Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T09:02:24.756Z Has data issue: false hasContentIssue false

8 - Gaseous Pollutants

Published online by Cambridge University Press:  19 June 2019

Christian Seigneur
Affiliation:
École des Ponts Paris Tech
Get access

Summary

Several gaseous chemical species may lead to adverse health effects and, therefore, several of those are regulated. Brief descriptions of those chemical species, including their major sources and atmospheric fate, are presented. Next, the focus of this chapter is on urban and regional pollution, since it corresponds to most of the population exposure to ambient air pollution. The gaseous pollutants that are currently the most relevant at the urban/regional scale in terms of adverse health effects are ozone and nitrogen dioxide. These pollutants are major components of photochemical smog, which results from chemical reactions between nitrogen oxides (NOx) and volatile organic compounds (VOC) in the presence of sunlight. The fact that photochemical smog precursors such as NOx and some VOC (alkenes) are both producers and destructors of ozone makes the development of efficient strategies to reduce photochemical smog difficult.

Type
Chapter
Information
Air Pollution
Concepts, Theory, and Applications
, pp. 146 - 189
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ademe, , 2014. Évaluation des impacts sur la qualité de l’air d’action et de mesures orientées « villes et territoires durables », Final report, Contract 1162c0014, Project performed by CEREA and LISA for Agence de l’Environnement et de la Maitrise de l’Énergie (Ademe), Paris.Google Scholar
Aiparif, , 2015. Rapports d’activités et bilan de la qualité de l’air 2014, Airparif, Paris.Google Scholar
Aumont, B., Szopa, S., and Madronich, S., 2005. Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: Development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 24972517.CrossRefGoogle Scholar
Bloss, C., Wagner, V., Bonzazini, A., Jenkin, M.E., Wirtz, K., Martin-Reviejo, M., and Pilling, M.J., 2005. Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data, Atmos. Chem. Phys., 5, 623639.CrossRefGoogle Scholar
Borbon, A., Gilman, J.B., Kuster, W.C., Grand, N., Chevaillier, S., Colomb, A., Dolgorouky, C., Gros, V., Lopez, M., Sarda-Esteve, R., Holloway, J., Stutz, J., Petetin, H., McKeen, S., Beekmann, M., Warneke, C., Parrish, D.D., and de Gouw, J.A., 2013. Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: Observations versus emission inventories in Los Angeles and Paris, J. Geophys. Res., 118, 20412057.Google Scholar
Calvert, J.G., Atkinson, R., Kerr, J.A., Madronich, S., Moortgat, G.K., Wallington, T.J., and Yarwood, G., 2000. The Mechanisms of Atmospheric Oxidation of the Alkenes, Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Calvert, J.G., Atkinson, R., Becker, K.H., Kamens, R.M., Seinfeld, J.H., Wallington, T.J., and Yarwood, G., 2002. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Calvert, J.G., Derwent, R.G., Orlando, J.J., Tyndall, G.S., and Wallington, T.J., 2008. The Mechanisms of Atmospheric Oxidation of the Alkanes, Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Calvert, J.G., Mellouki, A., Orlando, J.J., Pilling, M.J., and Wallington, T.J., 2011. The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Carter, W.P.L., 2010. Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales, Final report, Contracts N° 03–318, 06–408, and 07–730, California Air Resources Board, Sacramento, CA; available at: www.engr.ucr.edu/~carter/SAPRC/saprc07.Google Scholar
Cerea, , 2011. Évaluation de l’influence des émissions anthropiques de polluants en Europe sur les niveaux d’ozone en Île-de-France, Engineer Laboratory Internship Report by E. Foessel, Y. Roustan, advisor, Centre d’Enseignement et de Recherche en Environnement Atmosphérique, École des Ponts ParisTech, Marne-la-Vallée, France.Google Scholar
Dodge, M.C., 2000. Chemical oxidant mechanisms for air quality modeling: Critical review, Atmos. Environ., 34, 21032130.Google Scholar
Finlayson-Pitts, B.J. and Pitts, J.N., Jr., 2000. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic Press, New York.Google Scholar
Goliff, W.S., Stockwell, W.R., and Lawson, C.W., 2013. The regional atmospheric chemistry mechanism, version 2, Atmos. Environ., 68, 174185.Google Scholar
Jacob, D.J., 1999. Introduction to Atmospheric Chemistry, Princeton University Press, Princeton, NJ.Google Scholar
Jacobson, M.Z., 2005. Fundamentals of Atmospheric Modeling, Cambridge University Press, Cambridge, UK.Google Scholar
Kim, Y., Sartelet, K., and Seigneur, C., 2009. Comparison of two gas-phase chemical kinetic mechanisms of ozone formation over Europe, J. Atmos. Chem., 62, 89119.Google Scholar
Mao, J., Ren, X., Chen, S., Brune, W.H., Chen, Z., Martinez, M., Harder, H., Lefer, B., Rappenglück, B., Flynn, J., and Leuchner, M., 2010. Atmospheric oxidation capacity in the summer of Houston 2006: Comparison with summer measurements in other metropolitan studies, Atmos. Environ., 44, 41074115.Google Scholar
Mollner, A.K., Valluvadasan, S., Feng, L., Sprague, M. K., Okumura, M., Milligan, D. B., Bloss, W. J., Sander, S. P., Martien, P. T., Harley, R. A., McCoy, A. B., and Carter, W. P. L., 2010. Rate of gas phase association of hydroxyl radical and nitrogen dioxide, Science, 330, 646649.Google Scholar
Reynolds, S.D., Roth, P.M., and Seinfeld, J.H., 1973. Mathematical modeling of air pollution – 1: Formulation of the model, Atmos. Environ., 7, 10331061.Google Scholar
Roustan, Y., Pausader, M., and Seigneur, C., 2011. Estimating the effect of on-road vehicle emission controls on future air quality in Paris, France, Atmos. Environ., 45, 68286836.CrossRefGoogle Scholar
Saunders, S.M., Jenkin, M.E., Derwent, R.G., and Pilling, M.J., 2003. Protocol for the development of the Master Chemical Mechanism MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161180.CrossRefGoogle Scholar
Sillman, S., 1995. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations, J. Geophys. Res, 100, 1417514188.CrossRefGoogle Scholar
Tesche, T.W., Seigneur, C., Oliver, W.R., and Haney, J.L., 1984. Modeling ozone control strategies in Los Angeles, J. Environ. Eng., 110, 208225.CrossRefGoogle Scholar
Whitten, G.Z., Heo, G., Kimura, Y., McDonald-Bullet, E., Allen, D.T., Carter, W.P.L., and Yarwood, G., 2010. A new condensed toluene mechanism for Carbon Bond CB05-TU, Atmos. Environ., 44, 53465355.Google Scholar
Yarwood, G., Rao, S., Yocke, M., and Whitten, G.Z., 2005. Updates to the carbon bond mechanism: CB05. Report to the U.S. Environmental Protection Agency, Research Triangle Park, NC (www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×