Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-16T20:28:14.910Z Has data issue: false hasContentIssue false

9 - Electrical and optical properties

Published online by Cambridge University Press:  05 June 2012

Get access

Summary

Introduction

As indicated in chapter 1, the first electrical property of polymers to be valued was their high electrical resistance, which made them useful as insulators for electrical cables and as the dielectric media for capacitors. They are, of course, still used extensively for these purposes. It was realised later, however, that, if electrical conduction could be added to the other useful properties of polymers, such as their low densities, flexibility and often high resistance to chemical attack, very useful materials would be produced. Nevertheless, with few exceptions, conducting polymers have not in fact displaced conventional conducting materials, but novel applications have been found for them, including plastic batteries, electroluminescent devices and various kinds of sensors. There is now much emphasis on semiconducting polymers. Figure 9.1 shows the range of conductivities that can be achieved with polymers and compares them with other materials.

Conduction and dielectric properties are not the only electrical properties that polymers can exhibit. Some polymers, in common with certain other types of materials, can exhibit ferroelectric properties, i.e. they can acquire a permanent electric dipole, or photoconductive properties, i.e. exposure to light can cause them to become conductors. Ferroelectric materials also have piezoelectric properties, i.e. there is an interaction between their states of stress or strain and the electric field across them. All of these properties have potential applications but they are not considered further in this book.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×