Published online by Cambridge University Press: 05 October 2009
An alphabet is a set of symbols. Some alphabets are infinite, such as the set of real numbers or the set of complex numbers. Usually, we will be interested in finite alphabets. A sequence is a string of symbols from a given alphabet. A sequence may be of infinite length. An infinite sequence may be periodic or aperiodic; infinite aperiodic sequences may become periodic after some initial segment. Any infinite sequence that we will consider has a fixed beginning, but is unending. It is possible, however, that an infinite sequence has neither a beginning nor an end.
A finite sequence is a string of symbols of finite length from the given alphabet. The blocklength of the sequence, denoted n, is the number of symbols in the sequence. Sometimes the blocklength is not explicitly specified, but is known implicitly only by counting the number of symbols in the sequence after that specific sequence is given. In other situations, the blocklength n is explicitly specified, and only sequences of blocklength n are under consideration.
There are a great many aspects to the study of sequences. One may study the structure and repetition of various subpatterns within a given sequence of symbols. Such studies do not need to presuppose any algebraic or arithmetic structure on the alphabet of the sequence.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.