from Part I - Contingency tables
Published online by Cambridge University Press: 27 May 2010
Abstract
Algebraic Statistics techniques are used to define a new class of probability models which encode the notion of category distinguishability and refine the existing approaches. We study such models both from a geometric and statistical point of view. In particular, we provide an effective characterisation of the sufficient statistic.
Introduction
In this work we focus on a problem coming from rater agreement studies. We consider two independent raters. They classify n subjects using the same ordinal scale with I categories. The data are organised in a square contingency table which summarises the classifications. The cell (i, j) contains the number of items classified i by the first observer and j by the second observer.
Many applications deal with ordinal scales whose categories are partly subjective. In most cases, the ordinal scale is the discretisation of an underlying quantity continuous in nature. Classical examples in the field of medical applications are the classification of a disease in different grades through the reading of diagnostic images or the classification of the grade of a psychiatric disease based on the observation of some behavioural traits of the patients. An example of such problem is presented in detail in (Garrett-Mayer et al. 2004) and it is based on data about pancreatic neoplasia. Other relevant applications are, for instance, in lexical investigations, see e.g. (Bruce and Wiebe 1998) and (Bruce and Wiebe 1999). In their papers, category distinguishability is used as a tool to study when the definitions of the different meanings of a word in a dictionary can be considered as unambiguous. Table 6.1 presents a numerical example from (Agresti 1988).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.