Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T22:23:14.443Z Has data issue: false hasContentIssue false

8 - Finding Dense Regions

Published online by Cambridge University Press:  05 July 2016

François Fouss
Affiliation:
Université Catholique de Louvain, Belgium
Marco Saerens
Affiliation:
Université Catholique de Louvain, Belgium
Masashi Shimbo
Affiliation:
Nara Institute of Science and Technology, Japan
Get access

Summary

Introduction

Besides clustering, which is the task of partitioning graph nodes into disjoint subsets, it could also be interesting to identify dense regions inside the graph G. In that case, we are not trying to find a partition of G but only some subsets of nodes that are highly interconnected.

Density is an important concept in graph analysis and has been proven to be of particular interest in various areas, such as social networks, biology, and the World Wide Web [543, 524, 277]. It can be defined in many ways based on various concepts (subgraph connectivity, cliques, cores, subgraph density, etc.), leading to various approaches, as described in this chapter.

We first investigate some well-known local density measures or indices. The aim of these local density indices is to provide ameasure of the extent to which a local subset of nodes, centered on a particular node, is highly cohesive, that is, highly interconnected. In other words, these measures try to answer questions like, “Do friends of a node tend to be friends of one another?” or “Is the friend of my friend also my friend?”

Then, some global measures, smoothing the local density over the network, are presented. These tend to be more robust with respect to local variations of the density.

Thereafter, a few bottom-up agglomerative methods are described. These techniques allow highly dense regions to be detected, by extending them gradually in a sequential way according to a greedy algorithm. These methods are also known as hierarchical clustering techniques in multivariate statistics, pattern recognition, data mining, and machine learning. They are very useful when exploring the structure of the network.

Finally, a heuristics for maximum clique detection is briefly described.

Basic Local Density Measures

Many measures of local density of a graph were proposed [123, 469, 608, 804]; only a few popular choices are discussed here. The aim of these local density indices is to provide ameasure of the extent to which a local subset of nodes, sometimes centered on a particular node, is highly cohesive. Cohesiveness of a subgraph can be characterized in several distinct ways [708], one of the most intuitive being subgraph connectivity. Intuitively, if a subgraph is cohesive, it should be possible to remove some of its nodes without disconnecting the subgraph.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×