Published online by Cambridge University Press: 05 October 2009
Now that we have studied the ring of bivariate polynomials and its ideals in some detail, we are nearly ready to resume our study of codes. In Chapter 10, we shall construct linear codes as vector spaces on plane curves. This means that the components of the vector space are indexed by the points of the curve. Over a finite field, a curve can have only a finite number of points, so a vector space on a curve in a finite field always has a finite dimension.
Before we can study codes on curves, however, we must study the curves themselves. In this chapter, we shall study curves over a finite field, specifically curves lying in a plane. Such curves, called planar curves or plane curves, are defined by the zeros of a bivariate polynomial. We shall also study vectors defined on curves – that is, vectors whose components are indexed by the points of the curve – and the weights of such vectors. Bounds on the weight of a vector on a curve will be given in terms of the pattern of zeros of its two-dimensional Fourier transform. These bounds are companions to the bounds on the weight of a vector on a line, which were given in Chapter 1, and bounds on the weight of an array on a plane, which were given in Chapter 4.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.