliss, A. P., and Tipper, S. P. (2011). The predictive mirror: Interactions of mirror and affordance processes during action observation. Psychonomic Bulletin and Review, 18(1), 171176.Google Scholar
Bach-y-Rita, P., Collins, C. C., Saunders, S. A., White, B., and Scadden, L. (1969) Vision substitution by tactile image projection. Nature, 221, 963964.Google Scholar
Bach-y-Rita, P (1972). Brain Mechanisms in Sensory Substitution. New York: Academic Press.Google Scholar
Badyaev, A. V. (2009). Evolutionary significance of phenotypic accommodation in novel environments: An empirical test of the Baldwin effect. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1520), 11251141.Google Scholar
Bak, T. H., and Hodges, J. R. (2004). The effects of motor neurone disease on language: Further evidence. Brain and Language, 89(2), 354361.Google Scholar
Baldwin, J. M. (1896). A new factor in evolution. American Naturalist, 30(354), 441451.Google Scholar
Baldwin, T. (2007). Reading Merleau-Ponty: On Phenomenology of Perception. London and New York: Routledge.CrossRefGoogle Scholar
Bangert, M., and Altenmüller, E. O. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4(1), 26.Google Scholar
Barsalou, L. W., Simmons, W. K., Barbey, A. K., and Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 8491.CrossRefGoogle ScholarPubMed
Barsalou, L. W., Solomon, K. O., and Wu, L.-L. (1999). Perceptual simulation in conceptual tasks. Amsterdam Studies in the Theory and History of Linguistic Science, Series 4, 209228.Google Scholar
Barton, R. A., and Dunbar, R. I. (1997). Evolution of the social brain. In Whiten, A. and Byrne, R. W. (eds.), Machiavellian Intelligence II: Extensions and Evaluations (pp. 240263). New York: Cambridge University Press.Google Scholar
Bartra, R. (2014). Anthropology of the Brain: Consciousness, Culture, and Free Will. Cambridge: Cambridge University Press.Google Scholar
Bassolino, M., Serino, A., Ubaldi, S., and Làdavas, E. (2010). Everyday use of the computer mouse extends peripersonal space representation. Neuropsychologia, 48(3), 803811.Google Scholar
Becchio, C., Sartori, L., Bulgheroni, M., and Castiello, U. (2008). The case of Dr. Jekyll and Mr. Hyde: A kinematic study on social intention. Consciousness and Cognition, 7(3), 557564.Google Scholar
Beer, R. D. (2014). Dynamical systems and embedded cognition. In Frankish, K. and Ramsey, W. M. (eds), The Cambridge Handbook of Artificial Intelligence (pp. 856873). New York: Cambridge University Press.Google Scholar
Behne, T., Carpenter, M., and Tomasello, M. (2014). Young children create iconic gestures to inform others. Developmental Psychology, 50(8), 20492060.CrossRefGoogle ScholarPubMed
Bernardis, P., and Gentilucci, M. (2006). Speech and gesture share the same communication system. Neuropsychologia, 44(2), 178190.Google Scholar
Berti, A., and Frassinetti, F. (2000). When far becomes near: Remapping of space by tool use. Journal of Cognitive Neuroscience, 12 (3), 415420.Google Scholar
Binkofski, F., and Buccino, G. (2004). Motor functions of the Broca’s region. Brain and Language, 89(2), 362369.Google Scholar
Biro, D., Haslam, M., and Rutz, C. (2013). Tool use as adaptation. Philosophical Transactions of the Royal Society B, 368(1630) http://rstb.royalsocietypublishing.org/content/368/1630/20120408Google Scholar
Blench, R. (2010). The sensory world: Ideophones in Africa and elsewhere. In Storch, A (ed.), Perception of the Invisible: Religion, Historical Semantics and the Role of Perceptive Verbs, Sprache und Geschichte in Afrika (pp. 275296). Cologne: Köppe.Google Scholar
Borghi, and Riggio, (2009). Sentence comprehension and simulation of objects temporary, canonical and stable affordances. Brain Research, 1253, 117128.Google Scholar
Borghi, and Riggio, (2015). Stable and variable affordances are both automatic and flexible. Frontiers in Human Neuroscience, 9, 351.Google Scholar
Bourdieu, P. (1977). Outline of a Theory of Practice. Cambridge: Cambridge University Press.Google Scholar
Bourdieu, P.(1990). The Logic of Practice. Stanford, CA: Stanford University Press.CrossRefGoogle Scholar
Brass, M., Bekkering, H., Wohlschläger, A., and Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44(2), 124143.Google Scholar
Broadbent, D. E. (2013). Perception and Communication. Oxford: Pergamon Press.Google Scholar
Brooks, R., and Meltzoff, A. N. (2002). The importance of eyes: How infants interpret adult looking behavior. Developmental Psychology, 38(6), 958.CrossRefGoogle ScholarPubMed
Brooks, R., and Meltzoff, A. N.(2005). The development of gaze following and its relation to language. Developmental Science, 8(6), 535543.Google Scholar
Brozzoli, C., Makin, T. R., Cardinali, L., Holmes, N. P., and Farnè, A. (2011). Peripersonal space: A multisensory interface for body–object interactions. In Murray, M. M. and Wallace, M. T., M. (eds.), The Neural Bases of Multisensory Processes (pp. 449466). London: Taylor and Francis.Google Scholar
Brozzoli, C., Pavani, F., Urquizar, C., Cardinali, L., and Farnè, A. (2009). Grasping actions remap peripersonal space. Neuroreport, 20(10), 913917.Google Scholar
Bruineberg, J., Kiverstein, J., and Rietveld, E. (2016). The anticipating brain is not a scientist: The free-energy principle from an ecological–enactive perspective. Synthese, 1–28.Google Scholar
Bruineberg, J., and Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599.Google Scholar
Buccino, G., and Riggio, L. (2006). The role of the mirror neuron system in motor learning. Kinesiology, 38(1), 515.Google Scholar
Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H.-J., and Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42(2), 323334.Google Scholar
Buxbaum, L. J., Sirigu, A., Schwartz, M. F., and Klatzky, R. (2003). Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia, 41(8), 10911113.Google Scholar
Caggiano, V., Fogassi, L., Rizzolatti, G., Pomper, J. K., Thier, P., Giese, M. A., and Casile, A. (2011). View-based encoding of actions in mirror neurons of area f5 in macaque premotor cortex. Current Biology, 21(2), 144148.Google Scholar
Caggiano, V., Fogassi, L., Rizzolatti, G., Thier, P., and Casile, A. (2009). Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science, 324(5925), 403406.Google Scholar
Campbell, F. W., and Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 197(3), 551566.Google Scholar
Carey, D. P., Harvey, M., and Milner, A. D. (1996). Visuomotor sensitivity for shape and orientation in a patient with visual form agnosia. Neuropsychologia, 34(5), 329337.Google Scholar
Carpenter, M., Tomasello, M., and Striano, T. (2005). Role reversal imitation and language in typically developing infants and children with autism. Infancy, 8(3), 253278.Google Scholar
Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M., and Heyes, C. (2008). Through the looking glass: Counter-mirror activation following incompatible sensorimotor learning. European Journal of Neuroscience, 28(6), 12081215.Google Scholar
Catmur, C., Walsh, V., and Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17(17), 15271531.Google Scholar
Cavallo, A., Koul, A., Ansuini, C., Capozzi, F., and Becchio, C. (2016). Decoding intentions from movement kinematics. Scientific Reports, 6.Google Scholar
Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3), 200219.Google Scholar
Chartrand, T. L., and Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893910.Google Scholar
Chen, C. C., Henson, R. N., Stephan, K. E., Kilner, J. M., and Friston, K. J. (2009). Forward and backward connections in the brain: A DCM study of functional asymmetries. NeuroImage, 45, 453462.Google Scholar
Chomsky, N. (1959). A review of B. F. Skinner’s Verbal Behavior. Language, 35(1), 2658.CrossRefGoogle Scholar
Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension. New York: Oxford University Press.Google Scholar
Clark, A.(2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(03), 181204.Google Scholar
Clark, A., and Chalmers, D. (1998). The extended mind. Analysis, 58(1), 719.Google Scholar
Clark, H. H. (1996). Using Language. Cambridge: Cambridge University Press.Google Scholar
Cook, R., Bird, G., Catmur, C., Press, C., and Heyes, C. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37(02), 177192.Google Scholar
Corballis, M. C. (2003). From mouth to hand: Gesture, speech, and the evolution of right-handedness. Behavioral and Brain Sciences, 26(02), 199208.Google Scholar
Corballis, M. C.(2010). Mirror neurons and the evolution of language. Brain and Language, 112(1), 2535.Google Scholar
Costantini, M., Ambrosini, E., Sinigaglia, C., and Gallese, V. (2011). Tool-use observation makes far objects ready-to-hand. Neuropsychologia, 49(9), 26582663.CrossRefGoogle ScholarPubMed
Costantini, M., Ambrosini, E., Tieri, G., Sinigaglia, C., and Committeri, G. (2010). Where does an object trigger an action? An investigation about affordances in space. Experimental Brain Research, 207(1–2), 95103.Google Scholar
Costantini, M., Committeri, G., and Sinigaglia, C. (2011). Ready both to your and to my hands: Mapping the action space of others. PloS One, 6(4), e17923.Google Scholar
Costantini, M., and Ferri, F. (2013). Action co-representation and social exclusion. Experimental Brain Research, 227(1), 8592.Google Scholar
Costantini, M., Frassinetti, F., Maini, M., Ambrosini, E., Gallese, V., and Sinigaglia, C. (2014). When a laser pen becomes a stick: Remapping of space by tool-use observation in hemispatial neglect. Experimental Brain Research, 232(10), 32333241.Google Scholar
Creem, S. H., and Proffitt, D. R. (2001). Grasping objects by their handles: A necessary interaction between cognition and action. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 218.Google Scholar
Csibra, G. (2008). Action mirroring and action understanding: An alternative account. Sensorimotor Foundations of Higher Cognition. Attention and Performance, 22, 435459.Google Scholar
Damasio, A. R. (2006). Descartes’ Error: Emotion, Reason and the Human Brain. New York: Penguin.Google Scholar
Davidson, I., Noble, W., Gibson, K. R., Ingold, T., and Leavens, D. A. (1993). Tools and language in human evolution. In Gibson, K. and Ingold, T. (eds.), Tools, Language, and Cognition in Human Evolution (pp. 363388). Cambridge: Cambridge University Press.Google Scholar
de Gelder, B. (2016). Emotions and the Body. New York: Oxford University Press.Google Scholar
De Vignemont, F., and Iannetti, G. D. (2015). How many peripersonal spaces? Neuropsychologia, 70, 327334.Google Scholar
Dennett, D. C. (1993). Consciousness Explained. New York: Penguin.Google Scholar
Di Paolo, E. A., and Thompson, E. (2014). The enactive approach. In Shapiro, L. (ed.), The Routledge Handbook of Embodied Cognition (pp. 6878). Oxford: Routledge.Google Scholar
Dove, G. (2014). Thinking in words: Language as an embodied medium of thought. Topics in Cognitive Science, 6(3), 371389.Google Scholar
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., and May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311312.Google Scholar
Dreyfus, H. L. (1972). What Computers Can’t Do. New York: Harper & Row.Google Scholar
Dreyfus, H. L.(1992). What Computers Still Can’t Do: A Critique of Artificial Reason. Cambridge, MA: MIT Press.Google Scholar
Dreyfus, H. L.(2002). Intelligence without representation – Merleau-Ponty’s critique of mental representation the relevance of phenomenology to scientific explanation. Phenomenology and the Cognitive Sciences, 1(4), 367383.Google Scholar
Dreyfus, H. L.(2007). Why Heideggerian AI failed and how fixing it would require making it more Heideggerian. Artificial Intelligence, 171(18), 11371160.Google Scholar
Droll, J. A., Hayhoe, M. M., Triesch, J., and Sullivan, B. T. (2005). Task demands control acquisition and storage of visual information. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 14161438.Google Scholar
Dunbar, R. I. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36(5), 562572.CrossRefGoogle ScholarPubMed
Dunbar, R. I., and Shultz, S. (2007). Understanding primate brain evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 649658.Google Scholar
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172179.Google Scholar
Duncan, J., and Owen, A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23(10), 475483.Google Scholar
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N., and Emsilie, H. (2000). A neural basis for general intelligence. Science, 289(5478), 457460.Google Scholar
Edelman, G. M. (1993). Neural Darwinism: Selection and reentrant signaling in higher brain function. Neuron, 10(2), 115125.Google Scholar
Egly, R., Driver, J., and Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology General, 123, 161177.Google Scholar
Ellis, R., and Humphreys, G. W. (1999). Connectionist Psychology: A Text with Readings. New York: Psychology Press.Google Scholar
Ellis, R., Swabey, D., Bridgeman, J., May, B., Tucker, M., and Hyne, A. (2013). Bodies and other visual objects: The dialectics of reaching toward objects. Psychological Research, 77(1), 3139.Google Scholar
Ellis, R., and Tucker, M. (2000). Micro-affordance: The potentiation of components of action by seen objects. British Journal of Psychology, 91(4), 451471.Google Scholar
Ellis, R., Tucker, M., Symes, E., and Vainio, L. (2007). Does selecting one visual object from several require inhibition of the actions associated with nonselected objects? Journal of Experimental Psychology: Human Perception and Performance, 33(3), 670691.Google Scholar
Evans, N., and Levinson, S. C. (2009). The myth of language universals: Language diversity and its importance for cognitive science. Behavioral and Brain Sciences, 32(5), 429448.CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Pavesi, G., and Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of neurophysiology, 73(6), 26082611.Google Scholar
Fazio, P., Cantagallo, A., Craighero, L., D’Ausilio, A., Roy, A. C., Pozzo, T., Fadiga, L., and others (2009). Encoding of human action in Broca’s area. Brain, 132(7), 19801988.Google Scholar
Fedorenko, E., Duncan, J., and Kanwisher, N. (2012). Language-selective and domain-general regions lie side by side within Broca’s area. Current Biology, 22(21), 20592062.Google Scholar
Fischer, M. H., and Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology, 61(6), 825850.Google Scholar
Fodor, J. A. (1975). The Language of Thought. Cambridge, MA: Harvard University Press.Google Scholar
Fodor, J. A., and Pylyshyn, Z. W. (1981). How direct is visual perception?: Some reflections on Gibson’s ‘ecological approach’. Cognition, 9(2), 139196.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., and Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662667.Google Scholar
Frey, S. H. (2007). What puts the how in where? Tool use and the divided visual streams hypothesis. Cortex, 43(3), 368375.CrossRefGoogle ScholarPubMed
Freyd, J. J., and Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 126.Google Scholar
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1456), 815836.Google Scholar
Friston, K.(2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293301.Google Scholar
Friston, K.(2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127138.Google Scholar
Friston, K.(2011). What is optimal about motor control? Neuron, 72(3), 488498.Google Scholar
Friston, K., Daunizeau, J., Kilner, J. and Kiebel, S.J. (2010). Action and behavior: A free-energy formulation. Biological cybernetics, 102(3), 227260.Google Scholar
Friston, K., Kilner, J., and Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology-Paris, 100(1), 7087.Google Scholar
Friston, K., Shiner, T., FitzGerald, T., Galea, J. M., Adams, R., Brown, H., Dolan, R. J., Moran, R., Stephan, K. E. and Bestmann, S. (2012). Dopamine, affordance and active inference. PLoS Comput Biol, 8(1), e1002327.Google Scholar
Fuentes, A. (2015). Integrative anthropology and the human niche: Toward a contemporary approach to human evolution. American Anthropologist, 117(2), 302315.Google Scholar
Gallagher, S., and Zahavi, D. (2013). The Phenomenological Mind. Oxford: Routledge.Google Scholar
Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593610.Google Scholar
Gamble, C. (2007). Origins and Revolutions: Human Identity in Earliest Prehistory. Cambridge: Cambridge University Press.Google Scholar
Gamble, C., Gowlett, J., and Dunbar, R. (2011). The social brain and the shape of the Palaeolithic. Cambridge Archaeological Journal, 21(01), 115136.Google Scholar
Garrod, S., and Pickering, M. J. (2009). Joint action, interactive alignment, and dialog. Topics in Cognitive Science, 1(2), 292304.Google Scholar
Gell, A. (1992). The technology of enchantment and the enchantment of technology. In Coote, J. and Shelton, A. (eds.), Anthropology, Art and Aesthetics (pp. 4063). Oxford: Clarendon Press.CrossRefGoogle Scholar
Gell, A.(1998). Art and Agency: An Anthropological Theory. Oxford: Oxford University Press.Google Scholar
Georgiou, I., Becchio, C., Glover, S., and Castiello, U. (2007). Different action patterns for cooperative and competitive behaviour. Cognition, 102(3), 415433.Google Scholar
Gerbault, P., Liebert, A., Itan, Y., Powell, A., Currat, M., Burger, J., Thomas, M. G., and others (2011). Evolution of lactase persistence: An example of human niche construction. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1566), 863877.Google Scholar
Geschwind, N. (1970). The organization of language and the brain. Science, 170 (3961), 940944.Google Scholar
Gibson, J. J. (2014). The Ecological Approach to Visual Perception: Classic Edition. New York and Hove: Psychology Press.Google Scholar
Gibson, K. R., Gibson, K. R., and Ingold, T. (1994). Tools, Language and Cognition in Human Evolution. Cambridge: Cambridge University Press.Google Scholar
Gindrat, A.-D., Chytiris, M., Balerna, M., Rouiller, E. M., and Ghosh, A. (2015). Use-dependent cortical processing from fingertips in touchscreen phone users. Current Biology, 25(1), 109116.Google Scholar
Gislén, A., Dacke, M., Kröger, R. H. H., Abrahamsson, M., Nisson, D. and Warrant, E. J. (2003). Superior underwater vision in a human population of sea gypsies. Current Biology, 13(10), 833836.Google Scholar
Glenberg, A. M., and Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin and Review, 9(3), 558565.Google Scholar
Godfrey-Smith, P. (2017). Senders, receivers, and symbolic artifacts. Biological Theory, 12(4), 275286.Google Scholar
Goldenberg, G., Hermsdörfer, J., Glindemann, R., Rorden, C., and Karnath, H.-O. (2007). Pantomime of tool use depends on integrity of left inferior frontal cortex. Cerebral Cortex, 17(12), 27692776.Google Scholar
Goldin-Meadow, S. (2005). Hearing Gesture: How Our Hands Help Us Think. Cambridge, MA: Harvard University Press.Google Scholar
Gonçalves, B., Perra, N., and Vespignani, A. (2011). Modeling users’ activity on twitter networks: Validation of Dunbar’s number. PloS One, 6(8), e22656.Google Scholar
González-Perilli, F., and Ellis, R. (2015). I don’t get you: Action observation effects inverted by kinematic variation. Acta Psychologica, 157, 114121.Google Scholar
Goodale, M. A., and Graves, J. A. (1982). Retinal locus as a factor in interocular transfer in the pigeon. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior (pp. 211240). Cambridge, MA: MIT Press.Google Scholar
Goodale, M. A., and Humphrey, G. K. (1998). The objects of action and perception. Cognition, 67(1–2), 181207.Google Scholar
Goodale, M. A., Milner, A. D., Jakobson, L. S., and Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154156.Google Scholar
Goslin, J., Dixon, T., Fischer, M. H., Cangelosi, A., and Ellis, R. (2012). Electrophysiological examination of embodiment in vision and action. Psychological Science, 23(2), 152157.Google Scholar
Gould, S. J., and Vrba, E. S. (1982). Exaptation – A missing term in the science of form. Paleobiology, 8(01), 415.Google Scholar
Grafton, S. T. (2010). The cognitive neuroscience of prehension: Recent developments. Experimental Brain Research, 204(4), 475491.Google Scholar
Greenfield, P., Andreae, J., Ryan, S., Pepperbert, I., Westergaaard, G., and Pinon, P (1994). Language, tools and brain: The ontogeny and phylogeny of hierarchically organized sequential behavior. Behavioral and Brain Sciences, 17(2), 357365.Google Scholar
Greenfield, P. M. (1991). From hand to mouth. Behavioral and Brain Sciences, 14(04), 577595.Google Scholar
Greenfield, P. M. (1998). Language, tools, and brain revisited. Behavioral and Brain Sciences, 21(01), 159163.Google Scholar
Grèzes, J., Costes, N., and Decety, J. (1998). Top down effect of strategy on the perception of human biological motion: A PET investigation. Cognitive Neuropsychology, 15(6–8), 553582.Google Scholar
Guan, C. Q., Meng, W., Yao, R., and Glenberg, A. M. (2013). The motor system contributes to comprehension of abstract language. PloS One, 8(9), e75183.Google Scholar
Guiard, Y. (1987). Asymmetric division of labor in human skilled bimanual action: The kinematic chain as a model. Journal of Motor Behavior, 19(4), 486517.Google Scholar
Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9(9), 416423.Google Scholar
Halligan, P. W., Fink, G. R., Marshall, J. C., and Vallar, G. (2003). Spatial cognition: Evidence from visual neglect. Trends in Cognitive Sciences, 7(3), 125133.Google Scholar
Halligan, P. W., and Marshall, J. C. (1991). Left neglect for near but not far space in man. Nature, 350(6318), 498500.Google Scholar
Handy, T. C., and Mangun, G. R. (2000). Attention and spatial selection: Electrophysiological evidence for modulation by perceptual load. Perception and Psychophysics, 62, 175186.Google Scholar
Hauser, M. D., Chomsky, N., and Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 15691579.Google Scholar
Hecht, E. E., Gutman, D. A., Khreisheh, N., Taylor, S. V., Kilner, J., Faisal, A. A., Bradley, B. A., Chaminade, T., and Stout, D. B. (2014). Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Structure and Function, 220, 23152331.Google Scholar
Heft, H. (2003). Affordances, dynamic experience, and the challenge of reification. Ecological Psychology, 15(2), 149180.Google Scholar
Heidegger, M. (1962 [1927]). Being and Time. Trans. John Macquarrie and Edward Robinson. New York: Harper.Google Scholar
Helmholtz, H. von. (1860). Theorie der Luftschwingungen in Röhren mit offenen Enden. Journal Für Die Reine Und Angewandte Mathematik, 57, 172.Google Scholar
Henrich, J., Heine, S. J., and Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183.Google Scholar
Hinton, G. (2014). Where do features come from? Cognitive Science, 38(6), 10781101.Google Scholar
Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The ‘wake–sleep’ algorithm for unsupervised neural networks. Science, 268(5214), 11581161.Google Scholar
Hinton, G. E., and Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, 1(3), 495502.Google Scholar
Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 15271554.Google Scholar
Hinton, G. E., and Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In Rumelhart, D. E. and McClelland, J. L. (eds.), Parallel Distributed Processing: Explorations in Microstructures of Cognition (pp. 282317). Cambridge, MA: MIT Press.Google Scholar
Hiscock, P. (2014). Learning in lithic landscapes: A reconsideration of the hominid ‘toolmaking’ niche. Biological Theory, 9(1), 2741.Google Scholar
Hohwy, J. (2007). Functional Integration and the mind. Synthese, 159(3), 315328.Google Scholar
Hohwy, J.(2013). The Predictive Mind. Oxford: Oxford University Press.Google Scholar
Hommel, B., Colzato, L. S., and Van Den Wildenberg, W. P. (2009). How social are task representations? Psychological Science, 20(7), 794798.Google Scholar
Hudson, M., Nicholson, T., Ellis, R., and Bach, P. (2015). I see what you say: Prior knowledge of others’ goals automatically biases the perception of their actions. Cognition, 146, 245250.Google Scholar
Hudson, M., Nicholson, T., Simpson, W. A., Ellis, R., and Bach, P. (2016). One step ahead: The perceived kinematics of others’ actions are biased toward expected goals. Journal of Experimental Psychology: General, 145(1), 1.Google Scholar
Hufendiek, R. (2016). Embodied Emotions: A Naturalist Approach to a Normative Phenomenon. New York: Routledge.Google Scholar
Humphrey, N. K. (1974). Vision in a monkey without striate cortex: A case study. Perception, 3(3), 241255.Google Scholar
Humphrey, N. K. and Weiskrantz, L. (1967). Vision in monkeys after removal of the striate cortex. Nature, 215, 595597.Google Scholar
Humphreys, G. W., and Riddoch, J. R. (2001). Detection by action: Neuropsychological evidence for action-defined templates in search. Nature Neuroscience, 4(1), 8488.Google Scholar
Humphreys, G. W., Yoon, E. Y., Kumar, S., Lestou, V., Kitadono, K., Roberts, K. L., and Riddoch, M. J. (2010). The interaction of attention and action: From seeing action to acting on perception. British Journal of Psychology, 101(2), 185206.Google Scholar
Hurley, S., and Chater, N. (eds.) (2005). Imitation, Human Development and Culture (Vol. 2). Cambridge, MA: MIT Press.Google Scholar
Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: MIT Press.Google Scholar
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., Rizzolatti, G., and others. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol, 3(3), e79.Google Scholar
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., and Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528.Google Scholar
Ingold, T. (2000). The Perception of the Environment: Essays on Livelihood, Dwelling and Skill. London and New York: Routledge.Google Scholar
Ingold, T.(2013). Making: Anthropology, Archaeology, Art and Architecture. London and New York: Routledge.Google Scholar
Iriki, A., Tanaka, M., and Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport, 7(14), 23252330.Google Scholar
Jakobson, L. S., Archibald, Y. M., Carey, D. P., and Goodale, M. A. (1991). A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia, 29(8), 803809.Google Scholar
Jeannerod, M. (1981). Intersegmental coordination during reaching at natural visual objects. Attention and Performance IX, 9, 153168.Google Scholar
Jeannerod, M.(1988) The Neural and Behavioral Organization of Goal-Directed Movements. Oxford: Clarendon Press.Google Scholar
Kahneman, D. (2012). Thinking, Fast and Slow. New York: Penguin.Google Scholar
Kendal, J., Tehrani, J. J., and Odling-Smee, J. (2011). Human niche construction in interdisciplinary focus. Philosophical Transactions of the Royal Society B, 366, 785792.Google Scholar
Kilner, J. M., Friston, K. J., and Frith, C. D. (2007). The mirror-neuron system: A Bayesian perspective. Neuroreport, 18(6), 619623.Google Scholar
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671680.Google Scholar
Kita, S. (2009). Cross-cultural variation of speech-accompanying gesture: A review. Language and Cognitive Processes, 24(2), 145167.Google Scholar
Kivell, T. L., Kibii, J. M., Churchill, S. E., Schmid, P., and Berger, L. R. (2011). Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science, 333(6048), 14111417.Google Scholar
Kiverstein, J., and Wheeler, M. (2012). Heidegger and Cognitive Science. New York: Palgrave Macmillan.Google Scholar
Koechlin, E., and Jubault, T. (2006). Broca’s area and the hierarchical organization of human behavior. Neuron, 50(6), 963974.Google Scholar
Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., and Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297(5582), 846848.Google Scholar
Kohler, I. (1963). The formation and transformation of the perceptual world. Psychological Issues, 3(4,Monogr. No. 12), 1173.Google Scholar
Kripke, S. A. (1980). Naming and Necessity. Oxford: Blackwell.Google Scholar
Króliczak, G., and Frey, S. H. (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex, 19(10), 23962410.Google Scholar
Kuzawa, C. W., and Bragg, J. M. (2012). Plasticity in human life history strategy: Implications for contemporary human variation and the evolution of genus Homo. Current Anthropology, 53(S6), S369S382.Google Scholar
Lakatos, I. (1978). The Methodology of Scientific Research Programmes. London and New York: Cambridge University Press.Google Scholar
Lakoff, G., and Johnson, M. (1980). The metaphorical structure of the human conceptual system. Cognitive Science, 4(2), 195208.Google Scholar
Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E. and Odling-Smee, J. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of the Royal Society B, 282, http://rspb.royalsocietypublishing.org/content/282/1813/20151019Google Scholar
Laland, K., Uller, T., Feldman, M., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., Odling-Smee, J., Wray, G. A., Hoekstra, H. E., Futuyma, D. J., Lenski, R. E., Mackay, T. F., Schluter, D., and Strassmann, J. E. (2014). Does evolutionary theory need a rethink? Nature, 514(7521), 161.Google Scholar
Latour, B. (1999). Pandora’s Hope: Essays on the Reality of Science Studies. Cambridge, MA: Harvard University Press.Google Scholar
Latour, B.(2005). Reassembling the Social: An Introduction to Actor-Network-Theory. Oxford: Oxford university press.Google Scholar
Latour, B.(2007). Can we get our materialism back, please? Isis, 98(1), 138142.Google Scholar
Leakey, M. D. (1971). Olduvai Gorge, vol. 3. Cambridge: Cambridge University Press.Google Scholar
Leavens, D. A., and Hopkins, W. D. (2005). Multimodal concomitants of manual gesture by chimpanzees (Pan troglodytes): Influence of food size and distance. Gesture, 5(1), 7590.Google Scholar
Leroi-Gourhan, A. (1993). Gesture and Speech. Cambridge, MA: MIT Press.Google Scholar
Levin, T. L., and Simons, D. J. (1997). Failure to detect changes to attended objects in motion pictures. Psychonomic Bulletin and Review, 4(4), 501506.Google Scholar
Leyton, A. S., and Sherrington, C. S. (1917). Observations on the excitable cortex of the chimpanzee, orang-utan and gorilla. Quarterly Journal of Experimental Physiology, 11(2), 135222.Google Scholar
Liberman, A. M., and Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 136.Google Scholar
Linell, P. (2004). The Written Language Bias in Linguistics: Its Nature, Origins and Transformations. London and New York: Routledge.Google Scholar
Liszkowski, U., Carpenter, M., Striano, T., and Tomasello, M. (2006). 12- and 18-month-olds point to provide information for others. Journal of Cognition and Development, 7(2), 173187.Google Scholar
Lotto, A. J., Hickok, G. S., and Holt, L. L. (2009). Reflections on mirror neurons and speech perception. Trends in Cognitive Sciences, 13(4), 110114.Google Scholar
McBride, J., Sumner, P., Jackson, S. R., Bajaj, N., and Husain, M. (2013). Exaggerated object affordance and absent automatic inhibition in alien hand syndrome. Cortex, 49(8), 20402054.Google Scholar
McConkie, G. W., and Currie, C. B. (1996). Visual stability across saccades while viewing complex pictures. Journal of Experimental Psychology: Human Perception and Performance, 22(3), 563.Google Scholar
McLeod, P., Plunkett, K., and Rolls, E. T. (1998). Introduction to Connectionist Modelling of Cognitive Processes. Oxford: Oxford University Press.Google Scholar
MacGregor, N. (2011). A History of the World in 100 Objects. New York: Penguin.Google Scholar
McNair, N. A., Behrens, A. D., and Harris, I. M. (2017). Automatic recruitment of the motor system by undetected graspable objects: A motor-evoked potential study. Journal of Cognitive Neuroscience, 29(11), 19181931.Google Scholar
Malafouris, L., and Renfrew, C. (2010). The Cognitive Life of Things: Recasting the Boundaries of the Mind. Cambridge: McDonald Institute for Archaeological Research.Google Scholar
Manera, V., Becchio, C., Cavallo, A., Sartori, L., and Castiello, U. (2011). Cooperation or competition? Discriminating between social intentions by observing prehensile movements. Experimental Brain Research, 211(3–4), 547556.Google Scholar
Mangun, G. R., and Hillyard, S. A. (1995). Mechanisms and models of selective attention. In Rugg, M. D. and Coles, M. G. H. (eds.), Electrophysiology of Mind: Event-related Brain Potentials and Cognition (pp. 4085). New York: Oxford University Press.Google Scholar
Mark, L. S. (1987). Eyeheight-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 361370.Google Scholar
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: WH Freeman.Google Scholar
Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., and Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology/Revue canadienne de psychologie, 41(3), 365.Google Scholar
Marx, K., and Engels, F. (1970. The German Ideology. London: Lawrence & Wishart.Google Scholar
Marzke, M. W. (2013). Tool making, hand morphology and fossil hominins. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1630), https://europepmc.org/abstract/med/24101624Google Scholar
Marzke, M. W., and Shackley, M. S. (1986). Hominid hand use in the Pliocene and Pleistocene: Evidence from experimental archaeology and comparative morphology. Journal of Human Evolution, 15(6), 439460.Google Scholar
Mauss, M. (2006). Techniques, Technology and Civilization. Oxford: Berghahn.Google Scholar
Meltzoff, A. N. (1988). Infant imitation after a 1-week delay: Long-term memory for novel acts and multiple stimuli. Developmental Psychology, 24(4), 470.Google Scholar
Meltzoff, A. N.(1990). Foundations for developing a concept of self: The role of imitation in relating self to other and the value of social mirroring, social modeling, and self practice in infancy. In Cicchetti, D. and Beeghly, M. (eds.), The John D. and Catherine T. MacArthur Foundation Series on Mental Health and Development. The Self in Transition: Infancy to Childhood (pp. 139164). Chicago: University of Chicago Press.Google Scholar
Meltzoff, A. N.(2005). Imitation and other minds: The ‘like me’ hypothesis. Perspectives on Imitation: From Neuroscience to Social Science, 2, 5577.Google Scholar
Meltzoff, A. N., and Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 7578.Google Scholar
Merleau-Ponty, M. (1967). The Structure of Behavior. Boston, MA: Beacon Press.Google Scholar
Merleau-Ponty, M.(1968). The Visible and the Invisible. Evanston, IL: Northwestern University Press.Google Scholar
Merleau-Ponty, M.(2002). Phenomenology of Perception. London and New York: Routledge.Google Scholar
Messud, C. (2017). Matisse: The joy of things. New York Review of Books, 20 June, www.nybooks.com/daily/2017/06/20/matisse-the-joy-of-thingsGoogle Scholar
Michaels, C. F. (2003). Affordances: Four points of debate. Ecological Psychology, 15(2), 135148.Google Scholar
Miller, D. (1987). Material Culture and Mass Consumption. New York: Basil Blackwell.Google Scholar
Miller, D.(2005). Materiality. Durham, NC: Duke University Press.Google Scholar
Milner, D., and Goodale, M. (2006). The Visual Brain in Action. Oxford: Oxford University Press.Google Scholar
Mishkin, M., Ungerleider, L. G., and Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414417.Google Scholar
Molenberghs, P., Cunnington, R., and Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36(1), 341349.Google Scholar
Moll, H., Richter, N., Carpenter, M., and Tomasello, M. (2008). Fourteen-month-olds know what ‘we’ have shared in a special way. Infancy, 13(1), 90101.Google Scholar
Moll, H., and Tomasello, M. (2007). Cooperation and human cognition: The Vygotskian intelligence hypothesis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1480), 639648.Google Scholar
Morgan, T. J. H., Uomini, N. T., Rendell, L. E., Chouinard-Thuly, L., Street, S. E., Lewis, H. M., Cross, C. P., Evans, C., Kearney, I., de la Torre, A., Whiten, A., and Laland, K. N. (2015). Experimental evidence for the co-evolution of hominin tool-making teaching and language. Nature Communications, 6, 6029.Google Scholar
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., and Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20(8), 750756.Google Scholar
Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., and Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of Neurophysiology, 78(4), 22262230.Google Scholar
Nagell, K., Olguin, R., and Tomasello, M. (1993). Processes of social-learning in the tool use of chimpanzees (Pan troglodytes) and human children (Homo sapiens). Journal of Comparative Psychology, 107(2), 174186.Google Scholar
Naish, K. R., Reader, A. T., Houston-Price, C., Bremner, A. J., and Holmes, N. P. (2013). To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences. Experimental Brain Research, 225(2), 261275.Google Scholar
Napier, J. R., and Tuttle, R. (1993). Hands. Princeton, NJ: Princeton University Press.Google Scholar
Neidle, C. J. (2000). The Syntax of American Sign Language: Functional Categories and Hierarchical Structure. Cambridge, MA: MIT Press.Google Scholar
Neisser, U. (1994). Multiple systems: A new approach to cognitive theory. European Journal of Cognitive Psychology, 6, 225241.Google Scholar
Newell, A. (1980). Physical symbol systems. Cognitive Science, 4(2), 135183.Google Scholar
Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., and Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10(7), 817818.Google Scholar
Newman-Norlund, R. D., Bosga, J., Meulenbroek, R. G. J., and Bekkering, H. (2008). Anatomical substrates of cooperative joint-action in a continuous motor task: Virtual lifting and balancing. Neuroimage, 41(1), 169177.Google Scholar
Nisbett, R. E., and Masuda, T. (2003). Culture and point of view. Proceedings of the National Academy of Sciences, 100(19), 1116311170.Google Scholar
Nisbett, R. E., Peng, K., Choi, I., and Norenzayan, A. (2001). Culture and systems of thought: Holistic versus analytic cognition. Psychological Review, 108(2), 291.Google Scholar
Noë, A. (2004). Action in Perception. Cambridge, MA: MIT Press.Google Scholar
Noë, A.(2010). Vision without representation. In Gangopadhyay, N., Madary, M. and Spicer, F. (eds.), Perception, Action, and Consciousness: Sensorimotor Dynamics and Two Visual Systems (pp. 245256). Oxford and New York: Oxford University Press.Google Scholar
Norman, J. (2002). Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. Behavioral and Brain Sciences, 25(01), 7396.Google Scholar
O’Connell, J. F., Hawkes, K., and Jones, N. B. (1999). Grandmothering and the evolution of Homo erectus. Journal of Human Evolution, 36(5), 461485.Google Scholar
Odling-Smee, F. J., Laland, K. N., and Feldman, M. W. (2003). Niche Construction: The Neglected Process in Evolution. Princeton, NJ: Princeton University Press.Google Scholar
Orban, G. A., Claeys, K., Nelissen, K., Smans, R., Sunaert, S., Todd, J. T., Wardak, C., Durand, J., and Vanduffel, W. (2006). Mapping the parietal cortex of human and non-human primates. Neuropsychologia, 44(13), 26472667.Google Scholar
O’Regan, J. K., and Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(05), 939973.Google Scholar
O’Regan, J. K., Rensink, R. A., and Clark, J. J. (1999). Change-blindness as a result of ‘mudsplashes’. Nature, 398, 3434.Google Scholar
Özçalışkan, Ş., Lucero, C., and Goldin-Meadow, S. (2016). Is seeing gesture necessary to gesture like a native speaker? Psychological Science, 27, 737747.Google Scholar
Pascual-Leone, A., Amedi, A., Fregni, F., and Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377401.Google Scholar
Pelegrin, J. (2005). Remarks about archaeological techniques and methods of knapping: Elements of a cognitive approach to stone knapping. Stone Knapping: The Necessary Condition for a Uniquely Hominid Behaviour, 23–33.Google Scholar
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180.Google Scholar
Penfield, W., and Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60(4), 389443.Google Scholar
Perenin, M.-T., and Vighetto, A. (1988). Optic ataxia: A specific disruption in visuomotor mechanisms. Brain, 111(3), 643674.Google Scholar
Perry, C. J., Amarasooriya, P., and Fallah, M. (2016). An eye in the palm of your hand: Alterations in visual processing near the hand, a mini-review. Frontiers in Computational Neuroscience, 10, 37.Google Scholar
Pinker, S. (1995). The Language Instinct: The New Science of Language and Mind. London: Penguin.Google Scholar
Pinker, S., and Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95(20), 201236.Google Scholar
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Science, 10(2), 5963.Google Scholar
Previc, F. H. (1990). Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behavioral and Brain Sciences, 13(03), 519542.Google Scholar
Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6(7), 576582.Google Scholar
Pulvermüller, F., and Fadiga, L. (2010). Active perception: sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience, 11(5), 351360.Google Scholar
Ramenzoni, V. C., and Liszkowski, U. (2016). The social reach 8-month-olds reach for unobtainable objects in the presence of another person. Psychological Science, 27(9), 12781285.Google Scholar
Rao, R. P. N., and Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive field effects. Nature Neuroscience, 2(1), 7987.Google Scholar
Reed, E. S. (1996). Encountering the World: Toward an Ecological Psychology. New York: Oxford University Press.Google Scholar
Renfrew, C. (1996). The sapient behaviour paradox: how to test for potential. Modelling the Early Human Mind, 11–14.Google Scholar
Renfrew, C.(2008). Neuroscience, evolution and the sapient paradox: The factuality of value and of the sacred. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1499), 20412047.Google Scholar
Rensink, R. A., O’Regan, J. K., and Clark, J. L. 1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8(5), 368373.Google Scholar
Riddoch, M. J., Edwards, M. G., Humphreys, G. W., West, R., and Heafield, T. (1998). Visual affordances direct action: Neuropsychological evidence from manual interference. Cognitive Neuropsychology, 15(6–8), 645683.Google Scholar
Rizzolatti, G., and Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188194.Google Scholar
Rizzolatti, G., and Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141.Google Scholar
Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., and Fazio, F. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111(2), 246252.Google Scholar
Rizzolatti, G., Gentilucci, M., and Matelli, M. (1985). Selective spatial attention: One center, one circuit or many circuits? In Posner, M. and Marin, O. S. M. (eds.), Attention and Performance XI (pp. 251265). Hillsdale, NJ: Earlsbaum.Google Scholar
Rizzolatti, G., and Matelli, M. (2003). Two different streams form the dorsal visual system: Anatomy and functions. Experimental Brain Research, 153(2), 146157.Google Scholar
Rizzolatti, G., Matelli, M., and Pavesi, G. (1983). Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain, 106(3), 655673.Google Scholar
Rizzolatti, G., Scandolara, C., Matelli, M., and Gentilucci, M. (1981). Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behavioural Brain Research, 2(2), 147163.Google Scholar
Rizzolatti, G., and Sinigaglia, C. (2008). Mirrors in the Brain. Oxford: Oxford University Press.Google Scholar
Rizzolatti, G., and Sinigaglia, C.(2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264274.Google Scholar
Rochat, P., Goubet, N., and Senders, S. J. (1999). To reach or not to reach? Perception of body effectivities by young infants. Infant and Child Development, 8(3), 129148.Google Scholar
Rosenbaum, D. A., Vaughan, J., Barnes, H. J., and Jorgensen, M. J. (1992). Time course of movement planning: Selection of handgrips for object manipulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 1058.Google Scholar
Rumelhart, D. E., Smolensky, P., McClelland, J. L., and Hinton, G. E. (1986). Schemata and sequential thought processes in PDP models. In Parallel Distributed Processing: Explorations in the Microstructure, Vol. 2: Psychological and Biological Models (ch. 14). Cambridge, MA: MIT Press.Google Scholar
Sampaio, M., and Bach-y-Rita, P. (2001). Brain plasticity: ‘Visual’ acuity of blind persons via the tongue. Brain Research, 908, 204207.Google Scholar
Sartori, L., Becchio, C., and Castiello, U. (2011). Cues to intention: The role of movement information. Cognition, 119(2), 242252.Google Scholar
Schick, K. D., Toth, N., Garufi, G., Savage-Rumbaugh, E. S., Rumbaugh, D., and Sevcik, R. (1999). Continuing investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). Journal of Archaeological Science, 26(7), 821832.Google Scholar
Schmidt, R. C., Carello, C., and Turvey, M. T. (1990). Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 227.Google Scholar
Schnall, S., Zadra, J. R., and Proffitt, D. R. (2010). Direct evidence for the economy of action: Glucose and the perception of geographical slant. Perception, 39(4), 464482.Google Scholar
Schütz-Bosbach, S., Haggard, P., Fadiga, L., and Craighero, L. (2008). Motor cognition: TMS studies of action generation. In Epstein, C. M., Wassermann, E. M., and Ziemann, U. (eds.), Oxford Handbook of Transcranial Stimulation (pp. 463478). Oxford: Oxford University Press.Google Scholar
Searle, J. (1980). Minds, brains and programs. Behavioral and brain sciences, 3, 417424.Google Scholar
Searle, J.(1989). Artificial intelligence and the Chinese room: An exchange. New York Review of Books, 36, 2.Google Scholar
Sebanz, N., Knoblich, G., and Prinz, W. (2003). Representing others’ actions: Just like one’s own? Cognition, 88(3), B11B21.Google Scholar
Sebanz, N., Knoblich, G., Prinz, W., and Wascher, E. (2006). Twin peaks: An ERP study of action planning and control in coacting individuals. Journal of Cognitive Neuroscience, 18(5), 859870.Google Scholar
Senior, C., Ward, J., and David, A. S. (2002). Representational momentum and the brain: An investigation into the functional necessity of V5/MT. Visual Cognition, 9(1–2), 8192.Google Scholar
Shapiro, K. L., Raymond, J. E., and Arnell, K. M. (1997). The attentional blink. Trends in Cognitive Science, 1(8), 291296.Google Scholar
Shockley, K., Santana, M.-V., and Fowler, C. A. (2003). Mutual interpersonal postural constraints are involved in cooperative conversation. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 326.Google Scholar
Simons, D. J., and Levin, T. L. (1997). Change blindness. Trends in Cognitive Science, 7(1), 261267.Google Scholar
Simons, D. J., and Rensink, R. A. (2005). Change blindness: Past, present and future. Trends in Cognitive Science, 9(1), 1620.Google Scholar
Smith, B. H., and Tompkins, R. L. (1995). Toward a life history of the Hominidae. Annual Review of Anthropology, 24(1), 257279.Google Scholar
Smith, L. B., and Thelen, E. (2003). Development as a dynamic system. Trends in Cognitive Sciences, 7(8), 343348.Google Scholar
Spence, C., Pavani, F., Maravita, A., and Holmes, N. (2004). Multisensory contributions to the 3-D representation of visuotactile peripersonal space in humans: Evidence from the crossmodal congruency task. Journal of Physiology-Paris, 98(1), 171189.Google Scholar
Spivey, M., Tyler, M., Richardson, D., and Young, E. (2000). Eye movements during comprehension of spoken scene descriptions. In Proceedings of the 22nd Annual Conference of the Cognitive Science Society. https://escholarship.org/uc/item/7z34j8zwGoogle Scholar
Sporns, O., and Edelman, G. M. (1993). Solving Bernstein’s problem: A proposal for the development of coordinated movement by selection. Child Development, 64(4), 960981.Google Scholar
Steele, J., and Uomini, N. (2005). Humans, tools and handedness. In Roux, V. and Bril, B. (eds.), Stone Knapping: The Necessary Conditions for a Uniquely Hominin Behaviour (pp. 217239). Cambridge: McDonald Institute for Archaeological Research.Google Scholar
Sterelny, K. (2011). From hominins to humans: How sapiens became behaviourally modern. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1566), 809822.Google Scholar
Sterelny, K., and Hiscock, P. (2014). Symbols, signals, and the archaeological record. Biological Theory, 9(1), 13.Google Scholar
Stokoe, W. C. (2001). Language in Hand: Why Sign Came before Speech. Washington, DC: Gallaudet University Press.Google Scholar
Stokoe, W. C.(2005). Sign language structure: An outline of the visual communication systems of the American deaf. Journal of Deaf Studies and Deaf Education, 10(1), 337.Google Scholar
Stout, D. (2011). Stone toolmaking and the evolution of human culture and cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), 10501059.Google Scholar
Stout, D., and Chaminade, T. (2007). The evolutionary neuroscience of tool making. Neuropsychologia, 45(5), 10911100.Google Scholar
Stout, D., Toth, N., Schick, K., and Chaminade, T. (2008). Neural correlates of Early Stone Age toolmaking: Technology, language and cognition in human evolution. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1499), 19391949.Google Scholar
Strogatz, S. H., Abrams, D. M., McRobie, A., Eckhardt, B., and Ott, E. (2005). Theoretical mechanics: Crowd synchrony on the Millennium Bridge. Nature, 438(7064), 4344.Google Scholar
Symes, E., Tucker, M., Ellis, R., Vainio, L., and Ottoboni, G. (2008). Grasp preparation improves change detection for congruent objects. Journal of Experimental Psychology: Human Perception and Performance, 34(4), 854.Google Scholar
Tarr, B., Launay, J., Cohen, E., and Dunbar, R. (2015). Synchrony and exertion during dance independently raise pain threshold and encourage social bonding. Biology Letters, 11(10), 20150767.Google Scholar
Tennie, C., Call, J., and Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 24052415.Google Scholar
Thomas, L. E. (2013). Grasp posture modulates attentional prioritization of space near the hands. Frontiers in Psychology, 4, 312.Google Scholar
Thomsen, M.-L. (1984). The Sumerian Language: An Introduction to Its History and Grammatical Structure (vol. 10). Copenhagen: Akademisk forlag.Google Scholar
Tomasello, M. (1996). Do apes ape? In Heyes, C. M. and Galef, B. J. (eds.), Social Learning in Animals: The Roots of Culture (pp. 319346). London: Academic Press.Google Scholar
Tomasello, M. and Carpenter, M. (2007). Shared intentionality. Developmental Science, 10(1), 121125.Google Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., and Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(05), 675691.Google Scholar
Tomasello, M., and Haberl, K. (2003). Understanding attention: 12- and 18-month-olds know what is new for other persons. Developmental Psychology, 39(5), 906.Google Scholar
Tomasello, M., Kruger, A. C., and Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16(03), 495511.Google Scholar
Toth, N. (1985). Archaeological evidence for preferential right-handedness in the Lower and Middle Pleistocene, and its possible implications. Journal of Human Evolution, 14(6), 607614.Google Scholar
Trevarthen, C. B. (1968). Two mechanisms of vision in primates. Psychologische Forschung, 31(4), 299337.Google Scholar
Triesch, J., Ballard, D. H., Hayhoe, M. M., and Sullivan, B. T. (2003). What you see is what you need. Journal of Vision, 3(9), 8694.Google Scholar
Tucker, M., and Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830846.Google Scholar
Tucker, M., and Ellis, R.(2004). Action priming by briefly presented objects. Acta Psychologica, 116(2), 185203.Google Scholar
Turvey, M. T. (1992). Affordances and prospective control: An outline of the ontology. Ecological Psychology, 4(3), 173187.Google Scholar
Turvey, M. T., Shaw, R. E., Reed, E. S., and Mace, W. M. (1981). Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition, 9(3), 237304.Google Scholar
Ungerleider, L. G., and Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior (pp. 549586). Cambridge, MA: MIT Press.Google Scholar
Ullman, S. (1980). Against direct perception. Behavioral and Brain Sciences, 3, 378381.Google Scholar
Umilta, M.A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., and Rizzolatti, G. (2001). I know what you are doing: A neurophysiological study. Neuron, 31(10, 155165.Google Scholar
Uskul, A. K., Kitayama, S., and Nisbett, R. E. (2008). Ecocultural basis of cognition: Farmers and fishermen are more holistic than herders. Proceedings of the National Academy of Sciences, 105(25), 85528556.Google Scholar
Vainio, L., Symes, E., Ellis, R., Tucker, M., and Ottoboni, G. (2008). On the relations between action planning, object identification, and motor representations of observed actions and objects. Cognition, 108(2), 444465.Google Scholar
Vainio, L., Tiainen, M., Tiippana, K., Komeilipoor, N., and Vainio, M. (2015). Interaction in planning movement direction for articulatory gestures and manual actions. Experimental Brain Research, 233(10), 29512959.Google Scholar
Vainio, L., Schulman, M., Tiippana, K., and Vainio, M. (2013). Effect of syllable articulation on precision and power grip performance. PLOS one. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053061Google Scholar
Varela, F. J., Rosch, E., and Thompson, E. (1992). The Embodied Mind: Cognitive Science and Human Experience. Cambridge, MA: MIT Press.Google Scholar
Vuilleumier, P., Valenza, N., Mayer, E., Reverdin, A., and Landis, T. (1998). Near and far visual space in unilateral neglect. Annals of Neurology, 43(3), 406410.Google Scholar
Vygotsky, L. S. (1967). Play and its role in the mental development of the child. Soviet Psychology, 5(3), 618.Google Scholar
Vygotsky, L. S.(2012). Thought and Language. Cambridge, MA: MIT Press.Google Scholar
Warneken, F., Chen, F., and Tomasello, M. (2006). Cooperative activities in young children and chimpanzees. Child Development, 77(3), 640663.Google Scholar
Warneken, F., and Tomasello, M. (2006). Altruistic helping in human infants and young chimpanzees. Science, 311(5765), 13011303.Google Scholar
Warren, W.H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 683703.Google Scholar
Warren, W. H. Jr., and Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 371383.Google Scholar
Waxman, S. R., Fu, X., Ferguson, B., Geraghty, K., Leddon, E., Liang, J., and Zhao, M.-F. (2016). How early is infants’ attention to objects and actions shaped by culture? New evidence from 24-month-olds raised in the US and China. Cultural Psychology, 97. https://doi.org/10.3389/fpsyg.2016.00097Google Scholar
Weiskrantz, L. (2009). Blindsight: A Case Study Spanning 35 Years and New Developments. Oxford: Oxford University Press.Google Scholar
Weiskrantz, L., Warrington, E. K., Sanders, M. D., and Marshall, J. (1974). Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 97(4), 709728.Google Scholar
Weiss, P. H., Marshall, J. C., Wunderlich, G., Tellmann, L., Halligan, P. W., Freund, H., Zilles, , and Fink, G. R. (2000). Neural consequences of acting in near versus far space: A physiological basis for clinical dissociations. Brain, 123(12), 25312541.Google Scholar
Wheeler, M. (2013). Science friction: Phenomenology, naturalism and cognitive science. Royal Institute of Philosophy Supplement, 72, 135167.Google Scholar
Whiten, A., Horner, V., and De Waal, F. B. (2005). Conformity to cultural norms of tool use in chimpanzees. Nature, 437(7059), 737740.Google Scholar
Whiten, A., McGuigan, N., Marshall-Pescini, S., and Hopper, L.M. (2009). Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee, 364(1528), 24172428.Google Scholar
Wikman, P. A., Vainio, L., and Rinne, T. (2015). The effect of precision and power grips on activations in human auditory cortex, Frontiers in Neuroscience, 9, 378.Google Scholar
Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., Thiele, A., Griffiths, T. D., Marslen-Wilson, W. D., and Petkov, C. I. (2015). Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nature Communications, 6, 8901.Google Scholar
Wilson, F. R. (2010). The Hand: How Its Use Shapes The Brain, Language, and Human Culture. New York: Pantheon.Google Scholar
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9(4), 625636.Google Scholar
Wilson, M., and Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460.Google Scholar
Witt, J. K. (2011). Action’s effect on perception. Current Directions in Psychological Science, 20(3), 201206.Google Scholar
Witt, J. K., Proffitt, D. R., and Epstein, W. (2005). Tool use affects perceived distance, but only when you intend to use it. Journal of Experimental Psychology. Human Perception and Performance, 31(5), 880888.Google Scholar
Zahavi, D. (2003). Husserl’s Phenomenology. Stanford, CA: Stanford University Press.Google Scholar
Zahavi, D.(2004). Phenomenology and the project of naturalization. Phenomenology and the Cognitive Sciences, 3(4), 331347.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Rob Ellis, University of Plymouth
  • Book: Bodies and Other Objects
  • Online publication: 22 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781107446809.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Rob Ellis, University of Plymouth
  • Book: Bodies and Other Objects
  • Online publication: 22 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781107446809.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Rob Ellis, University of Plymouth
  • Book: Bodies and Other Objects
  • Online publication: 22 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781107446809.009
Available formats
×