Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T01:49:07.184Z Has data issue: false hasContentIssue false

4 - Frequency response of links

Published online by Cambridge University Press:  08 August 2009

Charles H. Cox, III
Affiliation:
Photonic Systems Inc, Massachusetts
Get access

Summary

Introduction

The device slope efficiencies that we developed in Chapter 2, and that were cascaded to form links in Chapter 3, explicitly ignored any frequency dependence. In this chapter we remove that restriction. As we shall see, virtually all modulation and photodetection devices have an inherently broad bandwidth. Digital links require broad bandwidth, which is one of the reasons for the numerous applications of fiber optic links to digital systems. A few analog link applications also require the full device bandwidth. However, it is far more common for analog links to need only a portion of the devices' inherent bandwidth. Consequently most analog link designs include some form of RF pre- or post-filtering to reduce the bandwidth.

For completeness we address bandpass and broad bandwidth impedance matching for three electro-optic devices: PIN photodiode, diode laser and Mach–Zehnder modulator. We then combine the bandpass impedance matched cases to form both direct and external modulation links. However, the same analytical approach is used for both impedance matching methods and both modulation techniques. Therefore those readers desiring a less exhaustive treatment can obtain a complete introduction to the subject by studying only one of the impedance matching methods and one of the modulation techniques.

One may be tempted to ask: why bother with bandwidth reduction, since this adds components and complicates the design? There are at least two key reasons for implementing bandwidth reduction.

Type
Chapter
Information
Analog Optical Links
Theory and Practice
, pp. 91 - 158
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, E. I., Kasemset, D., Wanuga, S., Hogue, D. and Komiak, J. 1990. A high-gain directly modulated L-band microwave optical link, Proc. IEEE MTT-S Int. Microwave Symp., paper C-3, 153–5Google Scholar
Alferness, R., Korotky, S. and Marcatili, E. 1984. Velocity-matching techniques for integrated optic traveling wave switch/modulators, IEEE J. Quantum Electron., 20, 301–9CrossRefGoogle Scholar
Betts, G. E. 1989. Microwave bandpass modulators in lithium niobate, Integrated and Guided Wave Optics, 1989 Technical Digest Series, vol. 4, Washington, DC: Optical Society of America, 14–17
Bode, H. W. 1945. Network Analysis and Feedback Amplifier Design, New York: Van Nostrand, Section 16.3
Bridges, W., Sheehy, F. and Schaffner, J. 1991. Wave-coupled LiNbO3 electrooptic modulator for microwave and millimeter-wave modulation, IEEE Photon. Technol. Lett., 3, 133–5CrossRefGoogle Scholar
Carlin, H. J. 1954. Gain-bandwidth limitations on equalizers and matching networks, Proc. IRE, 42, 1676–85CrossRefGoogle Scholar
Coldren, L. A. and Corzine, S. W. 1995. Diode Lasers and Photonic Integrated Circuits, New York: John Wiley & Sons, Chapter 2
Cox, C. H., III 1986. Unpublished laboratory notes
Cox, C. H., III and Ackerman, E. I. 1999. Limits on the performance of analog optical links. In Review of Radio Science 1996–1999, ed. W. Ross Stone, Oxford: Oxford University Press, Chapter 10
Dolfi, D. and Ranganath, T. 1992. 50 GHz velocity-matched broad wavelength lithium niobate modulator with multimode active section, Electron. Lett., 28, 1197–98CrossRefGoogle Scholar
Fano, R. M. 1950. Theoretical limitations on the broadband matching of arbitrary impedances, J. Franklin Inst., 249, 57–83; 249, 139–54CrossRefGoogle Scholar
Georges, J., Kiang, M., Heppell, K., Sayed, M. and Lau, K. 1994. Optical transmission of narrow-band millimeter-wave signals by resonant modulation of monolithic semiconductor lasers, IEEE Photon. Technol. Lett., 6, 568–70CrossRefGoogle Scholar
Goldsmith, C. L. and Kanack, B. 1993. Broad-band reactive matching of high-speed directly modulated laser diodes, IEEE Microwave and Guided Wave Letters, 3, 336–8CrossRefGoogle Scholar
Gopalakrishnan, G., Bulmer, C., Burns, W., McElhanon, R. and Greenblatt, A. 1992a. 40 GHz, low half-wave voltage Ti:LiNbO3 intensity modulator, Electron. Lett., 28, 826–7CrossRefGoogle Scholar
Gopalakrishnan, G., Burns, W. and Bulmer, C. 1992b. Electrical loss mechanisms in travelling wave LiNbO3 optical modulators, Electron. Lett., 27, 207–9CrossRefGoogle Scholar
Gulick, J. J., Chapelle, M. and Hsu, H. P. 1986. Fundamental gain/bandwidth limitations in high frequency fiber-optic links, High Frequency Optical Communications, Proc. SPIE, 716, 76–81CrossRefGoogle Scholar
Izutsu, M. 1996. Band operated light modulators, Proc. 25 General Assembly of the International Union of Radio Science, Lille, France, August 28–September 5, 1996, paper DC-4, 639
Kato, K., Hata, S., Kawano, K., Yoshida, H. and Kozen, A. 1992. A high-efficiency 50 GHz InGaAs multimode waveguide photodetector, IEEE J. Quantum Electron., 28, 2728–35CrossRefGoogle Scholar
Kato, K., Kozen, A., Maramoto, Y., Nagatsuma, T. and Yaita, M. 1994. 110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a l.55-㎛ wavelength, IEEE Photon. Technol. Lett., 6, 719–21CrossRefGoogle Scholar
Lee, H. 1998. Personal communication
Noguchi, K., Miyazawa, H. and Mitomi, O. 1994. 75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure, Electron. Lett., 30, 949–51CrossRefGoogle Scholar
Onnegren, J. and Alping, A. 1995. Reactive matching of microwave fiber-optic links, Proc. MIOP-95, Sindelfingen, Germany, 458–62
Pozar, D. M. 1993. Microwave Engineering, Boston: Addison-Wesley, 325–7
Prince, J. L. 1998. Personal communication
Roberge, J. K. 1975. Operational Amplifiers Theory and Practice, New York: John Wiley & Sons, 95
Van Valkenburg, M. E. 1964. Network Analysis, 2nd edition, Englewood Cliffs, NJ: Prentice-Hall, Inc., 338–9
Wang, W., Tavlykaev, R. and Ramaswamy, R. 1996. Bandpass traveling-wave modulator in LiNbO3 with a domain reversal, Proc. IEEE Lasers Electro-Opt. Soc. Annu. Meet. (LEOS'96), 99–100CrossRefGoogle Scholar
Weisser, S., Larkins, E., Czotscher, K., Benz, W., Daleiden, J., Esquivias, I., Fleissner, J., Ralston, J., Romero, B., Sah, R., Schonfelder, A. and Rosenzweig, J. 1996. Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity multiple-quantum-well lasers, IEEE Photon. Technol. Lett., 8, 608–10CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×