Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T09:51:51.137Z Has data issue: false hasContentIssue false

5 - Neurotransmitters

Published online by Cambridge University Press:  05 June 2015

Michael Wilkinson
Affiliation:
Dalhousie University, Nova Scotia
Richard E. Brown
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

In general terms, neurons communicate with each other through chemical messengers called neurotransmitters. Given the complexity of the brain, it should not be surprising that there are more than 100 known neurotransmitters (Purves et al. 2008). Neurotransmitters are synthesized in nerve cells, sometimes using precursors from the diet (e.g. tyrosine; see Figure 5.8), and are released into the synapse where they bind to specific receptors located on the postsynaptic cell. As discussed in the present chapter, this simple view conceals the many fascinating ways in which neurons communicate with each other. This chapter focuses on the different categories of neurotransmitters, the synthesis, storage, transport and release of neurotransmitters, their action at receptors and their deactivation. The influence of drugs on neurotransmitter function will also be discussed. Chapter 6 examines the specific effects of neurotransmitters in the neuroendocrine system, and Chapter 10 covers the actions of neurotransmitters at their receptors on postsynaptic cells.

The neuron and the synapse

A typical neuron is shown in Figure 5.1. Neurons possess a cell body, which contains the nucleus, and the characteristic dendrites plus an axon. The dendrites receive messages from other cells onto their spines and shafts, while the axon transmits information to other cells. Although each nerve cell has only one axon, this axon may have a number of branches and the nerve terminals at the end of each branch can form synapses with other neurons.

Nerve cells communicate with each other by the release of neurotransmitters from the nerve terminals of the axon into the synapse, the space that separates the presynaptic and postsynaptic cells. Neurotransmitters released into the synapse then bind to their receptors on the postsynaptic cell. As shown in Figure 5.1, synapses can form between the axon of the presynaptic cell and a number of different sites on the postsynaptic cell, including the shafts and/or spines of dendrites (axodendritic synapses), the cell body (axosomatic synapses) and the axons (axoaxonic synapses).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baranano, D. E., Ferris, C. D. and Snyder, S. H. (2001). “Atypical neural messengers,” Trends Neurosci 24, 99–106.CrossRefGoogle ScholarPubMed
Belelli, D. and Lambert, J. J. (2005). “Neurosteroids: endogenous regulators of the GABAA receptor,” Nature Rev Neurosci 6, 565–575.CrossRefGoogle Scholar
Benarroch, E. E. (2007). “Enteric nervous system: functional organization and neurologic implications,” Neurol 69, 1953–1957.CrossRefGoogle ScholarPubMed
Brann, D. W. (1995). “Glutamate: A major excitatory transmitter in neuroendocrine regulation,” Neuroendocrinology 61, 213–225.CrossRefGoogle Scholar
Brann, D. W., Bhat, G. K., Lamar, C. A. and Mahesh, V. B. (1997). “Gaseous transmitters and neuroendocrine regulation,”Neuroendocrinology 65, 385–395.CrossRefGoogle Scholar
Breivogel, C. S. and Sim-Selley, L. J. (2009). “Basic neuroanatomy and neuropharmacology of cannabinoids,” Int Rev Psych 21, 113–121.CrossRefGoogle ScholarPubMed
Boron, W. F. and Boulpaep, E. L. (2005). Medical Physiology, updated edn. (Philadelphia, PA: Elsevier Saunders).Google Scholar
Burgoyne, R. D. and Morgan, A. (2003). “Secretory granule exocytosis,” Physiol Rev 83, 581–632.CrossRefGoogle ScholarPubMed
Choi, S., Disilvio, B., Fernstrom, M. H. and Fernstrom, J. D. (2009). “Meal ingestion, amino acids and brain neurotransmitters: effects of dietary protein source on serotonin and catecholamine synthesis rates,” Physiol Behav 98, 156–162.CrossRefGoogle ScholarPubMed
Christensen, R., Kristensen, P. K., Bartels, E. M., Bliddal, H. and Astrup, A. (2007). “Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials,” Lancet 370, 1706–1713.CrossRefGoogle ScholarPubMed
Christie, M. J. and Vaughn, C. W. (2001). “Cannabinoids act backwards,” Nature 410, 527–530.CrossRefGoogle ScholarPubMed
Crockett, M. J., Clark, L., Roiser, J. P., Robinson, O. J., Cools, R., Chase, H. W.et al. (2012). “Converging evidence for central 5-HT effects in acute tryptophan depletion,” Mol Psych 17, 121–123.Google ScholarPubMed
Dahlin, M., Mansson, J.-E. and Amark, P. (2012). “CSF levels of dopamine and serotonin, but not norepinephrine, metabolites are influenced by the ketogenic diet in children with epilepsy,” Epilepsy Res 99, 132–138.CrossRefGoogle Scholar
de Kloet, A. D. and Woods, S. C. (2009). “Minireview: Endocannabinoids and their receptors as targets for obesity,” Endocrinology 150, 2531–2536.CrossRefGoogle ScholarPubMed
Deng, J., Lei, C., Chen, Y., Fang, Z., Yang, Q., Zhang, H.et al. (2014). “Neuroprotective gases – fantasy or reality for clinical use?”Prog Neurobiol 115, 210–245.CrossRefGoogle ScholarPubMed
Eyigor, O., Centers, A. and Jennes, L. (2001). “Distribution of ionotropic glutamate receptor subunit mRNAs in the rat hypothalamus,” J Comp Neurol 434, 101–124.CrossRefGoogle ScholarPubMed
Fernstrom, J. D. (2012). “Large neutral amino acids: dietary effects on brain neurochemistry and function,”Amino Acids 45, 419–430.Google Scholar
Fernstrom, J. D. and Fernstrom, M. H. (2007). “Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain,” J Nutr 137, 1539S–1547S; discussion 1548S.CrossRefGoogle Scholar
Goyal, R. K. and Hirano, I. (1996). “The enteric nervous system,” N Engl J Med 334, 1106–1115.CrossRefGoogle ScholarPubMed
Guzmán, M. (2003). “Cannabinoids: potential anticancer agents,” Nat Rev Cancer 3, 745–755.CrossRefGoogle ScholarPubMed
Haas, H. L., Sergeeva, O. A. and Selbach, O. (2008). “Histamine in the nervous system,” Physiol Rev 88, 1183–1241.CrossRefGoogle Scholar
Heanue, T. A. and Pachnis, V. (2007). “Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies,” Nat Rev Neurosci 8, 466–479.CrossRefGoogle ScholarPubMed
Hill, M. N. and Tasker, J. G. (2012). “Endocannabinoid signaling, glucocorticoid-mediated feedback and regulation of the hypothalamic-pituitary-adrenal axis,” Neuroscience 204, 5–16.CrossRefGoogle ScholarPubMed
Iremonger, K. J., Constantin, S., Liu, X. and Herbison, A. E. (2010). “Glutamate control of GnRH neuron excitability,” Brain Res 1364, 35–43.CrossRefGoogle ScholarPubMed
Iversen, L. L., Iversen, S. D., Bloom, D. E. and Roth, R. H. (2009). Introduction to Neuropsychopharmacology (New York: Oxford University Press).CrossRefGoogle Scholar
Jahan-Mihan, A., Luhovyy, B. L., El, Khoury, D. and Anderson, G. H. (2011). “Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract,” Nutrients 3, 574–603.CrossRefGoogle ScholarPubMed
Jorgensen, H. S. (2007). “Studies on the neuroendocrine role of serotonin,” Dan Med Bull 54, 266–288.Google ScholarPubMed
Julius, D. (1997). “Another opiate for the masses?”Nature 386, 442.CrossRefGoogle Scholar
Krsmanovic, L. Z., Mores, N., Navarro, C. E., Saeed, S. A., Arora, K. K. and Catt, K. J. (1998). “Muscarinic regulation of intracellular signaling and neurosecretion in gonadotrophin-releasing hormone neurons,” Endocrinology 139, 4037–4043.CrossRefGoogle Scholar
Kuhar, M., De Souza, E. B. and Unnerstall, J. R. (1986). “Neurotransmitter receptor mapping by autoradiography and other methods,” Annu Rev Neurosci 9, 27–59.CrossRefGoogle ScholarPubMed
Levy, B. H. and Tasker, J. G. (2012). “Synaptic regulation of the hypothalamic-pituitary-adrenal axis and its modulation by glucocorticoids and stress,” Front Cell Neurosci 6, 24–32.CrossRefGoogle Scholar
Maccarrone, M. and Wenger, T. (2005). “Effects of cannabinoids on hypothalamic and reproductive function,” Hand Exp Pharmacol 168, 555–571.Google Scholar
Mackie, K. (2005). “Distribution of cannabinoid receptors in the central and peripheral nervous system,” Handb Exp Pharmacol 168, 299–325.Google Scholar
Mansour, A., Fox, C. A., Akil, H. and Watson, S. J. (1995). “Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications,” Trends Neurosci 18, 22–29.CrossRefGoogle ScholarPubMed
Markus, C. R., Olivier, B., Panhuysen, E. M., Van der Gugten, J., Alles, M. S., Tuiten, A.et al. (2000). “The bovine protein α-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress,” Am J Clin Nutr 71, 1536–1544.CrossRefGoogle ScholarPubMed
Mehta, M. A., Gumaste, D., Montgomery, A. J., McTavish, S. F. and Grasby, P. M. (2005). “The effects of acute tyrosine and phenylalanine depletion on spatial working memory and planning in healthy volunteers are predicted by changes in striatal dopamine levels,” Psychopharmacology (Berl) 180, 654–663.CrossRefGoogle ScholarPubMed
Mendelsohn, D., Riedel, W. J. and Sambeth, A. (2009). “Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review,” Neurosci Biobehav Rev 33, 926–952.CrossRefGoogle ScholarPubMed
Miller, K. K. (2011). “Endocrine dysregulation in anorexia nervosa update,” J Clin Endocr Metab 96, 2939–2949.CrossRefGoogle ScholarPubMed
Milner, J. D. and Wurtman, R. J. (1986). “Catecholamine synthesis: physiological coupling to precursor supply,” Biochem Pharmacol 35, 875–881.CrossRefGoogle ScholarPubMed
Nestler, E. J., Hyman, S. E. and Malenka, R. C. (2009). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, nd edn. (New York: McGraw-Hill).Google Scholar
Nicholls, J. G., Martin, A. R., Wallace, B. G. and Fuchs, P. A. (2001). From Neuron to Brain, th edn. (Sunderland: Sinauer Associates).Google Scholar
Olson, K. R. (2011). “The therapeutic potential of hydrogen sulfide: separating hype from hope,” Am J Physiol Regul Integr Comp Physiol 301, R297–312.CrossRefGoogle ScholarPubMed
Otto, M. W. (2011). “Expanding findings on D-cycloserine augmentation of therapeutic learning: a role for social learning relative to autism spectrum disorders?”Biol Psych 70, 210–211.Google Scholar
Pagotto, U., Marsicano, G., Cota, D., Lutz, B. and Pasquali, R. (2006). “The emerging role of the endocannabinoid system in endocrine regulation and energy balance,” Endocr Rev 27, 73–100.CrossRefGoogle ScholarPubMed
Papakostas, G. I., Miller, K. K., Petersen, T., Sklarsky, K. G., Hilliker, S. E., Klibanski, A.et al. (2006). “Serum prolactin levels among outpatients with major depressive disorder during the acute phase of treatment with fluoxetine,” J Clin Psychiatry 67, 952–957.CrossRefGoogle ScholarPubMed
Perry, E., Walker, M., Grace, J. and Perry, R. (1999). “Acetylcholine in mind: a neurotransmitter correlate of consciousness?”Trends Neurosci 22, 273–280.CrossRefGoogle Scholar
Prevot, V., Bouret, S., Stefano, G. B. and Beauvillain, J. (2000). “Median eminence nitric oxide signalling,” Brain Res Rev 34, 27–41.CrossRefGoogle Scholar
Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., McNamara, J. O.et al. (2008). Neuroscience, th edn. (Sunderland: Sinauer Associates).Google Scholar
Rettori, V., De Laurentiis, A. and Fernandez-Solari, J. (2010). “Alcohol and endocannabinoids: neuroendocrine interactions in the reproductive axis,” Exp Neurol 224, 15–22.CrossRefGoogle ScholarPubMed
Richard, D. M., Dawes, M. A., Mathias, C. W., Acheson, A., Hill-Kapturczak, N. and Dougherty, D. M. (2009). “L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications,” Int J Tryptophan Res 2, 45–60.CrossRefGoogle ScholarPubMed
Riedel, W. J., Klaassen, T. and Schmitt, J. A. (2002). “Tryptophan, mood, and cognitive function,” Brain Behav Immun 16, 581–589.CrossRefGoogle ScholarPubMed
Rodrigo, J., Springall, D. R., Uttenthal, O., Bentura, M. L., Abadia-Molina, F., Riveros-Moreno, V.et al. (1994). “Localization of nitric oxide synthase in the adult rat brain,” Phil Trans Royal Soc Lond B 345, 175–221.CrossRefGoogle ScholarPubMed
Scheller, R. H. (2013). “In search of the molecular mechanism of intracellular membrane fusion and neurotransmitter release,” Nat Med 19, 1232–1235.CrossRefGoogle ScholarPubMed
Squire, L. R., Berg, D. E., Bloom, F. E., du Lac, S., Ghosh, A. and Spitzer, N. C. (2008). Fundamental Neuroscience, rd edn. (London: Academic Press).Google Scholar
Sullivan, J. (2003). “No going back,” Nat Neurosci 6, 905–906.CrossRefGoogle ScholarPubMed
Thio, L. L. (2012). “Hypothalamic hormones and metabolism,” Epilepsy Res 100, 245–251.CrossRefGoogle ScholarPubMed
Van den Pol, A. N., Wuarin, J. P. and Dudek, F. E. (1990). “Glutamate, the dominant excitatory transmitter in neuroendocrine regulation,” Science 250, 1276–1278.CrossRefGoogle ScholarPubMed
Van den Pol, A. N., Hermans-Borgmeyer, I., Hofer, M., Ghosh, P. and Heinemann, S. (1994). “Ionotropic glutamate-receptor gene expression in hypothalamus: localization of AMPA, kainate, and NMDA receptor RNA with in situ hybridization,” J Comp Neurol 343, 428–444.CrossRefGoogle ScholarPubMed
Van Gaal, L. F., Rissanen, A. M., Scheen, A. J., Ziegler, O. and Rössner, S. (2005). “Effects of cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study,” Lancet 365, 1389–1397.CrossRefGoogle ScholarPubMed
Vincent, S. R. (2010). “Nitric oxide neurons and neurotransmission,” Prog Neurobiol 90, 246–255.CrossRefGoogle ScholarPubMed
Watanabe, M., Inoue, Y., Sakimura, K. and Mishina, M. (1993). “Distinct distribution of five N-methyl-D aspartate receptor channel subunit mRNAs in the forebrain,” J Comp Neurol 338, 377–390.CrossRefGoogle ScholarPubMed
Watkins, J. C. and Jane, D. E. (2006). “The glutamate story,” Brit J Pharmacol 147, S100–S108.Google ScholarPubMed
Wittman, G., Lechan, R. M., Liposits, Z. and Fekete, C. (2005). “Glutamatergic innervation of corticotropin-releasing hormone- and thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat,” Brain Res 1039, 53–62.CrossRefGoogle Scholar
Wurtman, R. J. (1982). “Nutrients that modify brain function,” Sci Am 246, 50–59.CrossRefGoogle ScholarPubMed
Ward, S. J. and Raffa, R. B. (2011). “Rimonabant redux and strategies to improve the future outlook of CB1 receptor neutral-antagonist/inverse-agonist therapies,” Obesity 19, 1325–1334.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Neurotransmitters
  • Michael Wilkinson, Dalhousie University, Nova Scotia, Richard E. Brown, Dalhousie University, Nova Scotia
  • Book: An Introduction to Neuroendocrinology
  • Online publication: 05 June 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045803.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Neurotransmitters
  • Michael Wilkinson, Dalhousie University, Nova Scotia, Richard E. Brown, Dalhousie University, Nova Scotia
  • Book: An Introduction to Neuroendocrinology
  • Online publication: 05 June 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045803.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Neurotransmitters
  • Michael Wilkinson, Dalhousie University, Nova Scotia, Richard E. Brown, Dalhousie University, Nova Scotia
  • Book: An Introduction to Neuroendocrinology
  • Online publication: 05 June 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045803.006
Available formats
×