To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This appendix contains a compressed version of standard graduate topics in differential geometry such as vector fields, tangent and cotangent bundle, differential forms, and Stokes’s Theorem. Both real and complex manifolds are covered.
This chapter develops methods to compute asymptotics of univariate Fourier–Laplace integrals (which combine exponential decay and oscillation) and saddle point approximations. We illustrate both analytic and smooth methods for asymptotics.
This chapter derives asymptotics determined by a critical point near which the singular variety has a quadratic singularity. This necessitates introducing the theory of hyperbolic polynomials and cones of hyperbolicity, which guide advanced deformations of contours of integration on the way to computing asymptotics.
This chapter discusses assorted topics related to algebraic varieties and singular sets of multivariate rational functions. In particular, we cover Laurent expansions, polynomial amoebas, convex geometry, and bounds for generating function coefficients from so-called minimal points of singular sets.
This chapter covers standard material on generating functions in one and several variables. We describe how many common combinatorial constructions yield generating function specifications, often leading to rational or algebraic equations for generating functions. We also cover D-finite generating functions, which satisfy linear differential equations and arise both from linearly recurrent sequences and as diagonals of rational generating functions. Finally, we discuss labeled combinatorial constructions and exponential generating functions.
This chapter discusses computer algebra techniques used to apply the theorems of analytic combinatorics in several variables. We describe basic algebraic primitives, including Gröbner basis techniques, and then apply them to create algorithms certifying critical points, minimal points, Whitney stratifications, and more.
This chapter derives asymptotics determined by a critical point near which the singular variety is locally a union of smooth complex manifolds. Several explicit formulae for asymptotics are given, depending on the dimension and number of sheets meeting at the critical point.