Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-30T01:36:03.527Z Has data issue: false hasContentIssue false

2 - Theoretical Considerations – Complexity

Published online by Cambridge University Press:  12 December 2009

Ronald W. Shonkwiler
Affiliation:
Georgia Institute of Technology
Lew Lefton
Affiliation:
Georgia Institute of Technology
Get access

Summary

Directed Acyclic Graph Representation

Just as a graph is an effective way to understand a function, a directed acyclic graph is an effective way to understand a parallel computation. Such a graph shows when each calculation is done, which others can be done at the same time, what prior calculations are needed for it and into what subsequent calculations it feeds.

Starting from a directed acyclic graph and given a set of processors, then a schedule can be worked out. A schedule assigns each calculation to a specific processor to be done at a specified time.

From a schdule, the total time for a computation follows and, from this, we get the difficulty or complexity of the computation.

A Directed Acyclic Graph Defines a Computation

A computation can be accurately depicted by means of a directed acyclic graph (DAG), G = (N, A), consisting of a set of vertices N and a set of directed arcs A. In such a portrayal the vertices, or nodes, of the graph represent subtasks to be performed on the data, while the directed arcs indicate the flow of data from one subtask to the next. In particular, a directed arc (i, j) ∈ A from node i to j indicates that calculation j requires the result of calculation i.

The input data is shown at the top of the graph. We take the flow of data from the top to the bottom of the graph (or, less often, from left to right). This also becomes the flow of time; it follows that the graph can have no cycles. With this convention, we may omit the direction indicators on the arcs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×