Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 The effect of variation among floral traits on the flower constancy of pollinators
- 2 Behavioral and neural mechanisms of learning and memory as determinants of flower constancy
- 3 Subjective evaluation and choice behavior by nectar-and pollen-collecting bees
- 4 Honeybee vision and floral displays:from detection to close-up recognition
- 5 Floral scent, olfaction, and scent-driven foraging behavior
- 6 Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision
- 7 Foraging and spatial learning in hummingbirds
- 8 Bats as pollinators: foraging energetics and floral adaptations
- 9 Vision and learning in some neglected pollinators: beetles, flies, moths, and butterflies
- 10 Pollinator individuality: when does it matter?
- 11 Effects of predation risk on pollinators and plants
- 12 Pollinator preference, frequency dependence, and floral evolution
- 13 Pollinator-mediated assortative mating: causes and consequences
- 14 Behavioural responses of pollinators to variation in floral display size and their influences on the evolution of floral traits
- 15 The effects of floral design and display on pollinator economics and pollen dispersal
- 16 Pollinator behavior and plant speciation: looking beyond the “ethological isolation” paradigm
- Index
8 - Bats as pollinators: foraging energetics and floral adaptations
Published online by Cambridge University Press: 13 August 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 The effect of variation among floral traits on the flower constancy of pollinators
- 2 Behavioral and neural mechanisms of learning and memory as determinants of flower constancy
- 3 Subjective evaluation and choice behavior by nectar-and pollen-collecting bees
- 4 Honeybee vision and floral displays:from detection to close-up recognition
- 5 Floral scent, olfaction, and scent-driven foraging behavior
- 6 Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision
- 7 Foraging and spatial learning in hummingbirds
- 8 Bats as pollinators: foraging energetics and floral adaptations
- 9 Vision and learning in some neglected pollinators: beetles, flies, moths, and butterflies
- 10 Pollinator individuality: when does it matter?
- 11 Effects of predation risk on pollinators and plants
- 12 Pollinator preference, frequency dependence, and floral evolution
- 13 Pollinator-mediated assortative mating: causes and consequences
- 14 Behavioural responses of pollinators to variation in floral display size and their influences on the evolution of floral traits
- 15 The effects of floral design and display on pollinator economics and pollen dispersal
- 16 Pollinator behavior and plant speciation: looking beyond the “ethological isolation” paradigm
- Index
Summary
Bat pollination is a pan-tropical phenomenon, performed in the Old World by small megachiropterans (Pteropodidae) and in the New World by microchiropterans of the leaf-nosed bat family Phyllostomidae (Dobat 1985). Flower-visiting bat species total about 50 worldwide, while Dobat (1985) listed about 750 bat-pollinated plant species in 270 genera (590 for the Neo- and 160 for the Palaeotropics). Since then, many more cases have been found.
Although plants independently enlisted “megabats” and “microbats” as pollinators, it is likely that both systems have links to one common root: pollination by ancient, nocturnal, non-flying mammals dating to the late Cretaceous (Sussman & Raven 1978). The extinction of most of these early mammalian flower visitors coincided with the radiation of bats from the Eocene onward in the Old World, and during the Miocene in South America (Sussman & Raven 1978). Genera like Parkia may have developed mammal pollination before the separation of African and South American plates; they still retain this trait (Vogel 1969, 1980). Of the plant species found to attract bats today, however, the vast majority evolved their adaptative traits more recently (Vogel 1990).
In the Neotropics, it is useful to consider a continuum ranging from less specialized “fruit-bat” flowers to true “glossophagine” flowers (von Helversen 1993; cf. Johnson & Steiner 2000). For Costa Rica, we estimate that two-thirds of the bat-pollinated plant species are glossophagine specialists.
- Type
- Chapter
- Information
- Cognitive Ecology of PollinationAnimal Behaviour and Floral Evolution, pp. 148 - 170Publisher: Cambridge University PressPrint publication year: 2001
- 25
- Cited by