Published online by Cambridge University Press: 05 June 2012
Introduction
This chapter provides theoretical foundations and examples of of random variables, vectors, and processes. All three concepts are variations on a single theme and may be included in the general term of random object. We will deal specifically with random variables first because they are the simplest conceptually – they can be considered to be special cases of the other two concepts.
Random variables
The name random variable suggests a variable that takes on values randomly. In a loose, intuitive way this is the right interpretation – e.g., an observer who is measuring the amount of noise on a communication link sees a random variable in this sense. We require, however, a more precise mathematical definition for analytical purposes. Mathematically a random variable is neither random nor a variable – it is just a function mapping one sample space into another space. The first space is the sample space portion of a probability space, and the second space is a subset of the real line (some authors would call this a “real-valued” random variable). The careful mathematical definition will place a constraint on the function to ensure that the theory makes sense, but for the moment we informally define a random variable as a function.
A random variable is perhaps best thought of as a measurement on a probability space; that is, for each sample point ω the random variable produces some value, denoted functionally as f(ω).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.