Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T21:33:39.931Z Has data issue: false hasContentIssue false

5 - Why do flowers smell? The chemical ecology of fragrance-driven pollination

Published online by Cambridge University Press:  07 August 2009

Robert A. Raguso
Affiliation:
Department of Biological Sciences, University of South Carolina at Columbia, USA
Ring T. Cardé
Affiliation:
University of California, Riverside
Jocelyn G. Millar
Affiliation:
University of California, Riverside
Get access

Summary

Introduction

Animal-assisted sexual reproduction in flowering plants–pollination – is a phenomenon in which volatile signal production and chemical communication play important and diverse roles. Plant–pollinator interactions are of paramount importance in terrestrial biology, because they bind together food webs within complex ecosystems (Gilbert, 1980), drive co-adaptive evolution among hundreds of thousands of plant and animal species (Feinsinger, 1983; Williams, 1983), and frequently determine agricultural productivity (Metcalf, 1987; Robacker et al., 1988). Most plant–pollinator relationships are considered to be mutually beneficial, such that plants derive reproductive benefits (pollen export and deposition, fertilization) in exchange for resources (nectar, pollen, oils) that directly or indirectly enhance the pollinator's fitness (Heinrich and Raven, 1972; Proctor et al. 1996). In this context, floral scent functions alone or in conjunction with visual cues (e.g., Ômura et al., 1999a) to attract pollinators, induce them to land, indicate a reward's presence and location, and teach pollinators to associate the reward with specific flowers (reviews: Dobson, 1994; Raguso, 2001).

Recent investigations have uncovered a rich panorama of odor-mediated–plant-pollinator interactions, including cheating and exploitation by either party, as well as third-party interventions by predators of the plant or its pollinator (Nishida et al., 1997; Pellmyr, 1997; Gibernau et al., 1998). Therefore, for modern chemical ecologists, the simple question “why do flowers smell?” has given way to more beguiling questions, such as “why do flowers have different odors?”, “why do flowers change their scents?”, and “why don't flowers have stronger odors?”.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, J. D. (1986). Mechanisms and evolution of food deceptive pollination systems in orchids. Lindleyana 1: 108–113Google Scholar
Ackerman, J. D., Melendez-Ackerman, E. J. and Salguero-Faria, J. (1997). Variation in pollinator abundance and selection on fragrance phenotypes in an epiphytic orchid. American Journal of Botany 84: 1383–1390CrossRefGoogle Scholar
Agelopoulos, N. G. and Pickett, J. A. (1998). Headspace analysis in chemical ecology: effects of different sampling methods on ratios of volatile compounds present in headspace samples. Journal of Chemical Ecology 24: 1161–1172CrossRefGoogle Scholar
Alcock, J. (1998). Animal Behavior: An Evolutionary Approach, 6th edn. Sunderland, MA: Sinauer
Armbruster, W. S. (1990). Estimating and testing adaptive surfaces: the morphology and pollination of Dalechampia blossoms. American Naturalist 135: 14–31CrossRefGoogle Scholar
Armbruster, W. S. (1997). Exaptations link evolution of plant-herbivore and plant-pollinator interactions: a phylogenetic inquiry. Ecology 78: 1661–1672Google Scholar
Ashman, T.-L. and Schoen, D. J. (1994). How long should flowers live?Nature 371: 788–791CrossRefGoogle Scholar
Azuma, H., Toyota, M., Asakawa, Y.et al. (1997). Chemical divergence in floral scents of Magnolia and allied genera (Magnoliaceae). Plant Species Biology 12: 69–83CrossRefGoogle Scholar
Baldwin, I. T. (1999). Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity. Journal of Chemical Ecology 25: 3–30CrossRefGoogle Scholar
Baldwin, I. T., Preston, C., Euler, M. and Gorham, D. (1997). Patterns and consequences of benzyl acetone floral emissions from Nicotiana attenuata plants. Journal of Chemical Ecology 23: 2327–2343CrossRefGoogle Scholar
Barkman, T. J. (2001). Character coding of secondary chemical variation for use in phylogenetic analyses. Biochemical Systematics and Ecology 29: 1–20CrossRefGoogle ScholarPubMed
Barkman, T. J., Beaman, J. H. and Gage, D. A. (1997). Floral fragrance variation in Cypripedium: implications for evolutionary and ecological studies. Phytochemistry 44: 875–882CrossRefGoogle Scholar
Barthell, J. F. and Knops, J. M. H. (1997). Visitation of evening primrose by carpenter bees: evidence of a “mixed” pollination syndrome. Southwestern Naturalist 42: 86–93Google Scholar
Basolo, A. L. (1995). Phylogenetic evidence for the role of a pre-existing bias in sexual selection. Proceedings of the Royal Society of London, Series B 259: 307–311CrossRefGoogle ScholarPubMed
Beker, R., Dafni, A., Eisikowitch, D. and Ravid, U. (1989). Volatiles of two chemotypes of Majorana syriaca L. (Labiatae) as olfactory cues for the honeybee. Oecologia 79: 446–451CrossRefGoogle ScholarPubMed
Blight, M. M., Pickett, J. A., Wadhams, L. J. and Woodcock, C. M. (1995). Antennal perception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera, Curculionidae). Journal of Chemical Ecology 21: 1649–1664CrossRefGoogle Scholar
Blight, M. M., Métayer, M., Pham-Delègue, M.-H., Pickett, J. A., Marion-Poll, F. and Wadhams, L. J. (1997). Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus, by honeybees, Apis mellifera. Journal of Chemical Ecology 23: 1715–1727CrossRefGoogle Scholar
Bohlmann, J., Meyer-Gauen, G. and Croteau, R. (1998). Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences, USA. 95: 4126–4133CrossRefGoogle ScholarPubMed
Borg-Karlson, A.-K. (1990). Chemical and ethological studies of pollination in the genus Ophrys (Orchidaceae). Phytochemistry 29: 1359–1387CrossRefGoogle Scholar
Brantjes, N. B. M. (1976). Senses involved in the visiting of flowers by Cucullia umbratica (Noctuidae: Lepidoptera). Entomologia Experimentalis et Applicata 20: 1–7CrossRefGoogle Scholar
Bronstein, J. L. (1994). Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution 9: 214–217CrossRefGoogle ScholarPubMed
Chittka, L. (1992). The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. Journal of Comparative Physiology A 170: 533–543CrossRefGoogle Scholar
Connick, W. J. and French, R. C. (1991). Volatiles emitted during the sexual stage of the Canada thistle rust fungus and by thistle flowers. Journal of Agricultural and Food Chemistry 39: 185–188CrossRefGoogle Scholar
Crepet, W. L. (1983). The role of insect pollination in the evolution of the angiosperms. In Pollination Biology, ed. L. A. Real, pp. 29–50. Orlando, FL: Academic PressCrossRef
Cresswell, J. E. and Galen, C. (1991). Frequency-dependent selection and adaptive surfaces for floral character combinations: the pollination of Polemonium viscosum. American Naturalist 138: 1342–1353CrossRefGoogle Scholar
Croteau, R. and Karp, F. (1991). Origin of natural odorants. In Perfumes: Art, Science and Technology, eds. P. M. Müller and D. Lamparsky, pp. 101–126. New York: Elsevier
Dafni, A. (1984). Mimicry and deception in pollination. Annual Review of Ecology and Systematics 15: 259–278CrossRefGoogle Scholar
Silva, da U. F., Borba, E. L., Semir, J. and Marsaioli, A. J. (1999). A simple solid injection device for the analyses of Bulbophyllum (Orchidaceae) volatiles. Phytochemistry 50: 31–34CrossRefGoogle Scholar
Delpino, F. (1874). Ulteriori osservazioni e considerazioni sulla dicogamia nel regno vegetale. 2 (IV). Delle piante zoidifile. Atti della Societa Italiana Scientifica Natura 16: 151–349Google Scholar
Moraes, C. M., Lewis, W. D., Paré, P. W., Alborn, H. T. and Tumlinson, J. H. (1998). Herbivore-infested plants selectively attract parasitoids. Nature 393: 570–573CrossRefGoogle Scholar
Dicke, M. (1994). Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism. Journal of Plant Physiology 143: 465–472CrossRefGoogle Scholar
Dobson, H. E. M. (1994). Floral volatiles in insect biology. In Insect–Plant Interactions, vol. 5, ed. E. Bernays, pp. 47–81. Boca Raton, FL: CRC Press
Dobson, H. E. M. and Bergström, L. G. (2000). The ecology and evolution of pollen odors. Plant Systematics and Evolution 222: 63–87CrossRefGoogle Scholar
Dobson, H. E. M., Bergström, L. G. and Groth, I. (1990). Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb. (Rosaceae). Israel Journal of Botany 39: 143–156Google Scholar
Dobson, H. E. M., Groth, I. and Bergström, L. G. (1996). Pollen advertisement: chemical contrasts between whole-flower and pollen odors. American Journal of Botany 83: 877–885CrossRefGoogle Scholar
Dodson, C., Dressler, R., Hills, H., Adams, R. and Williams, N. (1969). Biologically active compounds in orchid fragrances. Science 164: 1243–1249CrossRefGoogle ScholarPubMed
Dornhaus, A. and Chittka, L. (1999). Evolutionary origins of bee dances. Nature 401: 38CrossRefGoogle Scholar
Dressler, R. L. (1982). Biology of the orchid bees (Euglossini). Annual Review of Ecology and Systematics 13: 373–394CrossRefGoogle Scholar
Dudareva, N. and Pichersky, E. (2000). Biochemical and molecular aspects of floral scents. Plant Physiology 122: 627–634CrossRefGoogle ScholarPubMed
Dudareva, N., Piechulla, B. and Pichersky, E. (1999). Biogenesis of floral scent. Horticultural Review 24: 31–54Google Scholar
Dudareva, N., Murfitt, L. M., Mann, C. J.et al. (2000). Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12: 949–961CrossRefGoogle ScholarPubMed
Eisikowitch, D. and Lazar, Z. (1987). Flower change in Oenothera drummondii Hooker as a response to pollinators' visits. Botanical Journal of the Linnean Society 95: 101–111CrossRefGoogle Scholar
Eisikowitch, D. and Rotem, R. (1987). Flower orientation and color change in Quisqualis indica and their possible role in pollinator partitioning. Botanical Gazette 148: 175–179CrossRefGoogle Scholar
Endler, J. A. (1987). Predation, light intensity and courtship behaviour in Poecilia reticulata (Pisces: Poeciliidae). Animal Behaviour 35: 1376–1385CrossRefGoogle Scholar
Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. American Naturalist 139(suppl.): S125–S153CrossRefGoogle Scholar
Endress, P. K. (1990). Diversity and Evolutionary Biology of Tropical Flowers. Cambridge: Cambridge University Press
Erhardt, A. (1993). Pollination of the edelweiss, Leontopodium alpinum. Botanical Journal of the Linnaean Society 111: 229–240CrossRefGoogle Scholar
Euler, M. and Baldwin, I. T. (1996). The chemistry of defense and apparency in the corollas of Nicotiana attenuata. Oecologia 107: 102–112CrossRefGoogle Scholar
Evans, K. A. and Allen-Williams, L. J. (1992). Electroantennogram responses of the cabbage seed weevil, Ceutorrhynchus assimilis, to oilseed rape, Brassica napus ssp. oleifera, volatiles. Journal of Chemical Ecology 18: 1641–1659CrossRefGoogle ScholarPubMed
Faegri, K. and van der Pijl, L. (1979). The Principles of Pollination Ecology, 3rd edn. Oxford: Pergamon Press
Fäldt, J., Eriksson, M., Valterová, I. and Borg-Karlson, A.-K. (2000). Comparison of headspace techniques for sampling volatile natural products in a dynamic system. Verlag der Zeitschrift für Naturforschung 55c: 180–188Google Scholar
Farmer, E. E. (2001). Surface to air signals. Nature 411: 854–856CrossRefGoogle ScholarPubMed
Feinsinger, P. (1983). Coevolution and pollination. In Coevolution, eds. D. J. Futuyma and M. Slatkin, pp. 282–310. Sunderland, MA: Sinauer
Feng, Z. F., Huber, U. and Boland, W. (1993). Biosynthesis of the irregular C-12-terpenoiddehydrogeosmin in flower heads of Rebutia marsoneri Werd (Cactaceae). Helvetica Chimica Acta 76: 2547–2552CrossRefGoogle Scholar
Gäbler, A., Boland, W., Preiss, U. and Simon, H. (1991). Stereochemical studies on homoterpene biosynthesis in higher plants; mechanistic, phylogenetic and ecological aspects. Helvetica Chimica Acta 74: 1773–1789CrossRefGoogle Scholar
Galen, C. (1983). The effects of nectar thieving ants on seedset in floral scent morphs of Polemonium viscosum. Oikos 41: 245–249CrossRefGoogle Scholar
Galen, C. (1985). Regulation of seed set in Polemonium viscosum: floral scents, pollination and resources. Ecology 6: 792–797CrossRefGoogle Scholar
Galen, C. (1996). Rates of floral evolution: adaptation to bumblebee pollination in an alpine wildflower, Polemonium viscosum. Evolution 50: 120–125CrossRefGoogle Scholar
Galen, C. (1999). Flowers and enemies: predation by nectar thieving ants in relation to variation in floral form of an alpine wildflower, Polemonium viscosum. Oikos 85: 426–434CrossRefGoogle Scholar
Galen, C. and Kevan, P. G. (1983). Bumblebee foraging and floral scent dimorphism: Bombus kirbyellus Curtis (Hymenoptera: Apidae) and Polemonium viscosum Nutt. (Polemoniaceae). Canadian Journal of Zoology 61: 1207–1213CrossRefGoogle Scholar
Galen, C. and Newport, M. E. (1988). Pollination quality, seed set and flower traits in Polemonium viscosum: complementary effects of variation in flower scent and size. American Journal of Botany 75: 900–905CrossRefGoogle Scholar
Galen, C., Zimmer, K. A. and Newport, M. E. (1987). Pollination in floral scent morphs of Polemonium viscosum: a mechanism for disruptive selection on flower size. Evolution 41: 599–606Google ScholarPubMed
Galizia, C. G. and Menzel, R. (2000). Odour perception in honeybees: coding information in glomerular patterns. Current Opinion in Neurobiology 10: 504–510CrossRefGoogle ScholarPubMed
Galizia, C. G., Sachse, S., Rappert, A. and Menzel, R. (1999). The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nature Neuroscience 2: 473–478CrossRefGoogle ScholarPubMed
Galizia, C. G., Sachse, S. and Mustaparta, H. (2000). Calcium responses to pheromones and plant odours in the antennal lobe of the male and female moth Heliothis virescens. Journal of Comparative Physiology A 186: 1049–1063CrossRefGoogle ScholarPubMed
Gershenzon, J. and Croteau, R. (1993). Terpenoid biosynthesis: the basic pathway and formation of monoterpenes, sesquiterpenes and diterpenes. In Lipid Metabolism in Plants, ed. T. S. Moore Jr, pp. 339–388. Boca Raton, FL: CRC Press
Gibernau, M., Hossaert-McKey, M., Frey, J. and Kjellberg, F. (1998). Are olfactory signals sufficient to attract fig pollinators?Ecoscience 5: 306–311CrossRefGoogle Scholar
Gilbert, L. E. (1980). Food web organization and the conservation of Neotropical diversity. In Conservation Biology, eds. M. E. Soulé and B. A. Wilcox, pp. 11–33. Sunderland, MA: Sinauer
Gill, D. E. (1989). Fruiting failure, pollinator inefficiency and speciation in orchids. In Speciation and its Consequences, eds. D. Otte and J. A. Endler. pp. 458–481. Sunderland MA: Sinauer
Gottsberger, G. (1999). Pollination and evolution in neotropical Annonaceae. Plant Species Biology 14: 143–152CrossRefGoogle Scholar
Gottsberger, G. and Silberbauer-Gottsberger, I. (1991). Olfactory and visual attraction of Erioscelis emarginata (Cyclocephalini, Dynastinae) to the inflorescences of Philodendron selloum (Araceae). Biotropica 23: 23–28CrossRefGoogle Scholar
Goulson, D., Hawson, S. A. and Stout, J. C. (1998). Foraging bumblebees avoid flowers already visited by conspecifics or by other bumblebee species. Animal Behaviour 55: 199–206CrossRefGoogle ScholarPubMed
Goulson, D., Stout, J. C., Langley, J. and Hughes, W. O. H. (2000). Identity and function of scent marks deposited by foraging bumblebees. Journal of Chemical Ecology 26: 2897–2911CrossRefGoogle Scholar
Haber, W. A. (1984). Pollination by deceit in a mass-flowering tropical tree Plumeria rubra L. (Apocynaceae). Biotropica 16: 269–275CrossRefGoogle Scholar
Haber, W. A. and Frankie, G. W. (1989). A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica 21: 155–172CrossRefGoogle Scholar
Hallberg, E. and Hansson, B. S. (1999). Arthroped sensilla: morphology and phylogenetic considerations. Microscopy Research and Technique 47: 428–4393.0.CO;2-P>CrossRefGoogle Scholar
Hansson, B. S. (ed.) (1999). Insect Olfaction. Berlin: Springer
Hansson, B. S. and Anton, S. (2000). Function and morphology of the antennal lobe: new developments. Annual Review of Entomology 45: 203–231CrossRefGoogle ScholarPubMed
Hansson, B. S., Larsson, M. D. and Leal, W. S. (1999). Green leaf volatile-detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiological Entomology 24: 121–126CrossRefGoogle Scholar
Hansted, L., Jakobsen, H. B. and Olsen, C. E. (1994). Influence of temperature on the rhythmic emission of volatiles from Ribes nigrum flowers in situ. Plant, Cell and Environment 17: 1069–1072CrossRefGoogle Scholar
Haynes, K. F., Zhao, J. Z. and Latif, A. (1991). Identification of floral compounds from Abelia grandiflora that stimulate upwind flight in cabbage looper moths. Journal of Chemical Ecology 17: 637–646CrossRefGoogle Scholar
Heath, R. R. and Dueben, B. D. (1998). Analytical and preparative gas chromatography. In Methods in Chemical Ecology, vol. 1: Chemical Methods, eds. J. G., Millar and K. F. Haynes, pp. 85–126. New York: Chapman & HallCrossRef
Heath, R. R. and Manukian, A. (1994). An automated system for use in collecting volatile chemicals released from plants. Journal of Chemical Ecology 20: 593–608CrossRefGoogle ScholarPubMed
Heath, R. R., Landolt, P. J., Dueben, B. and Senczewski, B. (1992). Identification of floral compounds of night-blooming jessamine attractive to cabbage looper moths. Environmental Entomology 21: 854–859CrossRefGoogle Scholar
Heinrich, B. and Raven, P. H. (1972). Energetics and pollination ecology. Science 176: 597–602CrossRefGoogle ScholarPubMed
Helsper, J. P. F. G., Davies, J. A., Bouwmeester, H. J., Krol, A.;F and Kampen, M. V. (1998). Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207: 88–95CrossRefGoogle Scholar
Henning, J. A. and Teuber, L. R. (1992). Combined gas chromatography-electro-antennogram characterization of alfalfa floral volatiles recognized by honey bees (Hymenoptera: Apidae). Journal of Economic Entomology 85: 226–232CrossRefGoogle Scholar
Henning, J. A., Peng, Y.-S., Montague, M. A. and Teuber, L. R. (1992). Honey bee (Hymenoptera: Apidae) behavioral response to primary alfalfa (Rosales: Fabaceae) floral volatiles. Journal of Economic Entomology 85: 233–239CrossRefGoogle Scholar
Herrera, C. M. (1996). Floral traits and plant adaptation to insect pollinators: a devil's advocate approach. In Floral Biology, eds. S. C. H. Barrett and D. G. Lloyd, pp. 65–87. New York: Chapman & HallCrossRef
Hick, A. J., Luszniak, M. C. and Pickett, J. A. (1999). Volatile isoprenoids that control insect behaviour and development. Natural Product Reports 16: 39–54CrossRefGoogle Scholar
Hildebrand, J. G. and Shepherd, G. M. (1997). Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annual Review of Neuroscience 20: 595–631CrossRefGoogle ScholarPubMed
Hills, H. G. (1989). Fragrance cycling in Stanhopea pulla (Orchidaceae, Stanhopeinae) and identification of trans-limonene oxide as a major fragrance component. Lindleyana 4: 61–67Google Scholar
Hills, H. G., Williams, N. H. and Dodson, C. H. (1972). Floral fragrances and isolating mechanisms in the genus Catasetum (Orchidaceae). Biotropica 4: 61–76CrossRefGoogle Scholar
Honda, K, Ômura, H. and Hayashi, N. (1998). Identification of floral volatiles from Ligustrum japonicum that stimulate flower visiting by cabbage butterfly, Pieris rapae. Journal of Chemical Ecology 24: 2167–2180CrossRefGoogle Scholar
Jakobsen, H. B. and Olsen, C. E. (1994). Influence of climatic factors on emission of flower volatiles in situ. Planta 192: 365–371CrossRefGoogle Scholar
Janzen, D. H. (1971). Euglossine bees as long distance pollinators of tropical plants. Science 171:203–205CrossRefGoogle ScholarPubMed
Janzen, D. H. (1981). Visitor and pollinator abundance at two Costa Rican female Catasetum orchid inflorescences. Oikos 36: 177–183CrossRefGoogle Scholar
Johnson, S. D. and Steiner, K. E. (2000). Generalization versus specialization in plant pollination systems. Trends in Ecology and Evolution 15: 140–143CrossRefGoogle ScholarPubMed
Johnstone, R. A. (1998). Conspiratorial whispers and conspicuous displays: games of signal detection. Evolution 52: 1554–1563CrossRefGoogle ScholarPubMed
Jungers, T. and Bergelson, J. (1997). Pollen and resource limitation of compensation to herbivory in scarlet gilia, Ipomopsis aggregata. Ecology 78: 1684–1695CrossRefGoogle Scholar
Kaiser, R. (1991). Trapping, investigation and reconstitution of flower scents. In Perfumes: Art, Science and Technology, eds. P. M. Müller and D. Lamparsky, pp. 213–250. London: Elsevier Applied Science
Kaiser, R. (1993). The Scent of Orchids. Amsterdam: Elsevier Science
Kaiser, R. (1995). New or uncommon volatile compounds in floral scents. Proceedings of the 13th International Congress of Flavours, Fragrances and Essential Oils, pp. 135–168Google ScholarPubMed
Kaiser, R. (1997). Environmental scents at the Ligurian coast. Perfumer and Flavorist 22: 7–18Google Scholar
Kaiser, R. and Nussbaumer, C. (1990). 1,2,3,4,4A,5,8,8A-Octahydro-4-β,8A-α-dimethylnaphthalen-4A-β-O (= dehydrogeosmin), a novel compound occurring in the flower scent of various species of Cactaceae. Helvetica Chimica Acta 73: 133–139CrossRefGoogle Scholar
Kaiser, R. and Tollsten, L. (1995). An introduction to the scent of cacti. Flavour and Fragrance Journal 10: 153–164CrossRefGoogle Scholar
Karban, R. and Baldwin, I. T. (1997). Induced Responses to Herbivory. Chicago, IL: Chicago University Press
Kerner von Marilaum, A. (1895). The Natural History of Plants: Their Forms, Growth, Reproduction and Distribution. London: Blackie and Son
Kirkpatrick, M. and Ryan, M. A. (1991). The evolution of mating preferences and the paradox of the lek. Nature 350: 33–38CrossRefGoogle Scholar
Kite, G. C. and Hetterschieid, W. L. A. (1997). Inflorescence odours of Amorphophallus and Pseudodracontium (Araceae). Phytochemistry 46: 71–75CrossRefGoogle Scholar
Knudsen, J. T. and Tollsten, L. (1993). Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Botanical Journal of the Linnaean Society 113: 263–284CrossRefGoogle Scholar
Knudsen, J. T., Tollsten, L and Bergström, L. G. (1993). Floral scents: a check list of volatile compounds isolated by head-space techniques. Phytochemistry 33: 253–280CrossRefGoogle Scholar
Knuth, P. (1906). Handbook of Flower Pollination, vol. 1. [Based upon Hermann Müller's work The Fertilization of Flowers by Insects.] Oxford: Clarendon PressCrossRef
Kullenberg, B. and Bergström, L. G. (1976). The pollination of Ophrys orchids. Botaniska Notiser 129: 11–19Google Scholar
Lande, R. (1981). Models of speciation by sexual selection of polygenic traits. Proceedings of the National Academy of Sciences, USA. 78: 3721–3725CrossRefGoogle ScholarPubMed
Laurent, G. (1999). A systems perspective on early olfactory codingScience 286: 723–726CrossRefGoogle Scholar
Mètayer, M., Marion-Poll, F., Sandoz, J. C.et al. (1997). Effect of conditioning on discrimination of oilseed rape volatiles by the honeybee: use of a combined gas chromatography-proboscis extension behavioral assay. Chemical Senses 22: 391–398CrossRefGoogle Scholar
Levin, R.;D, Raguso, R. A. and McDade, L. A. (2001). Fragrance chemistry and pollinator affinities in Nyctaginaceae. Phytochemistry 58: 429–440CrossRefGoogle ScholarPubMed
Lex, T. (1954). Duftmale an blüten. Zeitschrift für Vergleichende Physiologie 36: 212–234CrossRefGoogle Scholar
Loughrin, J. H., Hamilton-Kemp, T.;D, Andersen, R. A. and Hildebrand, D. F. (1991). Circadian rhythm of volatile emission from flowers of Nicotiana sylvestris and N. suaveolens. Physiologia Plantarum 83: 492–496CrossRefGoogle Scholar
Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C. J. and Tumlinson, J. H. (1994). Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proceedings of the National Academy of Sciences, USA 91: 11836–11840CrossRefGoogle Scholar
Lunau, K. (1992). Evolutionary aspects of perfume collection in male euglossine bees (Hymenoptera) and of nest deception in bee-pollinated flowers. Chemoecology 3: 65–73CrossRefGoogle Scholar
MacTavish, H. S., Davies, N. W. and Menary, R. C. (2000). Emission of volatiles from brown Boronia flowers: some comparative observations. Annals of Botany 86: 347–354CrossRefGoogle Scholar
Maekawa, M., Imai, T., Tsuchiya, S., Fujimori, T. and Leal, W. S. (1999). Behavioral and electrophysiological responses of the soybean beetle, Anomala rufocuprea Motschulsky (Coleoptera: Scarabaeidae) to methyl anthranilate and its related compounds. Applied Entomology and Zoology 34: 99–103CrossRefGoogle Scholar
Marion-Poll, F. and Thièry, D. (1996). Dynamics of EAG responses to host plant volatiles delivered by gas-chromatograph. Entomologia Experimentalis et Applicata 80: 120–123CrossRefGoogle Scholar
Matile, P. and Altenburger, R. (1988). Rhythms of fragrance emission in flowers. Planta 174: 242–247CrossRefGoogle ScholarPubMed
Mayer, M. S., Mankin, R. W. and Lemire, G. F. (1984). Quantitation of the insect electro-antennogram: measurement of sensillar contributions, elimination of background potentials and relationship to olfactory sensation. Journal of Insect Physiology 30: 757–763CrossRefGoogle Scholar
Meeuse, B. J. D. and Raskin, I. (1988). Sexual reproduction in the arum lily family, with emphasis on thermogenicity. Sexual Plant Reproduction 1: 3–15CrossRefGoogle Scholar
Metcalf, R. L. (1987). Plant volatiles as insect attractants. CRC Critical Reviews in Plant Sciences 5: 251–301CrossRefGoogle Scholar
Metcalf, R. L. and Metcalf, E. R. (1992). Plant Kairomones in Insect Ecology and Control. New York: Chapman & Hall
Miyake, T. and Yahara, T. (1998). Why does the flower of Lonicera japonica open at dusk?Canadian Journal of Botany 76: 1806–1811CrossRefGoogle Scholar
Miyake, T., Yamaoka, R. and Yahara, T. (1998). Floral scents of hawkmoth-pollinated flowers in Japan. Journal of Plant Research 111: 199–205CrossRefGoogle Scholar
Morgan, A. and Lyon, S. (1928). Notes on armyl salicylate as an attractant to the tobacco hornworm moth. Journal of Economic Entomology 21: 189–191CrossRefGoogle Scholar
Mothershead, K. and Marquis, R. J. (2000). Fitness impacts of herbivory through indirect effects on plant-pollinator interactions in Oenothera macrocarpa. Ecology 81: 30–40Google Scholar
Motten, A. F. and Antonovics, J. (1992). Determinants of outcrossing rate in a predominantly self-fertilizing weed, Datura stramonium (Solanaceae). American Journal of Botany 79: 419–427CrossRefGoogle Scholar
Moya, S. and Ackerman, J. D. (1993). Variation in the floral fragrance of Epidendrum ciliare (Orchidaceae). Nordic Journal of Botany 13: 41–47CrossRefGoogle Scholar
Murren, C. J. and Ellison, A. M. (1996). Effects of habitat, plant size and floral display on male and female reproductive success of the Neotropical orchid, Brassavola nodosa. Biotropica 28: 30–40CrossRefGoogle Scholar
Nielsen, J. K., Jakobsen, H. B., Friis, P., Hansen, K., M⊘ller, J. and Olsen, C. E. (1995). Asynchronous rhythms in the emission of volatiles from Hesperis matronalis flowers. Phytochemistry 38: 847–851CrossRefGoogle Scholar
Nilsson, L. A. (1992). Orchid pollination biology. Trends in Ecology and Evolution, 7: 255–259CrossRefGoogle Scholar
Nilsson, L. A., Jonsson, L., Rason, L. and Randrianjohany, E. (1985). Monophily and pollination mechanisms in Angraecum arachnites Schltr. (Orchidaceae) in a guild of long-tongued hawk-moths (Sphingidae) in Madagascar. Biological Journal of the Linnaean Society 26: 1–19CrossRefGoogle Scholar
Nishida, R., Shelly, T. E. and Kaneshiro, K. Y. (1997). Acquisition of female-attracting fragrance by males of oriental fruit fly from a Hawaiian lei flower, Fagraea berteriana. Journal of Chemical Ecology 23: 2275–2285CrossRefGoogle Scholar
Ollerton, J. (1996). Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. Journal of Ecology 84: 767–769CrossRefGoogle Scholar
Ômura, H., Honda, K. and Hayashi, N. (1999a). Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. Journal of Chemical Ecology 25: 1895–1906CrossRefGoogle Scholar
Ômura, H., Honda, K., Nakagawa, A., and Hayashi, N. (1999b). The role of floral scent of the cherry tree, Prunus yedoensis, in the foraging behavior of Luehdorfia japonica (Lepidoptera; Papilionidae). Applied Entomology and Zoology 34: 309–313CrossRefGoogle Scholar
Ômura, H., Honda, K. and Hayashi, N. (2000). Floral scent of Osmanthus fragrans discourages foraging behavior of cabbage butterfly, Pieris rapae. Journal of Chemical Ecology 26: 655–666CrossRefGoogle Scholar
Overland, L. (1960). Endogenous rhythm in opening and odor of flowers of Cestrum nocturnum. American Journal of Botany 47: 378–382CrossRefGoogle Scholar
Paré, P. W. and. Tumlinson, J. H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiology 121: 325–331CrossRefGoogle ScholarPubMed
Patt, J. M., Hartman, T. G., Creekmore, R. W.et al. (1992). The floral odour of Peltandra virginica contains novel trimethyl-2,5-dioxabicyclo[3.2.1.]nonanes. Phytochemistry 31: 487–491CrossRefGoogle Scholar
Paulus, H. F. and Gack, C. (1990). Pollinators as prepollinating isolation factors: evolution and speciation in Ophrys (Orchidaceae). Israel Journal of Botany 39: 43–79Google Scholar
Peakall, R. (1990). Responses of male Zaspilothynnus trilobatus Turner wasps to females and the sexually deceptive orchid it pollinates. Functional Ecology 4: 159–167CrossRefGoogle Scholar
Peakall, R. and Beattie, A. J. (1996). Ecological and genetic consequences of pollination by sexual deception in the orchid Caladenia tentactulata. Evolution 50: 2207–2220CrossRefGoogle ScholarPubMed
Pellmyr, O. (1997). Stability of plant-animal mutualisms: keeping the benefactors at bay. Trends in Plant Science 2: 408–409CrossRefGoogle Scholar
Pellmyr, O. and Thien, L. B. (1986). Insect reproduction and floral fragrances: keys to the evolution of the angiosperms?Taxon 35: 76–85CrossRefGoogle Scholar
Pellmyr, O., Tang, W., Groth, I., Bergström, L. G. and Thien, L. B. (1991). Cycad cone and angiosperm volatiles: inferences for the evolution of insect pollination. Biochemical Systematics and Ecology 19: 623–627CrossRefGoogle Scholar
Pham-Delègue, M.-H., Blight, M. M., Kerguelen, V.et al. (1997). Discrimination of oilseed rape volatiles by the honeybee: combined chemical and biological approaches. Entomologia Experimentalis et Applicata 83: 87–92CrossRefGoogle Scholar
Piechulla, B. (1993). Circadian clock directs the expression of plant genes. Plant Molecular Biology 22: 533–542CrossRefGoogle ScholarPubMed
Priesner, E. (1973). Reaktionen von Riechrezeptoren männlicher Solitärbienen (Hymenoptera, Apoidea) auf Inhaltsstoffe von Ophrys-Blüten. Zoon Supplement 1: 3–54Google Scholar
Proctor, M., Yeo, P. and Lack, A. (1996). The Natural History of Pollination. Portland, OR: Timber Press
Raguso, R. A. (2001). Floral scent, olfaction and scent-driven foraging behavior. In Cognitive Ecology of Pollination; Animal Behavior and Floral Evolution, eds. L. Chittka and J. D. Thomson, pp. 83–105, Cambridge: Cambridge University PressCrossRef
Raguso, R. A. (2004). Why are some floral nectars scented? Ecology, in press
Raguso, R. A. and Pichersky, E. (1999). A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants. Plant Species Biology 14: 95–120CrossRefGoogle Scholar
Raguso, R. A. and Roy, B. A. (1998). “Floral” scent production by Puccinia rust fungi that mimic flowers. Molecular Ecology 7: 1127–1136CrossRefGoogle ScholarPubMed
Raguso, R. A. and Willis, M. A. (2003). Hawkmoth pollination in Arizona's Sonoran Desert: behavioral responses to floral traits. In Evolution and Ecology Taking Flight: Butterflies as Model Systems, ch. 3, eds. C. L. Boggs, W. B. Watt. and P. R. Ehrlich. Rocky Mountain Biological Laboratory Symposium Series. Chicago, IL: University of Chicago Press
Raguso, R. A., Light, D. M. and Pichersky, E. (1996). Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to floral volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. Journal of Chemical Ecology 22: 1735–1766CrossRefGoogle Scholar
Raskin, I., Turner, I. and Melander, W. R. (1989). Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proceedings of the National Academy of Sciences, USA 86: 2214–2218CrossRefGoogle ScholarPubMed
Robacker, D. C., Meeuse, B. J. D. and Erickson, E. H. (1988). Floral aroma: how far will plants go to attract pollinators?BioScience 38: 390–398CrossRefGoogle Scholar
Roy, B. A. and Raguso, R. A. (1997). Olfactory vs. visual cues in a floral mimicry system. Oecologia 109: 414–426CrossRefGoogle Scholar
Ryan, M. J. (1990). Sexual selection, sensory systems and sensory exploitation. Oxford Surveys in Evolutionary Biology 7: 156–195Google Scholar
Ryan, M. J. and Rand, A. S. (1993). Sexual selection and signal evolution: the ghost of biases past. Philosophical Transactions of the Royal Society, Series B 340: 187–195CrossRefGoogle Scholar
Sachse, S., Rappert, A. and Galizia, C. G. (1999). The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. European Journal of Neuroscience 11: 3970–3982CrossRefGoogle ScholarPubMed
Schade, F., Legge, R. L. and Thompson, J. E. (2001). Fragrance volatiles of developing and senescing carnation flowers. Phytochemistry 56: 703–710CrossRefGoogle ScholarPubMed
Schatz, G. E. (1990). Some aspects of pollination biology in Central American forests. In Reproductive Ecology of Tropical Forest Plants, eds. K. S. Bawa, and M. Hadley, pp. 69–84. Paris: UNESCO/Parthenon Publishing
Schemske, D. W. and Horvitz, C. C. (1984). Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225: 519–521CrossRefGoogle ScholarPubMed
Schiestl, F. P. and Ayasse, M. (2001). Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximizing reproductive success?Oecologia 126: 531–534CrossRefGoogle Scholar
Schiestl, F. P. and Marrion-Poll, F. (2002). Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography. In Molecular Methods of Plant Analysis, vol. 21, Analysis of Taste and Aroma, eds. J. F. Jackson, H. F. Linskens, and R. Inman, pp. 173–198. Berlin: SpringerCrossRef
Schiestl, F. P., Ayasse, M., Paulus, H. F., Erdmann, D. and Francke, W. (1997). Variation of floral scent emission and post-pollination changes in individual flowers of Ophrys sphegodes. Journal of Chemical Ecology 23: 2881–2895CrossRefGoogle Scholar
Schiestl, F. P., Ayasse, M., Paulus, H. D.et al. (1999). Orchid pollination by sexual swindle. Nature 399: 421–422CrossRefGoogle Scholar
Schiestl, F. P., Ayasse, M., Paulus, H. D.et al. (2000). Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. Journal of Comparative Physiology A 186: 567–574CrossRefGoogle ScholarPubMed
Schlumpberger, B. O. (2002). Dehydrogeosmin produzierende kakfeen: Untersuchungen zur Verbreitung, Duftstoff-produktion und Bestänbung. PhD Thesis, University of Bonn, Germany
Schmid, J. and Amrhein, N. (1995). Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39: 737–749CrossRefGoogle Scholar
Schnitzler, J.-P., Madlung, J., Rose, A. and Seitz, H. U. (1992). Biosynthesis of p-hydroxybenzoic acid in elicitor-treated carrot cell cultures. Planta 188: 594–600CrossRefGoogle ScholarPubMed
Schreier, P. (1984). Chromatographic Studies of Biogenesis of Plant Volatiles. Heidelberg: Alfred Hüthig Verlag
Seymour, R. S. and Schultze-Motel, P. (1999). Respiration, temperature regulation and energetics of thermogenic inflorescences of the dragon lily Dracunculus vulgaris (Araceae). Proceedings of the Royal Society of London, Series B 266: 1975–1983CrossRefGoogle Scholar
Skubatz, H., Kunkel, D. D., Patt, J. M., Howald, W. N., Hartman, T. G. and Meeuse, B. J. D. (1995). Pathway of terpene excretion by the appendix of Sauromatum guttatum. Proceedings of the National Academy of Sciences, USA. 92: 10084–10088CrossRefGoogle ScholarPubMed
Skubatz, H., Kunkel, D. D., Howald, W. N., Trenkle, R and Mookherjee, B. (1996). The Sauromatum guttatum appendix as an osmophore: excretory pathways, composition of volatiles and attractiveness of insects. New Phytologist 134: 631–640CrossRefGoogle Scholar
Smart, L. E. and Blight, M. M. (2000). Response of the pollen beetle, Meligethes aeneus, to traps baited with volatiles from oilseed rape, Brassica napus. Journal of Chemical Ecology 26: 1051–1064CrossRefGoogle Scholar
Staudamire, W. P. (1983). Wasp-pollinated species of Caladenia (Orchidaceae) in Southwestern Australia. Australian Journal of Botany 31: 383–394CrossRefGoogle Scholar
Steele, C. L., Crock, J., Bohlmann, J. and Croteau, R. (1998). Sesquiterpene synthases from grand fir (Abies grandis): comparison of constitutive and wound-induced activities, and cDNA isolation, characterization and bacterial expression of δ-selinene synthase and γ-humulene synthase. Journal of Biological Chemistry 273: 2078–2089CrossRefGoogle ScholarPubMed
Stránský, K. and Valterová, I. (1999). Release of volatiles during the flowering period of Hydrosme rivieri (Araceae). Phytochemistry 52: 1387–1390CrossRefGoogle Scholar
Strauss, S. Y. (1997). Floral characters link herbivores, pollinators and plant fitness. Ecology 78: 1640–1645CrossRefGoogle Scholar
Struble, D. L. and Arn, H. (1984). Combined gas chromatography and electroantennogram recording of insect olfactory responses. In Techniques in Pheromone Research, eds. H. E. Hummel and T. A. Miller, pp. 161–178. New York: Springer-VerlagCrossRef
Thièry, D., Bluet, J. M., Pham-Delègue, M.-H., Etiévant, P. and Masson, C. (1990). Sunflower aroma detection by the honeybee: study by coupling gas chromatography and electroantennography. Journal of Chemical Ecology 16: 701–711CrossRefGoogle ScholarPubMed
Tollsten, L. (1993). A multivariate approach to post-pollination changes in the floral scent of Platanthera bifolia (Orchidaceae). Nordic Journal of Botany 13: 495–499CrossRefGoogle Scholar
Tollsten, L. and Bergström, L. G. (1989). Variation and post-pollination changes in floral odours released by Platanthera bifolia (Orchidaceae). Nordic Journal of Botany 9: 359–362CrossRefGoogle Scholar
Tollsten, L., Knudsen, J. T. and Bergström, L. G. (1994). Floral scent in generalistic Angelica (Apiaceae): an adaptive character?Biochemical Systematics and Ecology 22: 161–169CrossRefGoogle Scholar
Pijl, L. (1960). Ecological aspects of flower evolution. I. Evolution 14: 403–416CrossRefGoogle Scholar
Vogel, S. (1954). Blütenbiologische Typen als Elemente der Sippengliederung. Jena: Fischer
Vogel, S. (1963). The Role of Scent Glands in Pollination. Rotterdam: A. A. Balkema
Vogel, S. (1978). Evolutionary shifts from reward to deception in pollen flowers. In The Pollination of Flowers by Insects, ed. A. J. Richards, pp. 89–96. London: Academic Press
Vogel, S. (1983). Ecophysiology of zoophilic pollination. In Encyclopedia of Plant Physiology; Physiological Plant Ecology III, eds. O. L. Lang, P. S. Nobel, C. B. Osmond and H. Ziegler, pp. 559–624. Berlin: SpringerCrossRef
Wadhams, L. J., Blight, M. M., Kerguelen, V.et al. (1994). Discrimination of oilseed rape volatiles by honey bee: novel combined gas chromatographic-electrophysiological behavioral assay. Journal of Chemical Ecology 20: 3221–3231CrossRefGoogle ScholarPubMed
Waser, N.;M and Price, M. V. (1994). Crossing-distance effects in Delphinium nelsonii: outbreeding and inbreeding depression in progeny fitness. Evolution 48: 842–852Google ScholarPubMed
Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. and Ollerton, J. (1996). Generalization in pollinator systems, and why it matters. Ecology 77: 1043–1060CrossRefGoogle Scholar
Weiss, M. R. (1991). Floral colour changes as cues for pollinators. Nature 354: 227–229CrossRefGoogle Scholar
Weiss, M. R. (1995). Floral color change: a widespread functional convergence. American Journal of Botany 82: 167–185CrossRefGoogle Scholar
Whitten, W. M., Williams, N. H., Armbruster, W. S., Battiste, M. A., Strekowski, L. and Lindquist, N. (1986). Carvone oxide: an example of convergent evolution in euglossine pollinated plants. Systematic Botany 11: 222–228CrossRefGoogle Scholar
Williams, N. H. (1983). Floral fragrances as cues in animal behavior. In Handbook of Experimental Pollination Biology, eds. C. E. Jones, and R. J. Little, pp. 51–69. New York: Van Nostrand-Reinhold
Williams, N. H. and Whitten, W. M. (1983). Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biological Bulletin 164: 355–395CrossRefGoogle Scholar
Williams, N. H. and Whitten, W. M. (1999). Molecular phylogeny and floral fragrances of male euglossine bee-pollinated orchids: a study of Stanhopea (Orchidaceae). Plant Species Biology 14: 129–136CrossRefGoogle Scholar
Winter, Y. and von Helversen, O. (2001). Bats as pollinators: foraging energetics and floral adaptations. In Cognitive Ecology of Pollination; Animal Behavior and Floral Evolution, eds. L. Chittka and J. D. Thomson, pp. 148–170. Cambridge: Cambridge University PressCrossRef
Young, H. J. (1988). Differential importance of beetle species pollinating Dieffenbachia longispatha (Araceae). Ecology 69: 832–844CrossRefGoogle Scholar
Zhang, Z., Yang, M. and Pawliszyn, J. (1994). Solid phase microextraction, a solvent-free alternative for sample preparation. Analytical Chemistry 66: 844ACrossRefGoogle Scholar
Zuk, M., Rotenberry, J. T. and Simmons, L. W. (1998). Calling songs of field crickets with and without phonotactic parasitoid infection. Evolution 52: 166–171Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×