This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.
"One of the book's strengths is its thematic focus, guiding the reader on a straight road to mean squared calculus. The authors are careful in not assuming prior knowledge of probability theory or even measure theory, and the text connects readily to undergraduate courses on elementary probability and linear systems. The writing itself is carved in a sequential and elaborate style following the credo of linear development of material. Emphasizing intuitive arguments, the text provides helpful discussions of notions and basic concepts. A wealth of problem questions are proposed." - Journal of the American Statistical Association.
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.