Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T12:00:24.427Z Has data issue: false hasContentIssue false

12 - Methods for the Analysis of Copy Number Data in Cancer Research

Published online by Cambridge University Press:  05 June 2013

Bradley M. Broom
Affiliation:
The University of Texas
Kim-Anh Do
Affiliation:
The University of Texas
Melissa Bondy
Affiliation:
Baylor College of Medicine
Patricia Thompson
Affiliation:
University of Arizona
Kevin Coombes
Affiliation:
The University of Texas
Kim-Anh Do
Affiliation:
University of Texas, MD Anderson Cancer Center
Zhaohui Steve Qin
Affiliation:
Emory University, Atlanta
Marina Vannucci
Affiliation:
Rice University, Houston
Get access

Summary

Introduction

Cancers are fundamentally caused by genomic changes in the cancer cells that lead to their uncontrolled growth (Balmain et al., 2003; Stratton et al., 2009). Understanding these changes, which include DNA copy number alterations, is an intense focus of current research into the causes of, and potential therapies for, every type of cancer. Major research projects, such as the Cancer Genome Atlas (TCGA) project (The Cancer Genome Atlas Research Network, 2008), aim to comprehensively catalog all genomic changes in cancer. This chapter discusses the problem of interpreting copy number data, specifically in the context of cancer research.

To measure copy number, whole-genome genotyping array assays hybridize sample DNA to oligonucleotides deposited on the array. Modern designs use synthetic oligonucleotides to measure copy number at frequent intervals along the genome, especially in regions of known copy number variation. Modern arrays also include many probes that target both alleles of a large number of common single-nucleotide polymorphisms (SNPs). These platforms are therefore widely used in genotyping studies. Array-based assays available for measuring genome-wide copy number include arrays from Illumina, Sentrix, Agilent, and Affymetrix. Data from next-generation sequencing of DNA can also be used to detect copy number alterations and is rapidly becoming cost competitive with array-based platforms.

Molecular inversion probe (MIP) arrays (Wang et al., 2007, 2009; Ji and Welch, 2009) are another platform that can be used for large-scale copy number analysis and genotyping. MIP technology uses less DNA, can handle lower quality DNA, has a greater dynamic range, has higher quality markers, and better separates allelic information than other array-based approaches.

Type
Chapter
Information
Advances in Statistical Bioinformatics
Models and Integrative Inference for High-Throughput Data
, pp. 244 - 271
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×