Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T10:29:06.692Z Has data issue: false hasContentIssue false

3 - Chemical ecology of astigmatid mites

Published online by Cambridge University Press:  07 August 2009

Yasumasa Kuwahara
Affiliation:
Division of Applied Life Sciences, Kyoto University, Japan
Ring T. Cardé
Affiliation:
University of California, Riverside
Jocelyn G. Millar
Affiliation:
University of California, Riverside
Get access

Summary

Introduction

Astigmatid mites form a suborder of the Acari, in the class Arachnida. Adult astigmatid mites are mostly oval or rod-like, less than 1 mm in length, and are opaque or transparent. Some species are economically important pests that attack a wide range of stored products and agricultural crops in fields and greenhouses. Others are common components of “house dust” and may contribute to health problems, causing atopic dermatitis and bronchial asthma. Most species, together with species in the suborder Oribatida, also function as scavengers of organic debris.

Pheromonal communication appears widespread among astigmatid mites. To date, the structures of 88 compounds, consisting of 26 monoterpenes, two sesquiterpenes, eight aromatic compounds, four aldehydes, a ketone, two novel fatty acids, a novel alkyl formate, and 14 fatty acid esters, have been conclusively identified from a total of 61 species of astigmatid mites belonging to 10 families, including 29 species that have not yet been formally described. Those unidentified species have been deduced to the genus level and are listed by the genus name with isolate names in parentheses, if necessary, such as Histiostoma sp. “shisetsu.” Many of the compounds are found in a number of different species, in which they may have different behavioral roles. For example, compounds that function as alarm pheromones in 19 species also form part of the aggregation pheromone blend in four species, and the sex pheromone in 14 species.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, M., Sakata, T., Mori, N., Kato, T., Amano, H. and Kuwahara, Y. (1997). Chemical ecology of astigmatid mites. XⅬVI. Neryl formate, the alarm pheromone of Rhizoglyphus setosus Manson (Acarina: Acaridae) and the common pheromone component among four Rhizoglyphus mites. Applied Entomology and Zoology 32: 75–79CrossRefGoogle Scholar
Ayorinde, O., Wheeler, J. W. and Duffield, R. M. (1984). Synthesis of dehydrocineole, a new monoterpene from the acarid mite Caloglyphus rodriguezi (Arachnida: Acari). Tetrahedron Letters 25: 3525–3528CrossRefGoogle Scholar
Baker, G. T. and Krantz, W. (1984). Alarm pheromone production of the bulb mite, Rhizoglyphus robini Claparede, and its possible use as a control adjuvant in lily bulb. In Acarology VI, vol. 2, eds. D. A. Griffiths and C. E. Bowman, pp. 686–692. Chichester, UK: Ellis Horwood
Bartelt, R. J. and Weisleder, D. (1996). Polyketide origin of pheromones of Carpophilus davidsoni and C. mutilatus (Coleoptera: Nitidulidae). Bioorganic and Medicinal Chemistry 4: 429–438CrossRefGoogle Scholar
Byers, J. A. (1989). Chemical ecology of bark beetles. Experientia 45: 271–283CrossRefGoogle Scholar
Chuman, T., Kohno, M., Kato, K. and Noguchi, M. (1979). 4,6-Dimethyl-7-hydroxynonan-3-one, a sex pheromone of the cigarette beetle (Lasioderma serricorne F.). Tetrahedron Letters 20: 2361–2364CrossRefGoogle Scholar
Curtis, R. F., Hobson-Frohock, A., Fenwick, G. R. and Berreen, J. M. (1982). Volatile compounds from the mite Acarus siro in food. Journal of Stored Products Research 17: 197–203CrossRefGoogle Scholar
Hiraoka, H., Mori, N., Nishida, R. and Kuwahara, Y. (2001). (4E)-Dehydrocitrals [(2E,4E)- and (2Z,4E)-3,7-dimethyl-2,4,6-octatrienals] from acarid mite Histiogaster sp. A096 (Acari: Acaridae). Bioscience, Biotechnology and Biochemistry 65: 2749–2754CrossRefGoogle Scholar
Hiraoka, H., Mori, N., Okabe, K., Nishida, R. and Kuwahara, Y. (2002). Chemical ecology of astigmatid mites ⅬXVII. Neral [Z-3,7-dimethyl-2,6-octadienal]: the female sex pheromone of an acarid mite, Histiogaster sp. (Acari: Acaridae). Journal of Acarological Society of Japan 11: 17–26CrossRefGoogle Scholar
Honma, L. Y., Kuwahara, Y., Sato, M., Matsuyama, S. and Suzuki, T. (1995). Structurally hybridized compounds between the aggregation and alarm pheromones of mite triggering conflicted behavior of Carpoglyphus lactis. Journal of Pesticide Science 20: 265–271CrossRefGoogle Scholar
Howard, R. W., Kuwahara, Y., Suzuki, H. and Suzuki, T. (1988). Pheromone study on acarid mites. Ⅻ. Characterization of the hydrocarbons and external gland morphology of the opisthonotal glands of six species of mites (Acari: Astigmata). Applied Entomology and Zoology 23: 58–66CrossRefGoogle Scholar
Hughes, A. M. (1976). The Mites of Stored Food and Houses. (Technical Bulletin 9.) London: HMSO.
Ishii, S. and Kuwahara, Y. (1967). An aggregation pheromone of the German cockroach Blattella germanica L. (Orthoptera: Blattellidae). Applied Entomology and Zoology 2: 203–217CrossRefGoogle Scholar
Ishii, S. and Kuwahara, Y. (1968). Aggregation of German cockroach (Blattella germanica) nymph. Experientia 24: 88–89CrossRefGoogle Scholar
Kizawa, Y., Kuwahara, Y., Matsuyama, S. and Suzuki, T. (1993). Mite body catalyzes isomerization and reduction of neral (alarm pheromone component). Common phenomenon?Journal of Acarological Society Japan 2: 67–74CrossRefGoogle Scholar
Krantz, G. W. (1978). A Manual of Acarology, 2nd edn. Corvallis, OR: OSU Book Stores
Kuwahara, Y. (1982). Pheromone study on acarid mites VII. Structural requisites in monoterpenoids for inducing the alarm pheromone activity against the mold mite, Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae). Applied Entomology and Zoology 17: 127–132CrossRefGoogle Scholar
Kuwahara, Y. (1990). Pheromone studies on astigmatid mites: alarm, aggregation and sex. In Modern Acarology, eds. F. Dusbabek and V. Bukva, pp. 43–52. The Hague: Academia, Prague and SPB Academic
Kuwahara, Y. (1997). Volatile compounds produced by two species of Dermatophagoides mites. Skin Research 39(suppl. 19): 52–55. (In Japanese with English summary)Google Scholar
Kuwahara, Y. and Sakuma, L. (1982a). Pheromone study on acarid mites VIII. Primary (Z)-2-alkenyl formate responsible for the alarm pheromone activity against the mold mite, Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae). Applied Entomology and Zoology 17: 263–268CrossRefGoogle Scholar
Kuwahara, Y. and Sakuma, L. (1982b). Synthesis of alarm pheromone analogues of the mold mite, Tyrophagus putrescentiae, and their biological activities. Agricultural and Biological Chemistry 46: 1855–1860Google Scholar
Kuwahara, Y., Kitamura, C., Takahashi, S., Hara, H., Ishii, S. and Fukami, H. (1971). Sex pheromone of the almond moth and the Indian meal moth: cis-9, trans-12-tetradecadienyl acetate. Science 171: 801–802CrossRefGoogle ScholarPubMed
Kuwahara, Y., Ishii, S. and Fukami, H. (1975a). Neryl formate: alarm pheromone of the cheese mite, Tyrophagus putrescentiae (Schrank) (Acarina, Acaridae). Experientia 31: 1115–1116CrossRefGoogle Scholar
Kuwahara, Y., Fukami, H., Ishii, S., Matsumura, F. and Burkholder, W. E. (1975b). Studies on the isolation and bioassay of the sex pheromone of the drugstore beetle, Stegobium paniceum (Coleoptera; Anobiidae). Journal of Chemical Ecology 1: 413–422CrossRefGoogle Scholar
Kuwahara, Y., Fukami, H., Howard, R., Ishii, S., Matsumura, F. and Burkholder, W. E. (1978). Chemical studies on the Anobiidae: sex pheromone of the drugstore beetle, Stegobium paniceum (L) (Coleoptera). Tetrahedron 34: 1769–1774CrossRefGoogle Scholar
Kuwahara, Y., Fukami, H., Ishii, S., Matsumoto, K. and Wada, Y. (1979). Pheromone study on acarid mites II. Presence of the alarm pheromone in the mold mite, Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae) and the site of its production. Japanese Journal of Sanitary Zoology 30: 309–314CrossRefGoogle Scholar
Kuwahara, Y., Fukami, H., Ishii, S., Matsumoto, K. and Wada, Y. (1980a). Pheromone study on acarid mite III. Citral: isolation and identification from four species of acarid mite, and its possible role. Japanese Journal of Sanitary Zoology 31: 49–52CrossRefGoogle Scholar
Kuwahara, Y., Matsumoto, K. and Wada, Y. (1980b). Pheromone study on acarid mite IV. Citral: composition and function as an alarm pheromone and its secretory gland in four species of acarid mites. Japanese Journal of Sanitary Zoology 31: 73–80CrossRefGoogle Scholar
Kuwahara, Y., My-Yen, L. T., Tominaga, Y., Matsumoto, K. and Wada, Y. (1982). 1,3,5,7-Tetramethyldecyl formate, lardolure: aggregation pheromone of the acarid mite, Lardoglyphus konoi (Sasa et Asanuma) (Acarina: Acaridae). Agricultural and Biological Chemistry 46: 2283–2291Google Scholar
Kuwahara, Y., Suzuki, H., Matsumoto, K. and Wada, Y. (1983). Pheromone study on acarid mites Ⅺ. Function of mite body as geometrical isomerization and reduction of citral (the alarm pheromone). Applied Entomology and Zoology 18: 30–39CrossRefGoogle Scholar
Kuwahara, Y., Akimoto, K., Leal, W. S., Nakao, H. and Suzuki, T. (1987). Isopiperitenone: a new alarm pheromone of the acarid mite, Tyrophagus similis (Acarina, Acaridae). Agricultural and Biological Chemistry 51: 3441–3442Google Scholar
Kuwahara, Y., Leal, W. S., Akimoto, K., Nakano, Y. and Suzuki, T. (1988a). Pheromone study on acarid mites XVI. Identification of hexyl linolate in acarid mites and its distribution among the genus Tyrophagus. Applied Entomology and Zoology 23: 338–344CrossRefGoogle Scholar
Kuwahara, Y., Shibata, C., Akimoto, K., Kuwahara, M. and Suzuki, T. (1988b). Pheromone study on acarid mites. XIII. Identification of neryl formate as an alarm pheromone from the bulb mite, Rhizoglyphus robini (Acarina: Acaridae). Applied Entomology and Zoology 23: 76–80CrossRefGoogle Scholar
Kuwahara, Y., Leal, W. S., Suzuki, T., Maeda, M. and Masutani, T. (1989a). Antifungal activity of Caloglyphus polyphyllae sex pheromone and other mite exudates. Pheromone study on astigmatid mites, XXIV. Naturwissenschaften 76: 578–579CrossRefGoogle Scholar
Kuwahara, Y., Leal, W. S., Nakono, Y., Kaneko, Y., Nakao, H. and Suzuki, T. (1989b). Pheromone study on astigmatid mites XXIII. Identification of the alarm pheromone on the acarid mite, Tyrophagus neiswanderi and species specificities of alarm pheromones among four species of the same genus. Applied Entomology and Zoology 24: 424–429CrossRefGoogle Scholar
Kuwahara, Y., Leal, W. S. and Suzuki, T. (1990). Pheromone study on astigmatid mites XXVI. Comparison of volatile components between Dermatophagoides farinae and D. pteronyssinus (Astigmata, Pyroglyphidae). Japanese Journal of Sanitary Zoology 41: 23–28CrossRefGoogle Scholar
Kuwahara, Y., Matsumoto, K., Wada, Y. and Suzuki, T. (1991a). Chemical ecology on astigmatid mites. XXIX. Aggregation pheromone and kairomone activity of synthetic lardolure (1R,3R,5R,7R)-1,3,5,7-tetramethyldecyl formate and its optical isomers to Lardoglyphus konoi and Carpoglyphus lactis (Acari: Astigmata). Applied Entomology and Zoology 26: 85–89CrossRefGoogle Scholar
Kuwahara, Y., Sato, T. and Suzuki, T. (1991b). Chemical ecology on astigmatid mites. XXⅪ. Geranial as the alarm pheromone of Histiostoma laboratorium Hughes (Astigmata: Histiostomidae). Applied Entomology and Zoology 26: 501–504CrossRefGoogle Scholar
Kuwahara, Y., Koshii, T., Okamoto, M., Matsumoto, K. and Suzuki, T. (1991c). Chemical ecology on astigmatid mites. XXX. Neral as the alarm pheromone of Glycyphagus domesticus (De Geer) (Acarina: Glyciphagidae). Japanese Journal of Sanitary Zoology 42: 29–32CrossRefGoogle Scholar
Kuwahara, Y., Leal, W. S., Kurosa, K., Sato, M., Matsuyama, S. and Suzuki, T. (1992a). Chemical ecology on astigmatid mites XXXIII. Identification of (Z,Z)-6,9-heptadecadiene in the secretion of Carpoglyphus lactis (Acarina, Carpoglyphidae) and its distribution among astigmatid mites. Journal of the Acarological Society of Japan 1: 95–104CrossRefGoogle Scholar
Kuwahara, Y., Sato, M., Koshii, T. and Suzuki, T. (1992b). Chemical ecology of astigmatid mites XXⅫ. 2-Hydroxy-6-methyl-benzaldehyde, the sex pheromone of the brown-legged grain mite, Aleuroglyphus ovatus (Troupeau) (Acarina: Acaridae). Applied Entomology and Zoology 27: 253–260CrossRefGoogle Scholar
Kuwahara, M., Suzuki, K. and Hiramatsu, A. (1992c). Synthesis of robinal, a highly conjugated monoterpenoid from the mite Rhizoglyphus robini. Bioscience, Biotechnology and Biochemistry 56: 1510–1511CrossRefGoogle Scholar
Kuwahara, Y., Matsuyama, S., Suzuki, T., and Okabe, K. (1994a). Chemical ecology of astigmatid mites XXXIX. Chemical dimorphism between hypopus and propagative forms in three species. Journal of Acarological Society Japan 3: 13–20CrossRefGoogle Scholar
Kuwahara, Y., Asami, N., Morr, M., Matsuyama, S. and Suzuki, T. (1994b). Chemical ecology of astigmatid mites XXXVIII. Aggregation pheromone and kairomone activity of lardolure and its analogues against Lardoglyphus konoi and Carpoglyphus lactis. Applied Entomology and Zoology 29: 253–257CrossRefGoogle Scholar
Kuwahara, Y., Ohshima, M., Sato, M., Kurosa, K., Matsuyama, S. and Suzuki, T. (1995a). Chemical ecology of astigmatid mites XL. Identification of the alarm pheromone and new C17 hydrocarbons from a Tortonia sp., a pest attacking the nest of Osmia cornifrones. Applied Entomology and Zoology 30: 177–184CrossRefGoogle Scholar
Kuwahara, Y., Samejima, M., Sakata, T.et al. (1995b). Chemical ecology of astigmatid mites XⅬIV. Identification of (Z,Z,Z)-5,9,12-octadecatrienoic acid and (Z,Z)-5,9-octadecadienoic acid as possible biosynthetic precursors of new hydrocarbons (Z,Z,Z)-4,8,11-heptadecatriene and (Z,Z)-4,8-heptadecadiene found in the astigmatid mite, Tortonia sp. Applied Entomology and Zoology 30: 433–441CrossRefGoogle Scholar
Kuwahara, Y., Mori, N., Shimizu, K., Tanaka, C. and Tsuda, M. (1998). Pheromone studies on astigmatid mites: recent progress – a comparison of molecular phylogeny, distribution and function of female sex pheromone in Caloglyphus spp. (Acarina: Acaridae). Journal of Asia-Pacific Entomology 1: 9–15CrossRefGoogle Scholar
Kuwahara, Y., Ibi, T., Nakatani, Y.et al. (2001). Chemical ecology of astigmatid mites ⅬXI. Neral, the alarm pheromone of Schwiebea elongata (Acari: Acaridae). Journal of Acarological Society Japan 10: 19–25CrossRefGoogle Scholar
Leal, W. S. and Mochizuki, F. (1990). Chemoreception in astigmatid mites. Naturwissenschaften 77: 593–594CrossRefGoogle ScholarPubMed
Leal, W. S., Kuwahara, Y. and Suzuki, T. (1988a). Neryl myristate from the acarid mite, Aleuroglyphus ovatus (Acarina, Acaridae). Agricultural and Biological Chemistry 52: 1299–1300Google Scholar
Leal, W. S., Nakano, Y., Kuwahara, Y., Nakao, H. and Suzuki, T. (1988b). Pheromone study on acarid mites XVII. Identification of 2-hydroxy-6-methyl-benzaldehyde as the alarm pheromone of the acarid mite, Tyrophagus perniciosus (Acarina: Acaridae), and its distribution among related mites. Applied Entomology and Zoology 23: 422–427CrossRefGoogle Scholar
Leal, W. S., Kuwahara, Y., Suzuki, T. and Kurosa, K. (1989a). The alarm pheromone of the mite Suidasia medanensis Oudemans, 1924 (Acariformes, Suidasiidae). Agricultural and Biological Chemistry 53: 2703–2709Google Scholar
Leal, W. S., Kuwahara, Y., Suzuki, T., Nakano, Y. and Nakao, H. (1989b). Identification and synthesis of 2,3-epoxyneral, a novel monoterpene from the acarid mite, Tyrophagus perniciosus (Acarina, Acaridae). Agricultural and Biological Chemistry 53: 295–298Google Scholar
Leal, W. S., Kuwahara, Y., Nakano, Y., Nakao, H. and Suzuki, T. (1989c). 2(E)-(4-Methyl-3-pentenyl)-butanedial, α-acaridial. A novel monoterpene from the acarid mite Tyrophagus perniciosus (Acarina, Acaridae). Agricultural and Biological Chemistry 53: 1193–1196Google Scholar
Leal, W. S., Kuwahara, Y. and Suzuki, T. (1989d). 2(E)-(4-Methyl-3-pentenylidene)-butanedial, β-acaridial: a new type of monoterpene from the mold mite, Tyrophagus putrescentiae (Acarina, Acaridae). Agricultural and Biological Chemistry 53: 875–878Google Scholar
Leal, W. S., Kuwahara, Y., Suzuki, T. and Nakao, H. (1989e). Chemical taxonomy of economically important Tyrophagus mites (Acariformes, Acaridae). Agricultural and Biological Chemistry 53: 3279–3284CrossRefGoogle Scholar
Leal, W. S., Kuwahara, Y., Suzuki, T. and Kurosa, K. (1989f). β-Acaridial, the sex pheromone of the acarid mite Caloglyphus polyphyllae. Pheromone study of acarid mites, XⅪ. Naturwissenschaften 76: 332–333CrossRefGoogle Scholar
Leal, W. S., Kuwahara, Y. and Suzuki, T. (1990a). Hexyl 2-formyl-3-hydroxybenzoate, a fungitoxic cuticular constituent of the bulb mite Rhizoglyphus robini. Agricultural and Biological Chemistry 54: 2593–2597Google Scholar
Leal, W. S., Kuwahara, Y. and Suzuki, T. (1990b). Robinal, a highly conjugated monoterpenoid from the mite, Rhizoglyphus robine. Chemical ecology of astigmatid mites, XXVII. Naturwissenschaften 77: 387–388CrossRefGoogle Scholar
Levinson, A. R., Levinson, H. Z. and Oelker, U. (1989). Two sex pheromones mediate courtship and mating in the flour mite. Naturwissenschaften 76: 176–177CrossRefGoogle Scholar
Levinson, H. Z., Levinson, A. R. and Mueller, K. (1991). Functional adaptation of two nitrogenous waste products in evoking attraction and aggregation of flour mites (Acarus siro L.). Anzeiger für Schaedlingskunde Planzenschutz Umweltschutz 64: 55–60CrossRefGoogle Scholar
Mizoguchi, A., Mori, N., Nishida, R., and Kuwahara, Y. (2003). α-Acaridial, a female sex pheromone from an alarm pheromone emitting mite Rhizoglyphus robini. Journal of Chemical Ecology 29: 1681–1690CrossRefGoogle Scholar
Mori, K. and Kuwahara, S. (1986a). Synthesis of both the enantiomers of lardolure, the aggregation pheromone of the acarid mite, Lardoglyphus konoi. Tetrahedron 42: 5539–5544CrossRefGoogle Scholar
Mori, K. and Kuwahara, S. (1986b). Stereochemistry of lardolure, the aggregation pheromone of the acarid mite, Lardoglyphus konoi. Tetrahedron 42: 5545–5550CrossRefGoogle Scholar
Mori, K. and Kuwahara, S. (1995). Synthesis of (2R,3R)-epoxyneral, a sex pheromone of the acarid mite, Caloglyphus sp. (Astigmata: Acaridae). Tetrahedron Letters 36: 1477–1478CrossRefGoogle Scholar
Mori, K. and Kuwahara, S. (2000). Comparative studies of the ability of males to discriminate between sexes in Caloglyphus spp. Journal of Chemical Ecology 26: 1299–1309CrossRefGoogle Scholar
Mori, N., Kuwahara, Y., Kurosa, K., Nishida, R. and Fukushima, T. (1995). Chemical ecology of astigmatid mites XⅬI. n-Undecane: the sex pheromone of the acarid mite Caloglyphus rodriguezi Samsinak (Acarina: Acaridae). Applied Entomology and Zoology 30: 415–423CrossRefGoogle Scholar
Mori, N., Kuwahara, Y. and Kurosa, K. (1996). Chemical ecology of astigmatid mites XⅬV. (2R,3R)-Epoxyneral: sex pheromone of the acarid mite Caloglyphus sp. (Acarina: Acaridae). Bioorganic and Medicinal Chemistry 4: 289–295CrossRefGoogle Scholar
Mori, N., Kuwahara, Y. and Kurosa, K. (1998a). Rosefuran: the sex pheromone of the acarid mite Caloglyphus sp. Journal of Chemical Ecology 24, 1771–1779CrossRefGoogle Scholar
Mori, N., Fukui, M. and Kuwahara, Y. (1998b). Mating behavior of the astigmatid mite, Caloglyphus rodriguezi Samsinak (Acarina: Acaridae). Applied Entomology and Zoology 33: 385–390CrossRefGoogle Scholar
Morino, A., Kuwahara, Y., Matsuyama, S. and Suzuki, T. (1997). (E)-2-(4′-Methyl-3′-pentenylidene)-4-butanolide, named β-acariolide: a new monoterpene lactone from the mold mite, Tyrophagus putrescentiae (Acarina: Acaridae). Bioscience, Biotechnology and Biochemistry 61: 1906–1908CrossRefGoogle Scholar
My-Yen, L. T., Matsumoto, K., Wada, Y. and Kuwahara, Y. (1980a). Pheromone study on acarid mites V. Presence of citral as a minor component of the alarm pheromone in the mold mite, Tyrophagus putrescentiae (Schrank, 1781) (Acarina: Acaridae). Applied Entomology and Zoology 15: 474–477CrossRefGoogle Scholar
My-Yen, L. T., Wada, Y., Matsumoto, K. and Kuwahara, Y. (1980b). Pheromone study on acarid mites VI. Demonstration and isolation of an aggregation pheromone in Lardoglyphus konoi Sasa et Asanuma. Japanese Journal of Sanitary Zoology 31: 249–254CrossRefGoogle Scholar
Nakayama, H., Kumei, A. and Sakurai, M. (1998). Treatment of atopic dermatitis by mite elimination (environmental improvement). Japan Pediatric Dermatology 17: 97–102. (In Japanese)Google Scholar
Ninomiya, Y. and Kawasaki, T. (1988). Acarid attractant. Japan Kokai Tokkyo Koho, Syo 63-230605 (27 September 1988)
Nishimura, K., Shimizu, N., Naoki Mori, N. and Kuwahara, Y. (2002). Chemical ecology of astigmatid mites ⅬXIV. The alarm pheromone neral functions as an attractant in Schwiebea elongata (Banks) (Acari: Acaridae). Applied Entomology and Zoology 37: 13–18CrossRefGoogle Scholar
Noguchi, S., Mori, N., Kuwahara, Y. and Sato, M. (1997). Facile synthesis of 2-hydroxy-6-methylbenzaldehyde, an alarm and sex pheromone component of astigmatid mites. Bioscience, Biotechnology and Biochemistry 61: 1546–1547CrossRefGoogle Scholar
Noguchi, S., Mori, N., Kurosa, K. and Kuwahara, Y. (1998). Chemical ecology of astigmatid mites XⅬIX. β-Acaridial (2(E)-(4-methyl-3-pentenylidene)-butanedial), the alarm pheromone of Tyrophagus longior Gervais (Acarina: Acaridae). Applied Entomology and Zoology 33: 53–57CrossRefGoogle Scholar
Okamoto, M., Matsumoto, K., Wada, Y. and Kuwahara, Y. (1981). Studies on antifungal effect of mite alarm pheromone citral. 2. Antifungal effect of the hexane extracts of the grain mites and some analogues of citral. Japanese Journal of Sanitary Zoology 32: 265–270. (In Japanese with English summary.)CrossRefGoogle Scholar
Reka, S. A., Suto, C. and Yamaguchi, M. (1992). Evidence of aggregation pheromone in the feces of house dust mite, Dermatophagoides farinae. Japanese Journal of Sanitary Zoology 43: 339–341CrossRefGoogle Scholar
Ruther, J. and Steidle, J. L. M. (2000). Mites as matchmakers: semiochemicals from host-associated mites attract both sexes of the parasitoid Lariophagus distinguendus. Journal of Chemical Ecology 26: 1205–1217CrossRefGoogle Scholar
Ryono, A., Mori, N., Okabe, K. and Kuwahara, Y. (2001). Chemical ecology of astigmatid mites ⅬVIII. 2-Hydroxy-6-methylbenzaldehyde: sex pheromone of Cosmoglyphus hughesi (Acari: Acaridae). Applied Entomology and Zoology 36: 77–81CrossRefGoogle Scholar
Sakata, T. and Kuwahara, Y. (2001). Structure elucidation and synthesis of 3-hydroxybenzene-1,2-dicarbaldehyde from astigmatid mites. Bioscience, Biotechnology and Biochemistry 65: 2315–2317CrossRefGoogle ScholarPubMed
Sakata, T., Kuwahara, Y. and Kurosa, K. (1996). 4-Isopropenyl-3-oxo-1-carboxyaldehyde, isorobinal: a novel monoterpene from the mite Rhizoglyphus sp. (Astigmata: Rhizoglyphinae). Naturwissenschaften 83: 427Google Scholar
Sakata, T., Okabe, K. and Kuwahara, Y. (2001). Structure elucidation of twelve novel esters between five fatty acids and three branched new alcohols along with four monoterpenoids from Sancassania shanghaiensis (Acari: Acaridae). Bioscience, Biotechnology and Biochemistry 65: 919–927CrossRefGoogle Scholar
Sakuma, M. and Fukami, H. (1990). The attraction of the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae) to their aggregation pheromone. Applied Entomology and Zoology 25: 355–368CrossRefGoogle Scholar
Sakuma, M. and Fukami, H. (1993). Aggregation arrestant pheromone of the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae). Isolation and structural elucidation of blattellastanoside-A and -B. Journal of Chemical Ecology 19: 2521–2541CrossRefGoogle Scholar
Sakurai, M., Nakayama, H. and Kumei, A. (1997). Results of patch tests and scratch patch tests with crushed live mites and α-acaridial. Skin Research 39(suppl. 19): 56–60. (In Japanese with English summary.)Google Scholar
Sato, M. and Kuwahara, Y. (1999). Identification of rosefuran from flour mite Acarus immobilis. Kagawa-Daigaku-Nougakubu-Gakuzyutsu-Hokoku 51: 31–35Google Scholar
Sato, M., Kuwahara, Y., Matsuyama, S. and Suzuki, T. (1993a). Chemical ecology of astigmatid mites XXXVII. Fatty acid as food attractant of astigmatid mites, its scope and limitation. Applied Entomology and Zoology 28: 565–569CrossRefGoogle Scholar
Sato, M., Kuwahara, Y., Matsuyama, S. and Suzuki, T. (1993b). 2-Formyl-3-hydroxybenzyl formate (rhizoglyphinyl formate), a novel salicylaldehyde analog from the house dust mite Dermatophagoides pteronyssinus [Astigmata, Pyroglyphidae]. Bioscience, Biotechnology and Biochemistry 57: 1299–1301CrossRefGoogle Scholar
Sato, M., Kuwahara, Y., Matsuyama, S., Suzuki, T., Okamoto, M. and Matsumoto, K. (1993c). Male and female sex pheromones produced by Acarus immobilis Griffiths (Acaridae: Acarina). Chemical ecology of astigmatid mites XXXIV. Naturwissenschaften 80: 34–36CrossRefGoogle Scholar
Shibata, S., Kuwahara, Y., Sato, M., Matsuyama, S. and Suzuki, T. (1998). Sex pheromone activity of 2-hydroxy-6-methylbenzaldehyde analogs against males of two astigmatid mites, Aleuroglyphus ovatus and Acarus immobilis. Journal of Pesticide Science 23: 34–39CrossRefGoogle Scholar
Shimizu, N. and Kuwahara, Y. (2001). 7-Hydroxyphthalide (7-hydroxy isobenzofuranone): a new salicyl lactone from Oulenzia spp. (Astigmata: Winterschmitiidae). Bioscience, Biotechnology and Biochemistry 65: 990–992CrossRefGoogle Scholar
Shimizu, N., Mori, N. and Kuwahara, Y. (1999). Identification of the new hydrocarbon (Z,Z)-1,6,9-heptadecatriene as the secretory component of Caloglyphus polyphyllae (Astigmata: Acaridae). Bioscience, Biotechnology and Biochemistry 63: 1478–1480CrossRefGoogle Scholar
Shimizu, N., Mori, N. and Kuwahara, Y. (2001). Aggregation pheromone activity of the female sex pheromone, β-acaridial, in Caloglyphus polyphyllae (Acari: Acaridae). Bioscience, Biotechnology and Biochemistry 65: 1724–1728CrossRefGoogle Scholar
Shimizu, N., Tarui, H., Mori, N. and Kuwahara, Y. (2003). (E)-2-(2-Hydroxyethylidene)-6-methyl-5-heptenal (α-acariolal) and (E)-2-(2-hydroxyethyl)-6-methyl-2, 5-heptadienal (β-acariolal), two new types of isomeric monoterpenes from Caloglyphus polyphyllae (Acari: Acaridae). Bioscience and Biotechnical Biochemistry 67: 308–313CrossRefGoogle Scholar
Shinkaji, N., Okabe, K., Amano, H. and Kuwahara, Y. (1988). Attractant isolated from culture filtrates of Fusarium oxysporum Schl., f. sp. alli for the robine bulb mite, Rhizoglyphus robini Claparade (Acarina: Acaridae). Japanese Journal of Applied Entomology and Zoology 32: 55–59CrossRefGoogle Scholar
Simpson, T. J. (1980). Biosynthesis of polyketides. In Biosynthesis, vol. 6, ed. J. D. Bullock, London: The Royal Society of ChemistryCrossRef
Suzuki, T., Matsuyama, S. and Kuwahara, Y. (1992). A simple synthesis of α-acaridial. Bioscience, Biotechnology and Biochemistry 56: 1888–1889CrossRefGoogle Scholar
Tatami, K., Mori, N., Nishida, R. and Kuwahara, Y. (2001). 2-Hydroxy-6-methylbenzaldehyde: the female sex pheromone of the house dust mite Dermatophagoides farinae (Astigmata: Pyroglyphidae). Japanese Journal of Sanitary Zoology 52: 269–277Google Scholar
Tarui, H., Ryono, A., Mori, N., Okabe, K. and Kuwahara, Y. (2002). 3-(4-Methyl-3-pentenyl)-2(5H)-furanone, α,α-acariolide and 4-(4-methyl-3-pentenyl)-2(5H)-furanone, α,β-acariolide: new monoterpene lactones from the astigmatid mites, Schwiebea araujoae and Rhizoglyphus sp. (Astigmata: Acaridae). Bioscience, Biotechnology and Biochemistry 66: 135–140CrossRefGoogle Scholar
Tongu, Y., Ishii, A. and Oh, H. (1986). Ultrastructure of house-dust mites, Dermatophagoides farinae and D. pteronyssinus. Japanese Journal of Sanitary Zoology 37: 237–244CrossRefGoogle Scholar
Tuma, D., Sinha, R. N., Muir, W. E. and Abramson, D. (1990). Odor volatiles associated with mite-infested bin-stored wheat. Journal of Chemical Ecology 16:713–724CrossRefGoogle ScholarPubMed
Vanhaelen, M., Vanhaelen, F. R., Geeraerts, J. and Wirtthlin, T. (1979). cis- and trans-Octa-1,5-dien-3-ol, new attractants to the cheese mite Tyrophagus putrescentiae (Schrank) (Acarina, Acaridae) identified in Trichothecium roseum (Fungi imperfecti). Microbios 23: 199–212Google Scholar
Vanhaelen, M., Vanhaelen, F. R. and Geeraerts, J. (1980). Occurrence in mushroom (Homobasidiomycetes) of cis-octa-1,5-dien-3-ol and trans-octa-1,5-dien-3-ol, attractant to the cheese mite Tyrophagus putrescentiae (Schrank) (Acarina, Acaridae). Experientia 36: 406–407CrossRefGoogle Scholar
Yoshizawa, T., Yamamoto, I. and Yamamoto, R. (1970). Attractancy of some methyl ketones isolated from Cheddar cheese for cheese mites. Botyuu-Kagaku 35: 43–45Google Scholar
Yoshizawa, T., Yamamoto, I. and Yamamoto, R. (1971). Synergistic attractancy of cheese components for cheese mites, Tyrophagus putrescentiae. Botyuu-Kagaku 36: 1–7Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×