Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-wlffp Total loading time: 0 Render date: 2025-09-20T05:47:36.574Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 August 2025

Peter J. Cameron
Affiliation:
University of St Andrews
Pierre-Philippe Dechant
Affiliation:
University of Leeds
Yang-Hui He
Affiliation:
London Institute for Mathematical Sciences
John McKay
Affiliation:
Concordia University, Montréal
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
ADE
Patterns in Mathematics
, pp. 165 - 174
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

He, Y.-H., McKay, John Keith Stuart: 1939–2022, obituary for the London Mathematical Society (2023). arXiv:2305.00850.Google Scholar
Arnol’d, V. I., Mathematics: Frontiers and perspectives; Polymathematics: is mathematics a single science or a set of arts, American Mathematical Society, 2000.Google Scholar
McKay, J., Graphs, singularities, and finite groups, Proceedings of the Symposium in Pure Mathematics 37 (1980) 183186.10.1090/pspum/037/604577CrossRefGoogle Scholar
Gannon, T., Moonshine beyond the Monster: The bridge connecting algebra, modular forms and physics, Cambridge University Press, 2006.CrossRefGoogle Scholar
Sirag, S. P., ADEX theory: How the ADE Coxeter graphs unify mathematics and physics, Vol. 57, World Scientific, 2016.Google Scholar
Gannon, T., Monstrous moonshine and the classification of CFT, arXiv preprint math/9906167.Google Scholar
Browder, F. E., Mathematical developments arising from Hilbert problems, American Mathematical Society, 1976.Google Scholar
Slodowy, P., Simple singularities and simple algebraic groups, Vol. 815, Springer, 2006.Google Scholar
Marshall, D. N., Carved stone balls, Proceedings of the Society of Antiquaries of Scotland Edinburgh 108 (1976) 4072.10.9750/PSAS.108.40.72CrossRefGoogle Scholar
Stillwell, J., The story of the 120-cell, Notices of the AMS 48 (1) (2001) 1724.Google Scholar
Luminet, J.-P., Weeks, J. R., Riazuelo, A., Lehoucq, R., Uzan, J.-P., Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background, Nature 425 (6958) (2003) 593595.10.1038/nature01944CrossRefGoogle Scholar
Polo-Blanco, I., Stott, Alicia Boole, a geometer in higher dimension, Historia Mathematica 35 (2) (2008) 123139.10.1016/j.hm.2007.10.008CrossRefGoogle Scholar
Artin, M., Algebra, Prentice-Hall, 1991.Google Scholar
Conway, J. H., Burgiel, H., Goodman-Strauss, C., The symmetries of things, CRC Press, 2016.10.1201/b21368CrossRefGoogle Scholar
Dechant, P.-P., Clifford algebra is the natural framework for root systems and Coxeter groups. Group theory: Coxeter, conformal and modular groups, Advances in Applied Clifford Algebras 27 (1) (2015) 1731.Google Scholar
Coxeter, H. S. M., Regular polytopes, Dover books on advanced mathematics, Dover Publications, 1973.Google Scholar
Coxeter, H. S. M., Discrete groups generated by reflections, Annals of Mathematics 35 (1934) 588621.10.2307/1968753CrossRefGoogle Scholar
Coxeter, H. S. M., The complete enumeration of finite groups of the form , Journal of the London Mathematical Society s1-10 (1) (1935) 2125.10.1112/jlms/s1-10.37.21CrossRefGoogle Scholar
Humphreys, J. E., Reflection groups and Coxeter groups, Vol. 29 of Cambridge studies in advanced mathematics, Cambridge University Press, 1992.Google Scholar
Dechant, P.-P., The birth of E8 out of the spinors of the icosahedron, Proceedings of the Royal Society A 20150504.Google Scholar
Baez, J. C., From the icosahedron to E8, arXiv preprint arXiv:1712.06436.Google Scholar
Humphreys, J. E., Reflection groups and Coxeter groups, Cambridge University Press, 1990.CrossRefGoogle Scholar
He, Y.-H., The Calabi-Yau landscape: from geometry, to physics, to machinelearning, Springer, LNM 2293, 2018.Google Scholar
Patera, J., Twarock, R., Affine extensions of noncrystallographic Coxeter groups and quasicrystals, Journal of Physics A: Mathematical and General 35 (2002) 15511574.10.1088/0305-4470/35/7/306CrossRefGoogle Scholar
Dechant, P.-P., Boehm, C., Twarock, R., Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups, Journal of Physics A: Mathematical and Theoretical 45 (28) (2012) 285202.10.1088/1751-8113/45/28/285202CrossRefGoogle Scholar
Dechant, P.-P., Boehm, C., Twarock, R., Affine extensions of non-crystallographic Coxeter groups induced by projection, Journal of Mathematical Physics 54 (9) (2013) 093508.Google Scholar
Kac, V. G., Infinite-dimensional Lie algebras, Vol. 44 of Progress in mathematics, Cambridge University Press, 1994.Google Scholar
Becker, K., Becker, M., Schwarz, J. H., String theory and M-theory, Cambridge University Press, 2007.Google Scholar
Berkovits, N., Maldacena, J., N = 2 superconformal description of superstring in Ramond-Ramond plane wave backgrounds, Journal of High Energy Physics 2002 (10) (2002) 059.Google Scholar
Cameron, P. J., Combinatorics: topics, techniques, algorithms, Cambridge University Press, 1994.Google Scholar
He, Y.-H., Yau, S.-T., Graph Laplacians, Riemannian manifolds and their machine-learning, Mathematics, Computation and Geometry of Data 2 (2022) 148.10.4310/MCGD.2022.v2.n1.a1CrossRefGoogle Scholar
Smith, J. H., Some properties of the spectrum of a graph, Proceeding of International Conference Combinatorial Structures and Their Applications (1970) 403406.Google Scholar
Bourbaki, N., Groupes et algèbres de Lie, chapitres 4, 5 et 6, Masson, 1981.Google Scholar
Cameron, P. J., Goethals, J.-M., Seidel, J. J., Shult, E. E., Line graphs, root systems, and elliptic geometry, Journal of Algebra 43 (1976) 305327.10.1016/0021-8693(76)90162-9CrossRefGoogle Scholar
Hestenes, D., Space-time algebra, Gordon and Breach, 1966.Google Scholar
Doran, C., Lasenby, A. N., Geometric algebra for physicists, Cambridge University Press, 2003.10.1017/CBO9780511807497CrossRefGoogle Scholar
Porteous, I. R., Clifford algebras and the classical groups, Cambridge University Press, 1995.10.1017/CBO9780511470912CrossRefGoogle Scholar
Lounesto, P., Clifford algebras and spinors, 2nd ed., London mathematical society lecture note series, Cambridge University Press, 2001.Google Scholar
Garling, D. J. H., Clifford algebras: an introduction, London mathematical society student texts, Cambridge University Press, 2011.10.1017/CBO9780511972997CrossRefGoogle Scholar
Hestenes, D., New foundations for classical mechanics; 2nd ed., Fundamental theories of physics, Kluwer, 1999.Google Scholar
Hestenes, D., Holt, J. W., The Crystallographic Space Groups in Geometric Algebra, Journal of Mathematical Physics 48 (2007) 023514.10.1063/1.2426416CrossRefGoogle Scholar
Dirac, P. A. M., Wave equations in conformal space, The Annals of Mathematics 37 (2) (1936) 429442.Google Scholar
Hestenes, D., Sobczyk, G., Clifford algebra to geometric calculus: a unified language for mathematics and physics, in: Fundamental theories of physics, Reidel, 1984.Google Scholar
Dechant, P.-P., A 3d spinorial view of 4d exceptional phenomena, in: Symmetries in graphs, maps, and polytopes workshop, Springer International Publishing, 2014, pp. 8195.10.1007/978-3-319-30451-9_4CrossRefGoogle Scholar
Dechant, P.-P., Clifford algebra unveils a surprising geometric significance of quaternionic root systems of Coxeter groups, Advances in Applied Clifford Algebras 23 (2) (2013) 301321.10.1007/s00006-012-0371-3CrossRefGoogle Scholar
Dechant, P.-P., Clifford spinors and root system induction: H4 and the grand antiprism, Advances in Applied Clifford Algebras 31 (2021).10.1007/s00006-021-01139-2CrossRefGoogle Scholar
Frankel, T., The geometry of physics: an introduction, Cambridge University Press, 2011.10.1017/CBO9781139061377CrossRefGoogle Scholar
Stewart, J., Stewart, J. M., Advanced general relativity, Cambridge University Press, 1993.Google Scholar
Moroianu, A., Lectures on Kähler geometry, Vol. 69, Cambridge University Press, 2007.10.1017/CBO9780511618666CrossRefGoogle Scholar
Fulton, W., Harris, J., Representation theory: A first course, Springer-Verlag, 1991.Google Scholar
Humphreys, J. E., Introduction to Lie algebras and representation theory, Vol. 9, Springer Science & Business Media, 2012.Google Scholar
Fuchs, J., Schweigert, C., Symmetries, Lie algebras and representations, Cambridge University Press, 2003.Google Scholar
Humphreys, J. E., Introduction to Lie algebras and representation theory, Vol. 9, Springer Science & Business Media, 2012.Google Scholar
He, Y.-H., McKay, J., Sporadic and exceptional, arXiv preprint arXiv:1505.06742.Google Scholar
Kac, V. G., Infinite-dimensional Lie algebras, Cambridge University Press, 1990.10.1017/CBO9780511626234CrossRefGoogle Scholar
Keef, T., Twarock, R., Affine extensions of the icosahedral group with applications to the three-dimensional organisation of simple viruses, Journal of mathematical biology 59 (2009) 287313.10.1007/s00285-008-0228-5CrossRefGoogle Scholar
Dechant, P.-P., Boehm, C., Twarock, R., Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups, Journal of Physics A: Mathematical and Theoretical 45 (28) (2012) 285202. arXiv:1110.5219.10.1088/1751-8113/45/28/285202CrossRefGoogle Scholar
Dechant, P.-P., Boehm, C., Twarock, R., Affine extensions of non-crystallographic coxeter groups induced by projection, Journal of Mathematical Physics 54 (9) (2013).Google Scholar
Dechant, P.-P., Rank-3 root systems induce root systems of rank 4 via a new Clifford spinor construction, Journal of Physics: Conference Series 597 (1) (2015) 12027.Google Scholar
Arnold, V. I., Symplectization, complexification and mathematical trinities, Fields Institute Communications 24 (1999) 2337.Google Scholar
Dechant, P.-P., Platonic solids generate their four-dimensional analogues, Acta Crystallographica Section A: Foundations of Crystallography 69 (6) (2013) 592602.10.1107/S0108767313021442CrossRefGoogle ScholarPubMed
Dechant, P.-P., From the Trinity (A3, B3, H3) to an ADE correspondence, Proceedings of the Royal Society A 474 (2220) (2018) 20180034.Google Scholar
Dechant, P.-P., The E8 geometry from a Clifford perspective, Advances in Applied Clifford Algebras 27 (1) (2017) 397421.10.1007/s00006-016-0675-9CrossRefGoogle Scholar
Dechant, P.-P., A Clifford algebraic framework for Coxeter group theoretic computations, Advances in Applied Clifford Algebras 24 (1) (2014) 89108.10.1007/s00006-013-0422-4CrossRefGoogle Scholar
Chen, S., Dechant, P.-P., He, Y.-H., Heyes, E., Hirst, E., Riabchenko, D., Machine learning Clifford invariants of ADE Coxeter elements, Advances in Applied Clifford Algebras 34 (20) (2024).10.1007/s00006-024-01325-yCrossRefGoogle Scholar
Shakespeare, W., The Winter’s Tale: Third Series, Vol. 44, A&C Black, 2010.Google Scholar
Conway, J. H., Sloane, N. J. A., Bannai, E., Sphere-packings, lattices, and groups, Springer-Verlag, 1987.Google Scholar
Wilson, R. A., The geometry of the Hall-Janko group as a quaternionic reflection group, Geometriae Dedicata 20 (1986) 157173.10.1007/BF00164397CrossRefGoogle Scholar
Moody, R. V., Patera, J., The E8 family of quasicrystals, in: Proceedings NATO ASI Noncompact Lie Groups and Some of Their Applications, Antonio, San, eds. Tanner, E.A. and Wilson, F., NATO ASI Series C 429 (1993) 341.Google Scholar
Gorenstein, D., Finite groups, Vol. 301, American Mathematical Soc., 2007.Google Scholar
Conway, J. H., Curtis, R., Norton, S., Parker, R., Wilson, R., Atlas of finite groups. maximal subgroups and ordinary characters for simple groups. with computational assistance from J.G. Thackray (1985).Google Scholar
Carter, R. W., Simple groups of Lie type, reprint of the 1972 orig. Edition John Wiley & Sons, Inc., 1989.Google Scholar
Conway, J. H., Norton, S. P., Monstrous moonshine, Bulletin of the London Mathematical Society 11 (3) (1979) 308339.10.1112/blms/11.3.308CrossRefGoogle Scholar
Borcherds, R. E., Monstrous moonshine and monstrous Lie superalgebras, Inventiones mathematicae 109 (1) (1992) 405444.Google Scholar
Kac, V. G., Infinite-dimensional algebras, Dedekind’s η-function, classical Möbius function and the very strange formula, Advances in Mathematics 30 (2) (1978) 85136.10.1016/0001-8708(78)90033-6CrossRefGoogle Scholar
He, Y.-H., McKay, J., Eta Products, BPS States and K3 Surfaces, JHEP 01 (2014) 113.Google Scholar
Glauberman, G., Norton, S. P., On McKay’s connection between the affine E8 diagram and the Monster, in: Proceedings on Moonshine and related topics (Montreal, QC, 1999), 2001, pp. 3742.10.1090/crmp/030/04CrossRefGoogle Scholar
Lam, C. H., Yamada, H., Yamauchi, H., Vertex operator algebras, extended E8 diagram, and McKay’s observation on the Monster simple group, Transactions of the American Mathematical Society 359 (9) (2007) 41074123.10.1090/S0002-9947-07-04002-0CrossRefGoogle Scholar
Duncan, J. F., Arithmetic groups and the affine E8 Dynkin diagram, Groups and Symmetries: From Neolithic Scots to John McKay 47 (2009) 135.Google Scholar
Höhn, G., Lam, C. H., Yamauchi, H., McKay’s E7 observation on the Baby Monster, International Mathematics Research Notices 2012 (1) (2012) 166212.10.1093/imrn/rnr009CrossRefGoogle Scholar
Höhn, G., Lam, C. H., Yamauchi, H., McKay’s E7 and E6 observations on the Babymonster and the largest Fischer group, arXiv preprint arXiv:1002.1777.Google Scholar
Eguchi, T., Ooguri, H., Tachikawa, Y., Notes on the K3 surface and the Mathieu group M24, Experimental Mathematics 20 (1) (2011) 9196.10.1080/10586458.2011.544585CrossRefGoogle Scholar
Bruinier, J. H., Geer, G. Van der, Harder, G., Zagier, D., The 1-2-3 of modular forms, Springer Science & Business Media, 2008.10.1007/978-3-540-74119-0CrossRefGoogle Scholar
Zagier, D., Ramanujan’s mock theta functions and their applications (d’apres Zwegers and Ono-Bringmann), Astérisque 326 (2009) Séminaire Bourbaki 143–164.Google Scholar
Gaberdiel, M. R., Hohenegger, S., Volpato, R., Mathieu moonshine in the elliptic genus of K3, Journal of High Energy Physics 2010 (10) (2010) 62.10.1007/JHEP10(2010)062CrossRefGoogle Scholar
Creutzig, T., Hoehn, G., Mathieu moonshine and the geometry of K3 surfaces, arXiv preprint arXiv:1309.2671.Google Scholar
Cheng, M., Dong, X., Duncan, J., Harvey, J., Kachru, S., Wrase, T., Mathieu Moonshine and 𝒩 = 2 string compactifications, arXiv preprint arXiv:1306.4981.Google Scholar
Cheng, M. C., K3 surfaces, 𝒩 = 4 dyons, and the Mathieu group M24, arXiv preprint arXiv:1005.5415.10.4310/CNTP.2010.v4.n4.a2CrossRefGoogle Scholar
Chattopadhyaya, A., David, J. R., Gravitational couplings in 𝒩 = 2 string compactifications and Mathieu moonshine, arXiv preprint arXiv:1712.08791.Google Scholar
Banlaki, A., Chowdhury, A., Kidambi, A., Schimpf, M., Skarke, H., Wrase, T., Calabi-Yau manifolds and sporadic groups, Journal of High Energy Physics 2018 (2) (2018) 135.10.1007/JHEP02(2018)129CrossRefGoogle Scholar
Bringmann, K., Duncan, J., Rolen, L., Maass-Jacobi Poincaré series and Mathieu moonshine, arXiv preprint arXiv:1409.4124.Google Scholar
Taormina, A., Wendland, K., A twist in the M24 moonshine story, arXiv preprint arXiv:1303.3221.Google Scholar
Taormina, A., Wendland, K., The overarching finite symmetry group of Kummer surfaces in the Mathieu group M24, arXiv preprint arXiv:1107.3834.Google Scholar
Taormina, A., Wendland, K., The symmetries of the tetrahedral Kummer surface in the Mathieu group M24, arXiv preprint arXiv:1008.0954.Google Scholar
Niemeier, H.-V., Definite quadratische Formen der Dimension 24 und Diskriminante 1, Journal of Number Theory 5 (2) (1973) 142178.10.1016/0022-314X(73)90068-1CrossRefGoogle Scholar
Cheng, M. C., Duncan, J. F., Harvey, J. A., Umbral moonshine, arXiv preprint arXiv:1204.2779.Google Scholar
Duncan, J. F., Harvey, J. A., The umbral moonshine module for the unique unimodular niemeier root system, arXiv preprint arXiv:1412.8191.Google Scholar
Harvey, J. A., Murthy, S., Nazaroglu, C., ADE double scaled little string theories, mock modular forms and umbral moonshine, arXiv preprint arXiv:1410.6174.Google Scholar
Anagiannis, V., Cheng, M. C., Harrison, S. M., K3 elliptic genus and an umbral moonshine module, arXiv preprint arXiv:1709.01952.Google Scholar
Cheng, M., Whalen, D., Generalised umbral moonshine, arXiv preprint arXiv:1608.07835.Google Scholar
Anagiannis, V., Cheng, M. C., TASI lectures on moonshine, arXiv preprint arXiv:1807.00723.Google Scholar
Hou, Y., Elliptic genera of ADE type singularities, Ph.D. thesis, Dissertation, Universität Freiburg, 2021 (2020).Google Scholar
Duncan, J. F., Griffin, M. J., Ono, K., Proof of the umbral moonshine conjecture, arXiv preprint arXiv:1503.01472.Google Scholar
Cheng, M. C., Harrison, S., Umbral moonshine and K3 surfaces, arXiv preprint, arXiv:1406.0619.Google Scholar
Tits, J., Buildings of spherical type and finite BN-pairs, Vol. 386 of Lect. Notes Math., Springer, 1974.Google Scholar
Shult, E. E., Characterizations of certain classes of graphs, Journal of Combinatorial Theory, Series B 13 (1972) 142167.10.1016/0095-8956(72)90050-0CrossRefGoogle Scholar
Buekenhout, F., Shult, E., On the foundations of polar geometry, Geometriae Dedicata 3 (1974) 155170.10.1007/BF00183207CrossRefGoogle Scholar
Erdős, P., Rényi, A., Sós, V. T., On a problem of graph theory, Studia Scientiarum Mathematicarum Hungarica 1 (1966) 215235.Google Scholar
Cameron, P. J., Lint, J. H. van, Designs, graphs, codes and their links, Vol. 22 of London mathematical society student texts, Cambridge University Press, 1991.10.1017/CBO9780511623714CrossRefGoogle Scholar
Biggs, N., Algebraic graph theory, no. 67 in Cambridge mathematical library, Cambridge University Press, 1993.Google Scholar
Hoffman, A. J., Micchelli, C. A., Selected papers of Alan Hoffman with commentary, World Scientific, 2003.Google Scholar
Bussemaker, F., Cvetkovic, D., Seidel, J. J., Graphs related to exceptional root systems, in: Geometry and combinatorics, Elsevier, 1991, pp. 94100.Google Scholar
Cvetkovic, D., Rowlinson, P., Simic, S., Spectral generalizations of line graphs: on graphs with least eigenvalue-2, Vol. 314, Cambridge University Press, 2004.10.1017/CBO9780511751752CrossRefGoogle Scholar
Hoffman, A. J., On graphs whose least eigenvalue exceeds – 1 – , Linear Algebra and Its Applcations 16 (1977) 153165.10.1016/0024-3795(77)90027-1CrossRefGoogle Scholar
Whitney, H., Congruent graphs and the connectivity of graphs, Hassler Whitney Collected Papers, American Journal 54 (1932) 150168.Google Scholar
Cameron, P. J., A note on generalized line graphs, Journal of Graph Theory 4 (2) (1980) 243245.10.1002/jgt.3190040213CrossRefGoogle Scholar
Gel’fand, I. M., Ponomarev, V., Quadruples of subspaces of a finite-dimensional vector space, in: Doklady Akademii Nauk, Vol. 197, 4, Russian Academy of Sciences, 1971, pp. 762765.Google Scholar
Nazarova, L. A., Ovsienko, S. A., Roiter, A. V., Polyquivers of finite type, Trudy Matematicheskogo Instituta imeni VA Steklova 148 (1978) 190194.Google Scholar
Donovan, P., Freislich, M. R., The representation theory of finite graphs and associated algebras, Carleton Mathematical Lecture Notes, issue 5, Carleton University, 1973.Google Scholar
Gabriel, P., Unzerlegbare Darstellungen I, Manuscripta Mathematica 6 (1972) 71103.10.1007/BF01298413CrossRefGoogle Scholar
Gabriel, P., Indecomposable representations II, Symposia Mathematica XI (1973) 81–104.Google Scholar
Drozd, Y., Tame and wild matrix problems, Thematic Work Collective, and Kiev 1977 (1977) 104–114, (English translation: Translation, Ser. 2, American Mathematic Society 128 (1986) 3155.Google Scholar
Nazarova, L., Ovsienko, S., Roiter, A., Polyquivers of a finite type (Russian), Akad. Nauk Ukrain. SSR Inst. 23 (1977) 1723.Google Scholar
Nazarova, L., Representations of polyquivers of tame type (Russian), Otdel. Mat. Inst. Steklov. (LOMI) 286 (1977) 181206.Google Scholar
Nazarova, L., Polyquivers of infinite type (Russian), Trudy Mat. Inst. Steklov. 275 (19778) 175189.Google Scholar
Simson, D., Linear Representations of Partially Ordered Sets and Vector Space Categories, Vol. Algebra, Logic and Applications Series, 4, Gordon and Breach Science Publishers, 1992.Google Scholar
Douglas, M. R., Moore, G. W., D-branes, quivers, and ALE instantons, arXivarXiv:hep-th/9603167.Google Scholar
Hanany, A., He, Y.-H., Nonabelian finite gauge theories, JHEP 2 (1999) 13.10.1088/1126-6708/1999/02/013CrossRefGoogle Scholar
He, Y.-H., Quiver Gauge theories: Finitude and trichotomy, Mathematics 6 (12) (2018) 291.10.3390/math6120291CrossRefGoogle Scholar
Fomin, S., Zelevinsky, A., Cluster algebras I: foundations, Journal of the American Mathematical Society 15 (2) (2002) 497529.10.1090/S0894-0347-01-00385-XCrossRefGoogle Scholar
Fomin, S., Zelevinsky, A., Cluster algebras II: Finite type classification, Inventiones Mathematicae 154 (1) (2003) 63121.10.1007/s00222-003-0302-yCrossRefGoogle Scholar
Marsh, B. R., Lecture notes on cluster algebras, AMC 10 (2014) 12.Google Scholar
Fomin, S., Williams, L., Zelevinsky, A., Cluster Algebras, online, to appear. http://people.math.harvard.edu/~williams/book.htmlGoogle Scholar
Fomin, S., Reading, N., Root systems and generalized associahedra, arXiv preprint, arXiv:math/0505518.Google Scholar
Musiker, G., Stump, C., A compendium on the cluster algebra and quiver package in sage (2011). arXiv:1102.4844.Google Scholar
Dechant, P.-P., He, Y.-H., Heyes, E., Hirst, E., Cluster algebras: Network science and machine learning, Journal of Computational Algebra 8 (2023) 100008.10.1016/j.jaca.2023.100008CrossRefGoogle Scholar
Cheung, M.-W., Dechant, P.-P., He, Y.-H., Heyes, E., Hirst, E., Li, J.-R., Clustering cluster algebras with clusters, Advances in Theoretical and Mathematical Physics, arXiv preprint arXiv:2212.09771 27 (3).Google Scholar
Feng, B., Hanany, A., He, Y.-H., Uranga, A. M., Toric duality as Seiberg duality and brane diamonds, JHEP 12 (2001) 35.10.1088/1126-6708/2001/12/035CrossRefGoogle Scholar
Feng, B., Hanany, A., He, Y.-H., D-brane gauge theories from toric singularities and toric duality, Nuclear Physics B 595 (2001) 165200.10.1016/S0550-3213(00)00699-4CrossRefGoogle Scholar
Chandrasekaran, V., Longo, R., Penington, G., Witten, E., An algebra of observables for de sitter space, Journal of High Energy Physics 2023 (No. 2, Paper No. 82, p. 56).Google Scholar
Jones, V. F., Index for subfactors, Inventiones mathematicae 72 (1) (1983) 125.10.1007/BF01389127CrossRefGoogle Scholar
Jones, V., Morrison, S., Snyder, N., The classification of subfactors of index at most 5, Bulletin of the American Mathematical Society 51 (2) (2014) 277327.10.1090/S0273-0979-2013-01442-3CrossRefGoogle Scholar
Lin, Y., Lu, L., Yau, S.-T., Ricci curvature of graphs, Tohoku Mathematical Journal, Second Series 63 (4) (2011) 605627.Google Scholar
Lin, Y., Yau, S.-T., A brief review on geometry and spectrum of graphs, arXiv preprint arXiv:1204.3168.Google Scholar
Thom, R., Structural stability and morphogenesis, CRC Press, 2018.Google Scholar
Zeeman, E. C., Catastrophe theory, in: Gttinger, W., Eikemeier, H. (eds.) Structural stability in physics, Proceedings of two international symposia on applications of catastrophe theory and topological concepts in physics, Tbingen, Fed. Rep. of Germany, May 2–6 and December 11–14, 1978. (English) Zbl 0404.00015. Springer Series in Synergetics, Vol. 4. Springer-Verlag, 1979, pp. 1222.Google Scholar
Golubitsky, M., An introduction to catastrophe theory and its applications, SIAM Review 20 (2) (1978) 352387.10.1137/1020043CrossRefGoogle Scholar
Arnol’d, V. I., Catastrophe theory, Springer Science & Business Media, 2003.Google Scholar
Arnol’d, V. I., Normal forms for functions near degenerate critical points, the Weyl groups of Ak, Dk, Ek and Lagrangian singularities, Funktsional’nyi Analiz i ego Prilozheniya 6 (4) (1972) 325.Google Scholar
Shcherbak, O. P., Wavefronts and reflection groups, Russian Mathematical Surveys 43 (3) (1988) 149.10.1070/RM1988v043n03ABEH001741CrossRefGoogle Scholar
Eisenbud, D., The geometry of syzygies: a second course in algebraic geometry and commutative algebra, Vol. 229, Springer Science & Business Media, 2005.Google Scholar
Reid, M., Undergraduate algebraic geometry, no. 12 in London mathematical society student texts, Cambridge University Press, 1988.10.1017/CBO9781139163699CrossRefGoogle Scholar
Hassett, B., Introduction to algebraic geometry, Cambridge University Press, 2007.10.1017/CBO9780511755224CrossRefGoogle Scholar
Satake, I., On a generalization of the notion of manifold, Proceedings of the National Academy of Sciences 42 (6) (1956) 359363.10.1073/pnas.42.6.359CrossRefGoogle ScholarPubMed
Benvenuti, S., Feng, B., Hanany, A., He, Y.-H., Counting BPS operators in gauge theories: quivers, syzygies and plethystics, Journal of High Energy Physics 2007 (11) (2007) 50.10.1088/1126-6708/2007/11/050CrossRefGoogle Scholar
Feng, B., Hanany, A., He, Y.-H., Counting gauge invariants: the plethystic program, Journal of High Energy Physics 2007 (03) (2007) 090.10.1088/1126-6708/2007/03/090CrossRefGoogle Scholar
Du Val, P., On isolated singularities of surfaces which do not affect the conditions of adjunction (part I), in: Mathematical proceedings of the Cambridge philosophical society, Vol. 30, 4, Cambridge University Press, 1934, pp. 453459.Google Scholar
Val, P. D., Homographies, quaternions, and rotations, Oxford mathematical monographs, Clarendon Press, 1964.Google Scholar
Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Communications on Pure and Applied Mathematics 31 (3) (1978) 339411.10.1002/cpa.3160310304CrossRefGoogle Scholar
Kronheimer, P. B., Nakajima, H., Yang-Mills instantons on ALE gravitational instantons, Mathematische Annalen 288 (1) (1990) 263307.10.1007/BF01444534CrossRefGoogle Scholar
Huybrechts, D., Lectures on K3 surfaces, Vol. 158, Cambridge University Press, 2016.10.1017/CBO9781316594193CrossRefGoogle Scholar
Baez, J. C., The octonions, Bulletin of the American Mathematical Society 39 (2002) 145205.10.1090/S0273-0979-01-00934-XCrossRefGoogle Scholar
He, Y.-H., Song, J. S., Of McKay correspondence, nonlinear sigma model and conformal field theory, Advances in Theoretical and Mathematical Physics 4 (2000) 747790.10.4310/ATMP.2000.v4.n4.a1CrossRefGoogle Scholar
Mayr, P., Phases of supersymmetric D-branes on Kähler manifolds and the McKay correspondence, Journal of High Energy Physics 2001 (01) (2001) 018.10.1088/1126-6708/2001/01/018CrossRefGoogle Scholar
Moore, G., Parnachev, A., Localized tachyons and the quantum McKay correspondence, Journal of High Energy Physics 2004 (11) (2005) 086.10.1088/1126-6708/2004/11/086CrossRefGoogle Scholar
Ito, Y., Reid, M., The McKay correspondence for finite subgroups of SL(3, C), Higher-Dimensional Complex Varieties (Trento, 1994) (1994) 221240.Google Scholar
Batyrev, V. V., Dais, D. I., Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry, Topology 35 (4) (1996) 901929.10.1016/0040-9383(95)00051-8CrossRefGoogle Scholar
Reid, M., McKay correspondence, arXiv preprint, arXiv:alg-geom/9702016.Google Scholar
Bridgeland, T., King, A., Reid, M., Mukai implies McKay: the McKay correspondence as an equivalence of derived categories, arXiv preprint, arXiv:math/9908027.Google Scholar
Ito, Y., Nakajima, H., McKay correspondence and Hilbert schemes in dimension three, Topology 39 (6) (2000) 11551191.10.1016/S0040-9383(99)00003-8CrossRefGoogle Scholar
Bridgeland, T., King, A., Reid, M., The McKay correspondence as an equivalence of derived categories, Journal of the American Mathematical Society 14 (3) (2001) 535554.10.1090/S0894-0347-01-00368-XCrossRefGoogle Scholar
Craw, A., An explicit construction of the McKay correspondence for A-Hilb C3, Journal of Algebra 285 (2) (2005) 682705.10.1016/j.jalgebra.2004.10.001CrossRefGoogle Scholar
Ebeling, W., A McKay correspondence for the Poincaré series of some finite subgroups of SL(3, C), arXiv preprint, arXiv:1712.07985.Google Scholar
Ebeling, W., Poincaré series and monodromy of the simple and unimodal boundary singularities, arXiv preprint, arXiv:0807.4839.Google Scholar
Ebeling, W., Ploog, D., McKay correspondence for the Poincaré series of Kleinian and Fuchsian singularities, Mathematische Annalen 347 (2010) 689702.10.1007/s00208-009-0451-4CrossRefGoogle Scholar
Mumford, D., Hilbert’s fourteenth problem–the finite generation of subrings such as rings of invariants, in: Proceedings of Symposia in pure mathematics, American Mathematical Society, 1976, pp. 431444.Google Scholar
McKernan, J., Mori dream spaces, Japanese Journal of Mathematics 5 (1) (2010) 127151.10.1007/s11537-010-0944-7CrossRefGoogle Scholar
Nagata, M., On the 14-th problem of Hilbert, American Journal of Mathematics 81 (1959) 766.10.2307/2372927CrossRefGoogle Scholar
Mukai, S., Geometric realization of T-shaped root systems and counterexamples to Hilbert’s fourteenth problem, in: Algebraic transformation groups and algebraic varieties: Proceedings of the conference interesting algebraic varieties arising in algebraic transformation group theory held at the Erwin Schrödinger Institute, Vienna, October 22–26, 2001, Springer, 2004, pp. 123129.Google Scholar
Johnson, C. V., D-Branes, Cambridge University Press, 2003.Google Scholar
Aspinwall, P. S., K3 surfaces and string duality, in: Surveys in differential geometry, Vol. 5, International Press, 1999.Google Scholar
Wendland, K., Consistency of orbifold conformal field theories on K3, Advances in Theoretical and Mathematical Physics 5 (2002) 429456.10.4310/ATMP.2001.v5.n3.a1CrossRefGoogle Scholar
Gepner, D., Qiu, Z., Modular invariant partition functions for parafermionic field theories, Nuclear Physics B 285 (1987) 423453.10.1016/0550-3213(87)90348-8CrossRefGoogle Scholar
Cappelli, A., Itzykson, C., Zuber, J., The ADE classification of minimal and conformal invariant theories, Communications in Mathematical Physics 113 (1) (1987) 126.10.1007/BF01221394CrossRefGoogle Scholar
Di Francesco, P., Mathieu, P., Sénéchal, D., Conformal field theory, Springer Science & Business Media, 1997.10.1007/978-1-4612-2256-9CrossRefGoogle Scholar
Ooguri, H., Petersen, J. L., Taormina, A., Modular invariant partition functions for the doubly extended N = 4 superconformal algebras, Nuclear Physics B 368(3) (1992) 611624.10.1016/0550-3213(92)90216-XCrossRefGoogle Scholar
Gannon, T., The Cappelli–Itzykson–Zuber ADE classification, Reviews in Mathematical Physics 12 (05) (2000) 739748.10.1142/S0129055X00000265CrossRefGoogle Scholar
Intriligator, K., Wecht, B., RG fixed points and flows in SQCD with adjoints, Nuclear Physics B 677 (1–2) (2004) 223272.10.1016/j.nuclphysb.2003.10.033CrossRefGoogle Scholar
Curto, C., Matrix model superpotentials and ADE singularities, Advances in Theoretical and Mathematical Physics 12 (2) (2008) 353404.10.4310/ATMP.2008.v12.n2.a4CrossRefGoogle Scholar
He, Y.-H., Some remarks on the finitude of quiver theories, Mathematics 6 (12) (2018) 291.10.3390/math6120291CrossRefGoogle Scholar
Gaiotto, D., Witten, E., S-duality of boundary conditions in N=4 super Yang-Mills theory, Advances in Theoretical and Mathematical Physics 13 (3) (2009) 721896.10.4310/ATMP.2009.v13.n3.a5CrossRefGoogle Scholar
Kodaira, K., On compact analytic surfaces, III, Annals of Mathematics 78 (1963) 140.10.2307/1970500CrossRefGoogle Scholar
Heckman, J. J., Rudelius, T., Top down approach to 6d SCFTs, Journal of Physics A: Mathematical and Theoretical 52 (9) (2019) 093001.10.1088/1751-8121/aafc81CrossRefGoogle Scholar

Accessibility standard: Inaccessible, or known limited accessibility

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×