Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-01T17:09:46.572Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 July 2022

Ronald A. Jenner
Affiliation:
Natural History Museum, London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Ancestors in Evolutionary Biology
Linear Thinking about Branching Trees
, pp. 336 - 378
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, O. (1912). Grundzüge der Palaeobiologie der Wirbeltiere. Stuttgart: E. Schweizerbart’shce Verlagsbuchhandlung (Erwin Nägele).CrossRefGoogle Scholar
Abel, O. (1914). Paläontologie und Paläozoologie. Pages 303395 in Hertwig, R., Wettstein, R. v., eds. Abstammungslehre, Systematik, Paläontologie, Biogeographie. Leipzig: Druck und Verlag Von B. G. Teubner.Google Scholar
Abel, O. (1918). Methoden und Ziele der Paläobiologie. Die Naturwissenschaften 6:497502.CrossRefGoogle Scholar
Abel, O. (1919). Die Stämme der Wirbeltiere. Berlin: Vereinigung wissenschaftlicher Verleger.Google Scholar
Abel, O. (1920). Lehrbuch der Paläozoologie. Jena: Verlag von Gustav Fischer.Google Scholar
Abel, O. (1929). Das biologische Trägheitsgesetz. Palaeontologische Zeitschrift 11:717.Google Scholar
Adamowicz, S. J., Purvis, A., Wills, M. A. (2008). Increasing morphological complexity in multiple parallel lineages of the Crustacea. Proceedings of the National Academy of Sciences USA 105:47864791.CrossRefGoogle ScholarPubMed
Adoutte, A., Balavoine, G., Lartillot, N., de Rosa, R. (1999). Animal evolution: the end of the intermediate taxa? Trends in Genetics 15:104108.Google Scholar
Adoutte, A., Balavoine, G., Lartillot, N., et al. (2000). The new animal phylogeny: reliability and implications. Proceedings of the National Academy of Sciences USA 97:44534456.CrossRefGoogle ScholarPubMed
Agassiz, A. (1874). Revision of the Echini, Part IV. Illustrated Catalogue of the Museum of Comparative Zoology at Harvard College. Cambridge, MA: University Press, Welch, Bigelow, & Co. 7.Google Scholar
Agassiz, A. (1876). Haeckel’s Gastraea theory. The American Naturalist 10:7375.Google Scholar
Agassiz, A. (1880). Paleontological and embryological development. Science 1:142149.CrossRefGoogle Scholar
Agassiz, L. (1962). Essay on Classification. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Allen, G. E. (1981). Morphology and twentieth-century biology: a response. Journal of the History of Biology 14:159176.Google Scholar
Allmon, W. D. (2017). Species, lineages, splitting, and divergence: why we still need “anagenesis” and “cladogenesis.” Biological Journal of the Linnean Society 120:474479.Google Scholar
Allmon, W. D. (2020). Invertebrate paleontology and evolutionary thinking in the US and Britain, 1860–1940. Journal of the History of Biology 53:423450.Google Scholar
Almeida, W. O., Christoffersen, M. L., Amorim, D. S., Garraffoni, A. R. S., Silva, G. S. (2003). Polychaeta, Annelida, and Articulata are not monophyletic: articulating the Metameria (Metazoa: Coelomata). Revista Brasileira de Zoologia 20:2357.CrossRefGoogle Scholar
Amundson, R. (1998). Typology reconsidered: two doctrines on the history of evolutionary biology. Biology & Philosophy 13:153177.CrossRefGoogle Scholar
Amundson, R. (2002). Phylogenetic reconstruction then and now. Biology & Philosophy 17:679694.Google Scholar
Amundson, R. (2005). The Changing Role of the Embryo in Evolutionary Thought. Roots of Evo-Devo. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Anderson, D. T. (1973). Embryology and Phylogeny of Annelids and Arthropods. Oxford: Pergamon Press.Google Scholar
Anderson, D. T. (1982). Origins and relationships among the animal phyla. Proceedings of the Linnean Society of New South Wales 106:151166.Google Scholar
Andersson, K. I., Norman, D., Werdelin, L. (2011). Sabretoothed carnivores and the killing of large prey. PLoS ONE 6:e24971.CrossRefGoogle ScholarPubMed
Andrade, S. C. S., Novo, M., Kawauchi, G. Y., et al. (2015). Articulating “Archiannelids”: phylogenomics and annelid relationships, with emphasis on meiofaunal taxa. Molecular Biology and Evolution 32:28602875.Google Scholar
Andrews, E. A. (1885). Affinities of annelids to vertebrates. The American Naturalist 19:767774.Google Scholar
Anonymous. (1889). Sketch of Pierre Belon. The Popular Science Monthly 34:692697.Google Scholar
Appel, T. A. (1980). Henri de Blainville and the animal series: a nineteenth-century chain of being. Journal of the History of Biology 13:291319.Google Scholar
Appel, T. A. (1987). The Cuvier-Geoffroy Debate. French Biology in the Decades before Darwin. Oxford: Oxford University Press.Google Scholar
Arber, A. (1950). The Natural Philosophy of Plant Form. Cambridge: Cambridge University Press.Google Scholar
Archibald, J. D. (2009). Edward Hitchcock’s pre-Darwinian (1840) “Tree of Life.” Journal of the History of Biology 42:561592.Google Scholar
Archibald, J. D. (2014). Aristotle’s Ladder, Darwin’s Tree. The Evolution of Visual Metaphors for Biological Order. New York: Columbia University Press.Google Scholar
Arenas-Mena, C. (2010). Indirect development, transdifferentiation and the macroregulatory evolution of metazoans. Philosophical Transactions of the Royal Society B: Biological Sciences 365:653669.Google Scholar
Arendt, D. (2018). Hox genes and body segmentation. Science 361:13101311.Google Scholar
Arendt, D., Benito-Gutierrez, E., Brunet, T., Marlow, H. (2015). Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution. Philosophical Transactions of the Royal Society B: Biological Sciences 370:20150286.Google Scholar
Arendt, D., Nübler-Jung, K. (1994). Inversion of dorsoventral axis? Nature 371:26.Google Scholar
Arendt, D., Nübler-Jung, K. (1997). Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mechanisms of Development 61:721.CrossRefGoogle ScholarPubMed
Arthur, W. (2011). Evolution. A Developmental Approach. Oxford: Wiley-Blackwell.Google Scholar
Arthur, W. (2014). Evolving Animals. The Story of Our Kingdom. Cambridge: Cambridge University Press.Google Scholar
Arthur, W. (2021). Understanding Evo-Devo. Cambridge: Cambridge University Press.Google Scholar
Asma, S. T. (1996). Following Form and Function. A Philosophical Archaeology of Life Science. Evanston, IL: Northwestern University Press.Google Scholar
Averof, M., Akam, M. (1995). Hox genes and the diversification of insect and crustacean body plans. Nature 376:420423.Google Scholar
Ax, P. (1985). Stem species and the stem lineage concept. Cladistics 1:279287.CrossRefGoogle ScholarPubMed
Ax, P. (1989). Basic phylogenetic systematization of the Metazoa. Pages 229245 in Fernholm, B., Bremer, K., Jörnvall, H., eds. The Hierarchy of Life. Amsterdam: Excerpta Medica/Elsevier.Google Scholar
Ax, P. (1999). Das System der Metazoa II. Ein Lehrbuch der phylogenetischen Systematik. Stuttgart: Gustav Fischer Verlag.Google Scholar
Ayala, F. J., Cela-Conde, C. J. (2018). Processes in Human Evolution. The Journey from Early Hominins to Neanderthals and Modern Humans. Oxford: Oxford University Press.Google Scholar
Baguñà, J., Martinez, P., Paps, J., Riutort, M. (2008). Back in time: a new systematic proposal for the Bilateria. Philosophical Transactions of the Royal Society B: Biological Sciences 363:14811491.CrossRefGoogle Scholar
Baguñà, J., Riutort, M. (2004). The dawn of bilaterian animals: the case of acoelomorph flatworms. BioEssays 26:10461057.CrossRefGoogle ScholarPubMed
Bailey, I. W. (1944). The development of vessels in angiosperms and its significance in morphological research. American Journal of Botany 31:421428.Google Scholar
Balavoine, G. (1998). Are Platyhelminthes coelomates without a coelom? An argument based on the evolution of Hox genes. American Zoologist 38:843858.Google Scholar
Balavoine, G., Adoutte, A. (2003). The segmented Urbilateria: a testable scenario. Integrative and Comparative Biology 43:137147.Google Scholar
Balfour, F. M. (1880a). Larval forms: their nature, origin, and affinities. Quarterly Journal of Microscopical Science 20:381407.Google Scholar
Balfour, F. M. (1880b). On the structure and homologies of the germinal layers of the embryo. Quarterly Journal of Microscopical Science 2:247273.Google Scholar
Balfour, F. M. (1880c). A Treatise on Comparative Embryology. Volume I. London: Macmillan.Google Scholar
Balfour, F. M. (1881). A Treatise in Comparative Embryology. Volume II. London: Macmillan.Google Scholar
Balfour, F. M. (1883). The anatomy and development of Peripatus capensis. Quarterly Journal of Microscopical Science s223:213259.Google Scholar
Balfour, F. M. (1885). A Treatise on Comparative Embryology. Volume I. London: Macmillan.Google Scholar
Ballard, J. W. O., Olsen, G. J., Faith, D. P., et al. (1992). Evidence form 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science 258:13451348.Google Scholar
Barnes, R. D. (1968). Invertebrate Zoology, 2nd ed. Philadelphia: W. B. Saunders.Google Scholar
Barnes, R. D. (1974). Invertebrate Zoology, 3rd ed. Philadelphia: W. B. Saunders.Google Scholar
Bartolomaeus, T., Purschke, G., Hausen, H. (2005). Polychaete phylogeny based on morphological data - a comparison of current attempts. Hydrobiologia 535:341356.Google Scholar
Bateson, W. (1886). The ancestry of the Chordata. Quarterly Journal of Microscopical Science 26:535571.Google Scholar
Bather, F. A. (1920). Fossils and Life. Report of the British Association for the Advancement of Science 1920 (88th Meeting):61–86.Google Scholar
Baum, D. A., Smith, S. D. (2013). Tree Thinking. An Introduction to Phylogenetic Biology. Greenwood Village, CO: Roberts and Company Publishers.Google Scholar
Beard, J. (1889). Some annelidan affinities in the ontogeny of the vertebrate nervous system. Nature 39:259261.Google Scholar
Beklemishev, W. N. (1969a). Principles of Comparative Anatomy of Invertebrates. Volume 1. Promorphology. Chicago: The University of Chicago Press.Google Scholar
Beklemishev, W. N. (1969b). Principles of Comparative Anatomy of Invertebrates. Volume 2. Organology. Chicago: The University of Chicago Press.Google Scholar
Bengtson, S., Cunningham, J. A., Yin, C. Y., Donoghue, P. C. J. (2012). A merciful death for the “earliest bilaterian,” Vernanimalcula. Evolution & Development 14:421427.Google Scholar
Benson, K. R. (1979). William Keith Brooks (1848–1908): A Case Study in Morphology and the Development of American Biology. Unpublished PhD thesis. Oregon State University.Google Scholar
Bentham, G. (1862). Anniversary meeting. Proceedings of the Linnean Society of London 74:lxvilxxxiii.Google Scholar
Bentham, G. (1863). Anniversary meeting. Proceedings of the Linnean Society of London 75:xixxix.Google Scholar
Bentham, G. (1873). Notes on the classification, history, and geographical distribution of Compositae. Journal of the Linnean Society of London, Botany 13:335577.Google Scholar
Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E. M., Skoglund, P. (2021). Origins of modern human ancestry. Nature 590:229237.Google Scholar
Bergström, J., Hou, X.-G. (2003). Arthropod origins. Bulletin of Geosciences 78:323334.Google Scholar
Bergström, J., Hou, X.-G. (2005). Early Palaeozoic non-lamellipedian arthropods. Pages 7394 in Koenemann, S., Jenner, R. A., eds. Crustacea and Arthropod Relationships. Festschrift for Frederick R. Schram. Boca Raton, FL: CRC Press.Google Scholar
Bergström, J., Naumann, W. W., Viehweg, J., Martí-Mus, M. (1998). Conodonts, calcichordates and the origin of vertebrates. Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftlich Reihe 1:8192.Google Scholar
Bernard, H. M. (1892). The Apodidae. A Morphological Study. London: Macmillan.Google Scholar
Bernard, H. M. (1898). A new reading for the annulate ancestry of the Vertebrata. Natural Science 13:1730.Google Scholar
Bidder, G. P. (1941). Obituaries. Mr. W. H. Caldwell. Nature 148:557559.Google Scholar
Bitsch, C., Bitsch, J. (2004). Phylogenetic relationships of basal hexapods among the mandibulate arthropods: a cladistic analysis based on comparative morphological characters. Zoologica Scripta 33:511550.Google Scholar
Blais, C., Archibald, J. M. (2021). The past, present and future of the tree of life. Current Biology 31:R314R321.Google Scholar
Bleidorn, C. (2019). Recent progress in reconstructing lophotrochozoan (spiralian) phylogeny. Organisms Diversity & Evolution 19:557566.Google Scholar
Bock, W. (1959). Preadaptation and multiple evolutionary pathways. Evolution 13:194211.Google Scholar
Bock, W. (2007). Explanations in evolutionary theory. Journal of Zoological Systematics and Evolutionary Research 45:89103.Google Scholar
Bode, H. R., Steele, R. E. (1989). Phylogeny and molecular data. Science 243:549550.CrossRefGoogle ScholarPubMed
Bolker, J. A. (1995). Model systems in developmental biology. BioEssays 17:451455.Google Scholar
Bonik, K., Gutmann, W., Peters, D. (1977). Optimierung und Ökonomisierung im Kontext von Evolutionstheorie und phylogenetischer Rekonstruktion. Acta Biotheoretica 26:75119.Google Scholar
Boulenger, G. A. (1907). A revision of the African silurid fishes of the subfamily Clariinae. Proceedings of the Zoological Society of London 2:10621097.Google Scholar
Bowler, P. J. (1989). Evolution. The History of an Idea. Berkeley: University of California Press.Google Scholar
Bowler, P. J. (1992a). The Eclipse of Darwinism. Anti-Darwinian Evolution Theories in the Decades around 1900. Baltimore: The Johns Hopkins University Press.Google Scholar
Bowler, P. J. (1992b). The Fontana History of the Environmental Sciences. London: Fontana Press.Google Scholar
Bowler, P. J. (1994). Are the Arthropoda a natural group? An episode in the history of evolutionary biology. Journal of the History of Biology 27:177213.Google Scholar
Bowler, P. J. (1996). Life’s Splendid Drama. Evolutionary Biology and the Reconstruction of Life’s Ancestry, 1860–1940. Chicago: The University of Chicago Press.Google Scholar
Bowler, P. J. (2000). Philosophy, instinct, intuition: what motivates the scientist in search of a theory? Biology & Philosophy 15:93101.Google Scholar
Bowler, P. J. (2013). Darwin Deleted. Imagining a World without Darwin. Chicago: University of Chicago Press.Google Scholar
Bowler, P. J. (2021). Progress Unchained. Ideas of Evolution, Human History and the Future. Cambridge: Cambridge University Press.Google Scholar
Bowler, P. J., Morus, I. R. (2005). Making Modern Science. A Historical Survey. Chicago: The University of Chicago Press.Google Scholar
Bracken-Grissom, H. D., Cannon, M. E., Cabezas, P., et al. (2013). A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda). BMC Evolutionary Biology 13:11.Google Scholar
Brady, R. H. (1984). The causal dimension of Goethe’s morphology. Journal of Social and Biological Structures 7:325344.Google Scholar
Brady, R. H. (1985). On the independence of systematics. Cladistics 1:113126.Google Scholar
Brady, R. H. (1994). Pattern description, process explanation, and the history of morphological sciences. Pages 731 in Grande, L., Rieppel, O., eds. Interpreting the Hierarchy of Nature. From Systematic Patterns to Evolutionary Process Theories. San Diego: Academic Press.Google Scholar
Breidbach, O. (2003). Post-Haeckelian comparative biology – Adolf Naef’s idealistic morphology. Theory in Biosciences 122:174193.Google Scholar
Breidbach, O. (2006). Goethes Metamorphosenlehre. Munich: Wilhelm Fink Verlag.Google Scholar
Breidbach, O., Ghiselin, M. T. (2002). Lorenz Oken and Naturphilosophie in Jena, Paris and London. History and Philosophy of the Life Sciences 24:219247.Google Scholar
Breidbach, O., Ghiselin, M. T. (2006). Baroque classification: a missing chapter in the history of systematics. Annals of the History and Philosophy of Biology 11:130.Google Scholar
Brinkman, P. D. (2010). Charles Darwin’s Beagle voyage, fossil vertebrate succession, and “The Gradual Birth & Death of Species.” Journal of the History of Biology 43:363399.Google Scholar
Bromham, L. (2019). Six impossible things before breakfast: assumptions, models, and belief in molecular dating. Trends in Ecology & Evolution 34:962962.Google Scholar
Bromham, L., Hua, X., Lanfear, R., Cowman, P. F. (2015). Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. American Naturalist 185:507524.Google Scholar
Bromham, L., Woolfit, M., Lee, M. S. Y., Rambaut, A. (2002). Testing the relationships between morphological and molecular rates of change along phylogenies. Evolution 56:19211930.Google Scholar
Bronzati, M. (2017). Should the terms “basal taxon” and “transitional taxon” be extinguished from cladistic studies with extinct organisms? Palaentologia Electronica 20.2.3E:112.Google Scholar
Brooks, W. K. (1882a). Lucifer: a study in morphology. London: W. Bowyer.Google Scholar
Brooks, W. K. (1882b). Speculative zoölogy. Popular Science Monthly 22:195204.Google Scholar
Brooks, W. K. (1883). Speculative zoölogy. Popular Science Monthly 22:364380.Google Scholar
Brooks, W. K. (1893a). The Genus Salpa. Baltimore: The Johns Hopkins Press.Google Scholar
Brooks, W. K. (1893b). Salpa and its relation to the evolution of life. Johns Hopkins University. Studies from the Biological Laboratory 5:129211.Google Scholar
Brooks, W. K. (1908). Biographical memoir of Alpheus Hyatt. 1839–1902. Biographical Memoirs of the National Academy of Sciences 6:311325.Google Scholar
Brower, A. V. Z. (2014). Communing with the ancestors. Cladistics 30:107111.Google Scholar
Brower, A. V. Z. (2015). Paraphylophily. Cladistics 31:575578.Google Scholar
Brower, A. V. Z. (2016). Are we all cladists? Pages 88114 in Williams, D. M., Schmitt, M., Wheeler, Q. D., eds. The Future of Phylogenetic Systematics. The Legacy of Willin Hennig. Cambridge: Cambridge University Press.Google Scholar
Browne, J. (1995). Charles Darwin. Voyaging. Volume I of a Biography. London: Pimlico.Google Scholar
Bruce, H. S., Patel, N. H. (2020). Knockout of crustacean leg patterning genes suggests that insect wings and body walls evolved from ancient leg segments. Nature Ecology & Evolution 4:17031712.Google Scholar
Bruce, R. (2016). Hennig, Løvtrup, evolution and biology. Pages 344355 in Williams, D., Schmitt, M., Wheeler, Q., eds. The Future of Phylogenetic Systematics: The Legacy of Willi Hennig. Cambridge: Cambridge University Press.Google Scholar
Brunet, T., King, N. (2017). The origin of animal multicellularity and cell differentiation. Developmental Cell 43:124140.Google Scholar
Brunet, T., Lauri, A., Arendt, D. (2015). Did the notochord evolve from an ancient axial muscle? The axochord hypothesis. BioEssays 37:836850.Google Scholar
Brusca, R. C., Brusca, G. J. (1990). Invertebrates. Sunderland, MA: Sinauer Associates.Google Scholar
Brusca, R. C., Brusca, G. J. (2003). Invertebrates, 2nd ed. Sunderland, MA: Sinauer Associates.Google Scholar
Bryant, H. N. (1995). The threefold parallelism of Agassiz and Haeckel, and polarity determination in phylogenetic systematics. Biology & Philosophy 10:197217.Google Scholar
Budd, G. E., Jensen, S. (2015). The origin of the animals and a “Savannah” hypothesis for early bilaterian evolution. Biological Reviews of the Cambridge Philosophical Society 92:446473.Google Scholar
Bullock, T. H., Horridge, G. A. (1965). Structure and Function in the Nervous Systems of Invertebrates. San Francisco: W. H. Freeman and Company.Google Scholar
Burkhardt, R. W. J. (1995). The Spirit of System. Lamarck and Evolutionary Biology. Cambridge, MA: Harvard University Press.Google Scholar
Butler, S. (1922). Luck, or Cunning? London: Jonathan Cape.Google Scholar
Bütschli, O. (1876). Über die Bedeutung der Entwickelungsgeschichte für die Stammesgeschichte der Thiere. Bericht über die Senckenbergische naturforschende Gesellschaft:61–74.Google Scholar
Bütschli, O. (1884). Bemerkungen zur Gastraeatheorie. Morphologisches Jahrbuch 9:415427.Google Scholar
Bütschli, O. (1921). Vorlesungen über vergleichende Anatomie. Berlin: Verlag von Julius Springer.Google Scholar
Caianiello, S. (2015). Succession of functions, from Darwin to Dohrn. History and Philosophy of the Life Sciences 36:335345.Google Scholar
Calcott, B. (2009). Lineage explanations: explaining how biological mechanisms change. The British Journal for the Philosophy of Science 60:5178.Google Scholar
Caldwell, W. H. (1885). Blastopore, mesoderm and metameric segmentation. Quarterly Journal of Microscopical Science 25:1528.Google Scholar
Calman, W. T. (1904). On the classification of the Crustacea Malacostraca. Annals and Magazine of Natural History 7:144158.Google Scholar
Calman, W. T. (1909). A Treatise on Zoology. Part VII. Appendiculata, Third Fascicle, Crustacea. London: Adam and Charles Black.Google Scholar
Calman, W. T. (1936). The origin of insects. Proceedings of the Linnean Society of London 148:193204.Google Scholar
Camardi, G. (2001). Richard Owen, morphology and evolution. Journal of the History of Biology 34:481515.Google Scholar
Cameron, C. B., Garey, J. R., Swalla, B. J. (2000). Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proceedings of the National Academy of Sciences USA 97:44694474.Google Scholar
Cammarata, M., Pagliara, P. (2018). Elie Metchnikoff and the multidisciplinary link novelty among zoology, embryology and innate immunity. Invertebrate Survival Journal 15:23402239.Google Scholar
Caporael, L. (1994). Of myth and science: origin stories and evolutionary scenarios. Social Science Information 33:923.Google Scholar
Carignan, M. (2003). Analogical reasoning in Victorian historical epistemology. Journal of the History of Ideas 64:445464.Google Scholar
Caron, J.-B., Conway Morris, S., Cameron, C. B. (2013). Tubicolous enteropneusts from the Cambrian period. Nature 495:503506.CrossRefGoogle ScholarPubMed
Carr, T. D., Varricchio, D. J., Sedlmayr, J. C., Roberts, E. M., Moore, J. R. (2017). A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Scientific Reports 7:44942.Google Scholar
Carroll, S. B. (2005). Endless Forms Most Beautiful. The New Science of Evo Devo and the Making of the Animal Kingdom. New York: W. W. Norton and Company.Google Scholar
Carruthers, T., Scotland, R. W. (2021). Uncertainty in divergence time estimation. Systematic Biology 70:855861.Google Scholar
Casane, D., Laurenti, P. (2013). Why coelacanths are not “living fossils.” BioEssays 35:332338.Google Scholar
Caspari, R., Wolpoff, M. H. (2012). The Dubois Syndrome. History and Philosophy of the Life Sciences 34:3342.Google Scholar
Cassini, H. (1826). Opuscules Phytologiques. Paris: Levrault.Google Scholar
Catley, K. M., Novick, L. R. (2008). Seeing the wood for the trees: an analysis of evolutionary diagrams in biology textbooks. Bioscience 58:976987.Google Scholar
Catley, K. M., Novick, L. R., Shade, C. K. (2010). Interpreting evolutionary diagrams: when topology and process conflict. Journal of Research in Science Teaching 47:861882.Google Scholar
Cavaillon, J.-M., Legout, S. (2016). Centenary of the death of Elie Metchnikoff: a visionary and an outstanding team leader. Microbes and Infection 18:577594.Google Scholar
Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews of the Cambridge Philosophical Society 73:203266.Google Scholar
Cavalier-Smith, T. (2017). Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Philosophical Transactions of the Royal Society B: Biological Sciences 372:20150476.Google Scholar
Chakrabarty, P. (2010). The transitioning state of systematic ichthyology. Copeia 2010:513515.Google Scholar
Chen, J.-Y., Schopf, J. W., Bottjer, D. J., et al. (2007). Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proceedings of the National Academy of Sciences USA 104:62896292.Google Scholar
Chen, J. Y., Bottjer, D. J., Oliveri, P., et al. (2004). Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305:218222.Google Scholar
Chen, X., Li, Q., Wang, J., et al. (2009). Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biology 10:R78.Google Scholar
Chipman, A. D., Edgecombe, G. D. (2019). Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proceedings of the Royal Society B-Biological Sciences 286:20191881.Google Scholar
Christen, R., Ratto, A., Baroin, A., et al. (1991a). An analysis of the origin of metazoans, using comparisons of partial sequences of the 28S RNA, reveals an early emergence of triploblasts. The EMBO Journal 10:499503.Google Scholar
Christen, R., Ratto, A., Baroin, A., (1991b). Origin of metazoans. A phylogeny deduced from sequences of the 28S ribosomal RNA. Pages 19 in Simonetta, A. M., Conway Morris, S., eds. The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge: Cambridge University Press.Google Scholar
Christoffersen, M. L., Araújo-de-Almeida, E. (1994). A phylogenetic framework of the Enterocoela (Metameria: Coelomata). Revista Nordestina De Biologia 9:173208.Google Scholar
Churchill, F. B. (1989). The guts of the matter. Infusoria from Ehrenberg to Bütschli: 1838–1876. Journal of the History of Biology 22:189213.Google Scholar
Clark, R. B. (1964). Dynamics in Metazoan Evolution. Oxford: Clarendon Press.Google Scholar
Cloud, P. E. Jr. (1968). Pre-metazoan evolution and the origins of the Metazoa. Pages 172 in Drake, E. T., ed. Evolution and Environment. New Haven, CT: Yale University Press.Google Scholar
Cohen, C. (2017). “How nationality influences Opinion”: Darwinism and palaeontology in France (1859–1914). Studies in History and Philosophy of Biological & Biomedical Science 66:817.Google Scholar
Coleman, W. (1973). Limits of the recapitulation theory: Carl Friedrich Kielmeyer’s critique of the presumed parallelism of earth history, ontogeny, and the present order of organisms. Isis 62:341350.Google Scholar
Coleman, W. (1976). Morphology between type concept and descent theory. Journal of the History of Medicine and Allied Sciences 31:149175.Google Scholar
Conway Morris, S. (2000). Evolution: bringing molecules into the fold. Cell 100:111.Google Scholar
Conway Morris, S. (2003). Life’s Solution. Inevitable Humans in a Lonely Universe. Cambridge: Cambridge University Press.Google Scholar
Conway Morris, S. (2005). Aliens like us? Astronomy & Geophysics 46:4.244.26.Google Scholar
Conway Morris, S. (2009). The predictability of evolution: glimpses into a post-Darwinian world. Naturwissenschaften 96:13131337.Google Scholar
Cope, E. D. (1896). The Primary Factors of Organic Evolution. Chicago: The Open Court Publishing Company.Google Scholar
Coppard, S. E., Kroh, A., Smith, A. B. (2012). The evolution of pedicellariae in echinoids: an arms race against pests and parasites. Acta Zoologica 93:125148.Google Scholar
Cracraft, J. (1981). The use of functional and adaptive criteria in phylogenetic systematics. American Zoologist 21:2136.Google Scholar
Cracraft, J. (2005). Phylogeny and evo-devo: characters, homology, and the historical analysis of the evolution of development. Zoology 108:345356.Google Scholar
Crampton, G. (1916). The phylogenetic origin and the nature of the wings of insects according to the paranotal theory. Journal of the New York Entomological Society 24:139.Google Scholar
Crampton, G. C. (1921). The phylogenetic origin of the mandibles of insects and their arthropodan relatives – a contribution to the study of the evolution of the Arthropoda. Journal of the New York Entomological Society 29:63100.Google Scholar
Crampton, G. C. (1938). The interrelationships and lines of descent of living insects. Psyche 45:165181.Google Scholar
Crisp, M. D., Cook, L. G. (2005). Do early branching lineages signify ancestral traits? Trends in Ecology & Evolution 20:122128.Google Scholar
Cronquist, A. (1956). Significance of orthogenesis in angiosperm taxonomy. The Southwestern Naturalist 1:9799.Google Scholar
Crow, W. B. (1926). Phylogeny and the natural system. Journal of Genetics 17:88155.Google Scholar
Crowson, R. A. (1982). Computers versus imagination in the reconstruction of phylogeny. Pages 245255 in Joysey, K. A., Friday, A. E., eds. Problems of Phylogenetic Reconstruction. London: Academic Press.Google Scholar
Cunningham, C. W., Omland, K. E., Oakley, T. H. (1998). Reconstructing ancestral character states: a critical reappraisal. Trends in Ecology & Evolution 13:361366.Google Scholar
Currie, A., Sterelny, K. (2017). In defence of story-telling. Studies in History and Philosophy of Science 62:1421.Google Scholar
Cusimano, N., Renner, S. S. (2014). Ultrametric trees or phylograms for ancestral state reconstruction: does it matter? Taxon 63:721726.Google Scholar
Cutler, E. B., Gibbs, P. E. (1985). A phylogenetic analysis of higher taxa in the phylum Sipuncula. Systematic Zoology 34:162173.Google Scholar
D’Hombres, E. (2012). The “division of physiological labour”: the birth, life and death of a concept. Journal of the History of Biology 45:331.Google Scholar
D’Hombres, E. (2016). The Darwinian muddle on the division of labour: an attempt at clarification. History and Philosophy of the Life Sciences 38:122.Google Scholar
Dahl, E. (1983). Alternatives in malacostracan evolution. Memoirs of the Australian Museum 18:15.Google Scholar
Daly, M., Brugler, M. R., Cartwright, P., et al. (2007). The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127182.Google Scholar
Dannemann, M., Prüfer, K., Kelso, J. (2017). Functional implications of Neandertal introgression in modern humans. Genome Biology 18:61.Google Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favored Races in the Struggle for Pife (Penguin Facsimile of First Edition). London: Penguin Books.Google Scholar
Darwin, C. (1862). On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the Good Effects of Intercrossing. London: John Murray.Google Scholar
Darwin, C. (1876). On the Origin of Species by Means of Natural Selection, or the Preservation of Favored Races in the Struggle for Life. Sixth Edition, with Additions and Corrections to 1872. London: John Murray.Google Scholar
Darwin, C. (1901). The Descent of Man and Selection in Relation to Sex. London: John Murray.Google Scholar
Dawkins, R. (2004). The Ancestor’s Tale. A Pilgrimage to the Dawn of Evolution. Boston: Houghton Mifflin Company.Google Scholar
Dayrat, B. (2003). The roots of phylogeny: how did Haeckel build his trees? Systematic Biology 52:515527.Google Scholar
de Beer, G. R. (1940). Embryos and Ancestors. Oxford: Clarendon Press.Google Scholar
de Beer, G. R. (1954). The evolution of Metazoa. Pages 2433 in Huxley, J., Hardy, A. C., Ford, E. B., eds. Evolution as a Process. London: George Allen & Unwin Ltd.Google Scholar
de Beer, G. R. (1958). Embryos and Ancestors. Oxford: Clarendon Press.Google Scholar
de Pinna, M. C. C. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367394.Google Scholar
De Queiroz, K. (1999). The general lineage concept of species and the defining properties of the species category. Pages 4989 in Wilson, R. A., ed. Species. New Interdisciplinary Essays. Cambridge, MA: MIT Press.Google Scholar
De Queiroz, K. (2005). Different species problems and their resolution. BioEssays 27:12631269.Google Scholar
De Robertis, E. M., Sasai, Y. (1996). A common plan for dorsoventral patterning in Bilateria. Nature 380:3740.Google Scholar
Dean, B. (1912). Orthogenesis in the egg capsules of Chimaera. Bulletin of the American Museum of Natural History 31:3540.Google Scholar
Debernardi, M., Serrelli, E. (2013). From bacteria to Saint Francis to Gaia in the symbiotic view of evolution. Evolution: Education and Outreach 6:4.Google Scholar
Delsman, H. C. (1922). The Ancestry of Vertebrates. As a Means of Understanding the Principal Features of their Structure and Development. Amersfoort: Valkhoff & Co.Google Scholar
Desmond, A. (1982). Archetypes and Ancestors. Palaeontology in Victorian London 1850–1875. Chicago: The University of Chicago Press.Google Scholar
Desmond, A. (1985). The making of institutional zoology in London 1822–1836: part I. History of Science 23:153185.Google Scholar
Desmond, A. (1989). The Politics of Evolution. Morphology, Medicine, and Reform in Radical London. Chicago: The University of Chicago Press.Google Scholar
Desmond, A. (1994). Huxley: The Devil’s Disciple. London: Michael Joseph.Google Scholar
Desmond, A. (1997). Huxley: Evolution’s High Priest. London: Michael Joseph.Google Scholar
Desmond, A., Moore, J. (2009). Darwin. London: Penguin Books.Google Scholar
Dewel, R. A. (2000). Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. Journal of Morphology 243:3574.Google Scholar
Dewel, R. A., Dewel, W. C., McKinney, F. K. (2001). Diversification of the Metazoa: Ediacarans, colonies, and the origin of eumetazoan complexity by nested modularity. Historical Biology 15:193218.Google Scholar
Di Gregorio, M. A. (2005). From Here to Eternity. Ernst Haeckel and Scientific Faith. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
DiFrisco, J., Jaeger, J. (2019). Beyond networks: mechanism and process in evo‐devo. Biology & Philosophy 34:54.Google Scholar
DiFrisco, J., Jaeger, J. (2021). Homology of process: developmental dynamics in comparative biology. Interface Focus 11:20210007.Google Scholar
Diogo, R., Ziermann, J. M., Linde-Medina, M. (2015). Is evolutionary biology becoming too politically correct? A reflection on the scala naturae, phylogenetically basal clades, anatomically plesiomorphic taxa, and “lower” animals. Biological Reviews of the Cambridge Philosophical Society 90:502521.Google Scholar
Dobzhansky, T. (1965). Mendelism, Darwinism, and evolutionism. Proceedings of the American Philosophical Society 109:205215.Google Scholar
Dohrn, A. (1875). Der Ursprung der Wirbelthiere und das Princip des Functionswechsels. Genealogische Skizzen. Leipzig: Wilhelm Engelmann.Google Scholar
Dominici, S., Eldredge, N. (2010). Brocchi, Darwin, and transmutation: phylogenetics and paleontology at the dawn of evolutionary biology. Evolution: Education and Outreach 3:576584.Google Scholar
Donoghue, P. C. J. (2005). Saving the stem group – a contradiction in terms? Paleobiology 31:553558.Google Scholar
Doolittle, W. F., Bapteste, E. (2007). Pattern pluralism and the Tree of Life hypothesis. Proceedings of the National Academy of Sciences USA 104:20432049.Google Scholar
Duerden, J. E. (1919). Crossing the North African and South African ostrich. Journal of Genetics 8:155198.Google Scholar
Dunn, C. W., Hejnol, A., Matus, D. Q., et al. (2008). Broad phylogenomic sampling improves the resolution of the animal tree of life. Nature 452:745749.Google Scholar
Dunn, C. W., Leys, S. P., Haddock, S. H. D. (2015). The hidden biology of sponges and ctenophores. Trends in Ecology & Evolution 30:282291.Google Scholar
Dupré, J. (2017). The metaphysics of evolution. Interface Focus 7:20160148.Google Scholar
Dupré, J., Nicholson, D. J. (2018). Towards a processual philosophy of biology in Nicholson, D. J., Dupré, J., eds. Everything Flows. Towards a Processual Philosophy of Biology. Oxford: Oxford University Press.Google Scholar
Ebach, M. C. (2005). Anschauung and the archetype. The role of Goethe’s delicate empiricism in comparative biology. Janus Head 8:254270.Google Scholar
Eckermann, J. P. (1908). Goethes Gespräche mit J. P. Eckermann. Leipzig: Insel-Verlag.Google Scholar
Edgecombe, G. D. (2020). Arthropod origins: integrating paleontological and molecular evidence. Annual Review of Ecology, Evolution, and Systematics 51:125.Google Scholar
Edgecombe, G. D., Giribet, G., Dunn, C. W., et al. (2011). Higher-level metazoan relationships: recent progress and remaining questions. Organisms, Diversity & Evolution 11:151172.Google Scholar
Eernisse, D. J., Albert, J. S., Anderson, F. E. (1992). Annelida and arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Systematic Biology 41:305330.Google Scholar
Eigen, E. A. (1997). Overcoming first impressions: Georges Cuvier’s types. Journal of the History of Biology 30:179209.Google Scholar
Eigenmann, C. H. (1917–1929). The American Characidae. memoirs of the Museum of Comparative Zoology 42:1558.Google Scholar
Eisig, H. (1878). Der Nebendarm der Capitelliden und seine Homologa. Zoologischer Anzeiger 1:148152.Google Scholar
Eldredge, N. (2010). How systematics became “phylogenetic.” Evolution: Education and Outreach 3:491494.Google Scholar
Eldredge, N., Cracraft, J. (1980). Phylogenetic Patterns and the Evolutionary Process. Method and Theory in Comparative Biology. New York: Columbia University Press.Google Scholar
Eldredge, N., Novacek, M. J. (1985). Systematics and paleobiology. Paleobiology 11:6574.Google Scholar
Engel, M. S., Kristensen, N. P. (2013). A history of entomological classification. Annual Review of Entomology 58:585607.Google Scholar
Engelbrecht, D. v. Z. (1967). The annelid ancestry of the chordates and the origin of the chordate central nervous system and the notochord. Journal of Zoological Systematics and Evolutionary Research 7:1830.Google Scholar
Engelbrecht, D. v. Z. (1971). The phylogenetic origin of the lateral eyes and the optic chiasma of vertebrates. Journal of Zoological Systematics and Evolutionary Research 9:3048.Google Scholar
Engelmann, G. F., Wiley, E. O. (1977). The place of ancestor-descendant relationships in phylogeny reconstruction. Systematic Zoology 26:111.Google Scholar
Ereshefsky, M., Turner, D. (2020). Historicity and explanation. Studies in the History and Philosophy of Science 80:4755.Google Scholar
Ereskovsky, A. V., Dondua, A. K. (2006). The problem of germ layers in sponges (Porifera) and some issues concerning early metazoan evolution. Zoologischer Anzeiger 245:6576.Google Scholar
Erives, A., Fritzsch, B. (2020). A screen for gene paralogies delineating evolutionary branching order of early Metazoa. G3: Genes, Genomes, Genetics 10:811.Google Scholar
Erwin, D. H., Valentine, J. W. (2013). The Cambrian Explosion. The Construction of Animal Biodiversity. Greenwood Village, CO: Roberts and Company.Google Scholar
Extavour, C. G., Akam, M. (2003). Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:58695884.Google Scholar
Farber, P. L. (1976). The type-concept in zoology during the first half of the nineteenth century. Journal of the History of Biology 9:93119.Google Scholar
Farley, J. (1974). The initial reactions of French biologists to Darwin’s Origin of Species. Journal of the History of Biology 7:275300.Google Scholar
Fauchald, K. (1974). Polychaete phylogeny: a problem in protostome evolution. Systematic Zoology 23:493506.Google Scholar
Felsenstein, J. (2004). Inferring Phylogenies. Sunderland, MA: Sinauer Associates.Google Scholar
Fernández, R., Laumer, C. E., Vahtera, V., et al. (2014). Evaluating topological conflict in centipede phylogeny using transcriptomic data sets. Molecular Biology and Evolution 31:15001513.Google Scholar
Ferrari, F. D. (2010). Morphology, development, and sequence. Journal of Crustacean Biology 30:767769.Google Scholar
Ferrari, F. D., Fornshell, J., Vagelli, A. A., Ivanenko, V. N., Dahms, H.-U. (2011). Early post-embryonic development of marine chelicerates and crustaceans with a nauplius. Crustaceana 84:869893.Google Scholar
Ferrier, D. E. K. (2012). Evolutionary crossroads in developmental biology: annelids. Development 139:26432653.Google Scholar
Field, K. G., Olsen, G., Lane, D. J., et al. (1988). Molecular phylogeny of the animal kingdom. Science 239:748753.Google Scholar
Field, K. G., Olsen, G. J., Giovannoni, S. J., et al. (1989). Phylogeny and molecular data. Science 243:550551.Google Scholar
Figueirido, B., Lautenschlager, S., Pérez-Ramos, A., Van Valkenburgh, B. (2018). Distinct predatory behaviors in scimitar- and dirk-toothed sabertooth cats. Current Biology 28:32603266.Google Scholar
Fisher, D. C. (2008). Stratocladistics: intergrating temporal data and character data in phylogenetic inference. Annual Review of Ecology, Evolution and Systematics 39:365385.Google Scholar
Fisler, M., Lecointre, G. (2013). Categorizing ideas about trees: a tree of trees. PLoS ONE 8:e68814.Google Scholar
Fitch, W. M., Beintema, J. J. (1990). Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Molecular Biology and Evolution 7:438443.Google Scholar
Fitzhugh, K. (2006). The abduction of phylogenetic hypotheses. Zootaxa 1145:1110.Google Scholar
Fokin, S. I. (2013). Otto Bütschli (1848–1920): where we will genuflect? Protistology 8:2235.Google Scholar
Foote, M. (1996). On the probability of ancestors in the fossil record. Paleobiology 22:141151.Google Scholar
Forey, P. L. (1982). Neontological analysis versus palaeontological stories. Pages 119157 in Joysey, K. A., Friday, A. E., eds. Problems of Phylogenetic Reconstruction. London: Academic Press.Google Scholar
Forey, P. L. (2004). Systematics and paleontology. Pages 149180. Milestones in Systematics. Boca Raton, FL: CRC Press.Google Scholar
Fortey, R. A., Thomas, R. H. (1993). The case of the velvet worm. Nature 361:205206.Google Scholar
Foster, M., Sedgwick, A., eds. (1885). The Works of Francis Maitland Balfour. Volume I. London: Macmillan.Google Scholar
Franzen, J., Gingerich, P., Habersetzer, J., et al. (2009). Complete primate skeleton from the Middle Eocene of Messel in Germany: morphology and paleobiology. PLoS ONE 4:e5723.Google Scholar
Froehlich, J. M., Seiliez, I., Gabillard, J. C., Biga, P. R. (2014). Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages. Journal of Visualized Experiments 86:51354.Google Scholar
Frost, D. R., Grant, T., Faivovich, J., et al. (2006). The amphibian tree of life. Bulletin of the American Museum of Natural History 297:8370.Google Scholar
Fry, B., Undheim, E., Ali, S., et al. (2013). Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles. Molecular & Cellular Proteomics 12:18811899.Google Scholar
Fryer, G. (1992). The origin of the Crustacea. Acta Zoologica 73:273286.Google Scholar
Fryer, G. (1996). Reflections on arthropod evolution. Biological Journal of the Linnean Society 58:155.Google Scholar
Fu, D.-J., Tong, G., Dai, T., et al. (2019). The Qingjiang biota – A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South China. Science 363:13381342.Google Scholar
Fusco, G., Minelli, A. (2013). Arthropod segmentation and tagmosis. Pages 197221 in Minelli, A., Boxshall, G., Fusco, G., eds. Arthropod Biology and Evolution. Berlin: Springer-Verlag.Google Scholar
Galera, A. (2021). Etienne Geoffroy Saint-Hilaire and the first embryological evolutionary model on the origin of vertebrates. Journal of the History of Biology 54:229245.Google Scholar
Garcia-Fernàndez, J., Benito-Gutiérrez, E. (2009). It’s a long way from amphioxus: descendants of the earliest chordate. BioEssays 31:665675.Google Scholar
Garey, J. R. (2002). The lesser-known protostome taxa: an introduction and a tribute to Robert P. Higgins. Integrative and Comparative Biology 42:611618.Google Scholar
Garstang, W. (1928). The morphology of the Tunicata, and its bearing on the phylogeny of the Chordata. Quarterly Journal of Microscopical Science 72:51187.Google Scholar
Gąsiorowski, L., , C., A., Janssen, R., et al. (2021). Molecular evidence for a single origin of ultrafiltration-based excretory organs. Current Biology 31:110.Google Scholar
Gaskell, W. H. (1906). On the origin of vertebrates, deduced from the study of ammocoetes. Journal of Anatomy and Physiology 40:305317.Google Scholar
Gaskell, W. H. (1908). The Origin of Vertebrates. London: Longmans, Green, and Co.Google Scholar
Gaskell, W. H. (1910). Origin of the vertebrates. Proceedings of the Linnean Society of London 122:4650.Google Scholar
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., Behlke, A. D. B. (2012). Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History 53:3308.Google Scholar
Gee, H. (2000). Deep Time. Cladistics, the Revolution in Evolution. London: Fourth Estate.Google Scholar
Gee, H. (2013). The Accidental Species. Misunderstandings of Human Evolution. Chicago: The University of Chicago Press.Google Scholar
Gee, H. (2018). Across the Bridge. Understanding the Origin of the Vertebrates. Chicago: University of Chicago Press.Google Scholar
Gegenbaur, C. (1859). Grundzüge der vergleichenden Anatomie. Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
Gegenbaur, C. (1870). Grundzüge der vergleichenden Anatomie. Zweite umgearbeitete Auflage. Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
Gegenbaur, C. (1876). Die Stellung und Bedeutung der Morphologie. Morphologisches Jahrbuch 1:119.Google Scholar
Gegenbaur, C. (1878). Elements of Comparative Anatomy. London: Macmillan.Google Scholar
Geoffroy Saint-Hilaire, E. (1830). Principes de philosophie zoologique. Paris: Pichon et Didier.Google Scholar
Ghiselin, M. T. (1969). The Triumph of the Darwinian Method. Chicago: The University of Chicago Press.Google Scholar
Ghiselin, M. T. (1972). Models in phylogeny. Pages 130145 in Schopf, T. J. M., ed. Models in Paleobiology. San Francisco: Freeman, Cooper & Company.Google Scholar
Ghiselin, M. T. (1976). Two Darwins: history versus criticism. Journal of the History of Biology 9:121132.Google Scholar
Ghiselin, M. T. (1988). The origin of molluscs in the light of molecular evidence. Oxford Surveys in Evolutionary Biology 5:6695.Google Scholar
Ghiselin, M. T. (1991). Classical and molecular phylogenetics. Bolletino di Zoologia 58:289294.Google Scholar
Ghiselin, M. T. (1994). The origin of vertebrates and the principle of succession of functions. Genealogical sketches by Anton Dohrn, 1875. An English translation from the German, introduction and bibliography. History and Philosophy of the Life Sciences 16:396.Google Scholar
Ghiselin, M. T. (1995). Darwin, progress, and economic principles. Evolution 49:10291037.Google Scholar
Ghiselin, M. T. (1996). Charles Darwin, Fritz Müller, Anton Dohrn, and the origin of evolutionary physiological anatomy. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 22:4958.Google Scholar
Ghiselin, M. T. (1997). Metaphysics and the Origin of Species. Albany: State University of New York Press.Google Scholar
Ghiselin, M. T. (2000a). The assimilation of Darwinism in systematic biology. Pages 265281 in Minelli, A., Casellato, S., eds. Giovanni Canestrini: Zoologist and Darwinist. Venezia: Inst. Veneto Sci. Lett. ed Arti.Google Scholar
Ghiselin, M. T. (2000b). The founders of morphology as alchemists. Pages 3949 in Ghiselin, M. T., Leviton, A. E., eds. Cultures and Institutions of Natural History: Essays in the History and Philosophy of Science. San Francisco: California Academy of Sciences.Google Scholar
Ghiselin, M. T. (2003). Carl Gegenbaur versus Anton Dohrn. Theory in Biosciences 122:142147.Google Scholar
Ghiselin, M. T. (2005a). The Darwinian revolution as viewed by a philosophical biologist. Journal of the History of Biology 38:123136.Google Scholar
Ghiselin, M. T. (2005b). Homology as a relation of correspondence between parts of individuals. Theory in Biosciences 24:91103.Google Scholar
Ghiselin, M. T. (2016). Homology, convergence and parallelism. Philosophical Transactions of the Royal Society B: Biological Sciences 371:20150035.Google Scholar
Ghiselin, M. T., Groeben, C. (1997). Elias Metschnikoff, Anton Dohrn, and the metazoan common ancestor. Journal of the History of Biology 30:211228.Google Scholar
Gilbert, S. F. (1991). Developmental Biology. Sunderland, MA: Sinauer Associates.Google Scholar
Gingerich, P. D. (1979). The stratophenetic approach to phylogeny reconstruction in vertebrate paleontology. Pages 4177 in Cracraft, J., Eldredge, N., eds. Phylogenetic Analyses and Paleontology. New York: Columbia University Press.Google Scholar
Giribet, G. (2008). Assembling the lophotrochozoan (=spiralian) tree of life. Philosophical Transactions of the Royal Society B: Biological Sciences 363:15131522.Google Scholar
Giribet, G. (2009). On velvet worms and caterpillars: science, fiction, or science fiction? Proceedings of the National Academy of Sciences USA 106:E131.Google Scholar
Giribet, G., Distel, D. L., Polz, M., Sterrer, W., Wheeler, W. C. (2000). Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Systematic Biology 49:539562.Google Scholar
Giribet, G., Edgecombe, G. D. (2020). The Invertebrate Tree of Life. Princeton: Princeton University Press.Google Scholar
Giribet, G., Okusu, A., Lindgren, A. R., et al. (2006). Evidence for a clade composed of molluscs with serially repeated structures: monoplacophorans are related to chitons. Proceedings of the National Academy of Sciences USA 103:77237728.Google Scholar
Gishlick, A. D. (2003). Icons of evolution? Why much of what Jonathan Wells writes about evolution is wrong. National Centre for Science Education:1–64.Google Scholar
Glaubrecht, M. (2012). Franz Hilgendorf’s dissertation “Beiträge zur Kenntnis des Süßwasserkalks von Steinheim” from 1863: transcription and description of the first Darwinian interpretation of transmutation. Zoosystematics and Evolution 88:231259.Google Scholar
Gliboff, S. (2007). H.G. Bronn and the history of nature. Journal of the History of Biology 40:259294.Google Scholar
Gliboff, S. (2008). H. G. Bronn, Ernst Haeckel, and the Origins of German Darwinism. Cambridge, MA: MIT Press.Google Scholar
Göbbel, L., Schultka, R. (2003). Meckel the Younger and his epistemology of organic form: morphology in the pre-Gegenbaurian age. Theory in Biosciences 122:127141.Google Scholar
Goldschmidt, R. (1920). Otto Bütschli 1848–1920. Naturwissenschaften 8:543549.Google Scholar
Goodrich, E. S. (1931). The scientific work of Edwin Ray Lankester. The Quarterly Journal of Microscopical Science s274:363382.Google Scholar
Gordon, S. (2016). Elie Metchnikoff, the man and the myth. Journal of Innate Immunity 8:223227.Google Scholar
Gould, S. J. (1974). The origin and function of “bizarre” structures: antler size and skull size in the “Irish elk,” Megaloceros giganteus. Evolution 28:191220.Google Scholar
Gould, S. J. (1977a). Ever Since Darwin. Reflections in Natural History. London: Penguin Books.Google Scholar
Gould, S. J. (1977b). Ontogeny and Phylogeny. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Gould, S. J. (1980). The Panda’s Thumb. More Reflections in Natural History. New York: W. W. Norton and Company.Google Scholar
Gould, S. J. (1986). Geoffroy and the homeobox. Pages 205218 in Slavkin, H. C., ed. Progress in Developmental Biology, Part A. New York: Alan R. Liss, Inc.Google Scholar
Gould, S. J. (1988). Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology. 62:319329.Google Scholar
Gould, S. J. (1989). Wonderful Life. The Burgess Shale and the Nature of History. London: Penguin Books.Google Scholar
Gould, S. J. (1991a). Bully for Brontosaurus. Reflections in Natural History. London: Penguin Books.Google Scholar
Gould, S. J. (1991b). Time’s Arrow, Time’s Cycle. Myth and Metaphor in the Discovery of Geological Time. London: Penguin Books.Google Scholar
Gould, S. J. (1993). Eight Little Piggies. Reflections in Natural History. London: Penguin Books.Google Scholar
Gould, S. J. (1995a). Ladders and cones: constraining evolution by canonical icons. Pages 3767 in Silvers, R. B., ed. Hidden Histories of Science. New York: The New York Review of Books.Google Scholar
Gould, S. J. (1995b). Redrafting the tree of life. Proceedings of the American Philosophical Society 141:3054.Google Scholar
Gould, S. J. (1996). Full House. The Spread of Excellence from Plato to Darwin. New York: Harmony Books.Google Scholar
Gould, S. J. (1998). Leonardo’s Mountain of Clams and the Diet of Worms. Essays on Natural History. New York: Harmony Books.Google Scholar
Gould, S. J. (2000). The Lying Stones of Marrakech. Penultimate Reflections in Natural History. New York: Harmony Books.Google Scholar
Gould, S. J. (2002a). I Have Landed. Splashes and Reflections in Natural History. London: Vintage.Google Scholar
Gould, S. J. (2002b). The Structure of Evolutionary Theory. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Gould, S. J., Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society B: Biological Sciences 205:581598.Google Scholar
Gourko, H., Williamson, D. I., Tauber, A. I., eds. (2000). The Evolutionary Biology Papers of Elie Metchnikoff Dordrecht: Kluwer Academic Publishers.Google Scholar
Grant, E. (2007). A History of Natural Ohilosophy. From the Ancient World to the Nineteenth Century. Cambridge: Cambridge University Press.Google Scholar
Grant, R. E. (1826). On the structure and nature of the Spongilla friabilis. Edinburgh Philosophical Journal 14:270284.Google Scholar
Grant, T. (2019). Outgroup sampling in phylogenetics: severity of test and successive outgroup expansion. Journal of Zoological Systematics and Evolutionary Research 57:748763.Google Scholar
Grasshoff, M., Gudo, M. (2002). The origin of Metazoa and the main evolutionary lineages of the animal Kingdom: the gallertoid hypothesis in the light of modern research. Senckenbergiana lethaea 82:295314.Google Scholar
Gregory, T. R. (2008). Understanding evolutionary trees. Evolution: Education and Outreach 1:121137.Google Scholar
Grehan, J., Ainsworth, R. (1985). Orthogenesis and evolution. Systematic Zoology 34:174192.Google Scholar
Grell, K. G. (1979). Die Gastraea-Theorie. Medizinhistorisches Journal 14:275291.Google Scholar
Grene, M. (2001). Darwin, Cuvier and Geoffroy: comments and questions. History and Philosophy of the Life Sciences 23:187211.Google Scholar
Griesemer, J. R. (1996). Some concepts of historical science. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 27:6069.Google Scholar
Groeben, C. (1985). Anton Dohrn: the statesman of Darwinism: to commemorate the 75th anniversart of the death of Anton Dohrn. Biological Bulletin 168 (Supplement):425.Google Scholar
Groeben, C., Oppenheimer, J. M. (1993). Karl Ernst von Baer (1792–1876), Anton Dohrn (1840–1909): correspondence. Transactions of the American Philosophical Society 83:1156.Google Scholar
Gudo, M. (2005). An evolutionary scenario for the origin of pentaradial echinoderms – implications from the hydraulic principles of form determination. Acta Biotheoretica 53:191216.Google Scholar
Gudo, M., Syed, T. (2008). 100 years of Deuterostomia (Grobben, 1908): cladogenetic and anagenetic relations within the Notoneuralia domain. ArXiv:0811.2189v0811.Google Scholar
Gutmann, W. F. (1966). Coelomgliederung, Myomerie und die Frage der Vertebraten-Antezedenten. Zeitschrift für zoologische Systematik und Evolutionsforschung 4:1357.Google Scholar
Gutmann, W. F. (1981). Relationships between invertebrate phyla based on functional-mechanical analysis of the hydrostatic skeleton. American Zoologist 21:6381.Google Scholar
Hadži, J. (1953). An attempt to reconstruct the system of animal classification. Systematic Zoology 2:145154.Google Scholar
Hadži, J. (1958). Zur Diskussion über die Abstammung der Eumetazoen. Zoologischer Anzeiger Supplement 21:169179.Google Scholar
Hadži, J. (1963). The Evolution of the Metazoa. Oxford: Pergamon Press.Google Scholar
Haeckel, E. (1866a). Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. Bd. 1, Allgemeine Anatomie der Organismen. Berlin: Verlag von Georg Reimer.Google Scholar
Haeckel, E. (1866b). Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. Bd. 2, Allgemeine Entwickelungsgeschichte der Organismen. Berlin: Verlag von Georg Reimer.Google Scholar
Haeckel, E. (1870). Studien über Moneren und andere Protisten nebst einer Rede über Entwicklungsgang und Aufgabe der Zoologie. Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
Haeckel, E. (1872). Die Kalkschwämme. Erster Band (Genereller Theil). Biologie der Kalkschwämme. Berlin: Verlag von Georg Reimer.Google Scholar
Haeckel, E. (1874). The Gastrea-theory, the phylogenetic classification of the animal kingdom and the homology of the germ-lamellae. Quarterly Journal of Microscopical Science 14:142165, 223247.Google Scholar
Haeckel, E. (1875). Ziel und Wege der heutigen Entwicklungsgeschichte. Jenaische Zeitschrift für Naturwissenschaft 10 (Supplement):199.Google Scholar
Haeckel, E. (1877). Studien zur Gastraea-Theorie. Jena: Verlag von Hermann Dufft.Google Scholar
Haeckel, E. (1885). Ursprung und Entwicklung der thierischen Gewebe. Ein histogenetischer Beitrag zur Gastraea-Theorie. Jenaische Zeitschrift für Medicin und Naturwissenschaft 18:206276.Google Scholar
Haeckel, E. (1889). Natürliche Schöpfungs-Geschichte. Berlin: Druck und Verlag von Georg Reimer.Google Scholar
Haeckel, E. (1891). Anthropogenie oder Entwicklungsgeschichte der Menschen. Keimes- und Stammes-Geschichte. Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
Haeckel, E. (1894). Systematische Phylogenie der Protisten und Pflanzen. Berlin: Verlag von Georg Reimer.Google Scholar
Haeckel, E. (1895). Systematische Phylogenie der Wirbelthiere (Vertebrata). Berlin: Verlag von Georg Reimer.Google Scholar
Haeckel, E. (1896). Systematische Phylogenie der Wirbellosen Thiere (Invertebrata). Berlin: Verlag von Georg Reimer.Google Scholar
Haeckel, E. (1908). Unsere Ahnenreihe (Progonotaxis hominis). Jena: Verlag von Gustav Fischer.Google Scholar
Haeckel, E. (1919). Die Welträtsel. Gemeinverständliche Studien über monistische Philosophie. Elfte verbesserte Auflage. Stuttgart: Alfred Kröner Verlag.Google Scholar
Haeckel, E. (2008). Art Forms in Nature. Munich: Prestel Verlag.Google Scholar
Halanych, K. M. (2015). The ctenophore lineage is older than sponges? That cannot be right! Or can it? Journal of Experimental Biology 218:592597.Google Scholar
Halanych, K. M. (2016). How our view of animal phylogeny was reshaped by molecular approaches: lessons learned. Organisms Diversity & Evolution 16:319328.Google Scholar
Hall, B. K. (1999). The paradoxical platypus. Bioscience 49:211218.Google Scholar
Hall, B. K. (2005). Betrayed by Balanoglossus: William Bateson’s rejection of evolutionary embryology as the basis for understanding evolution. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 304B:117.Google Scholar
Hall, B. K. (2007). Tapping many sources: the adventitious roots of evo-devo in the nineteenth century. Pages 467497 in Laubichler, M. D., Maienschein, J., eds. From Embryology to Evo-Devo: A History of Developmental Evolution. Cambridge, MA: MIT Press.Google Scholar
Hallam, A. (1988). The contribution of palaeontology to systematics and evolution. Pages 128147 in Hawksworth, D. L., ed. Prospects in Systematics. Oxford: Oxford University Press.Google Scholar
Halverson, K. L., Pires, C. J., Abell, S. K. (2011). Exploring the complexity of tree thinking expertise in an undergraduate systematics course. Science Education 95:794823.Google Scholar
Hamilton, A., ed. (2014). The Evolution of Phylogenetic Systematics. Berkeley: University of California Press.Google Scholar
Hand, C. (1959). On the origin and phylogeny of the coelenterates. Systematic Zoology 8:191202.Google Scholar
Handlirsch, A. (1908). Die Fossilen Insekten und die Phylogenie der Rezenten Formen. Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
Hanson, E. D. (1958). On the origin of the Eumetazoa. Systematic Zoology 7:1647.Google Scholar
Hanson, E. D. (1963). Homologies and the ciliate origin of the Eumetazoa. Pages 722 in Dougherty, E. C., Norwood Brown, Z., Hanson, E. D., Hartman, W. D., eds. The Lower Metazoa. Comparative Biology and Phylogeny. Berkeley: University of California Press.Google Scholar
Hanson, E. D. (1972). Animal Diversity. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Hanson, E. D. (1977). The Origin and Early Evolution of Animals. Middletown: Wesleyan University Press.Google Scholar
Hanson, E. D. (1981). Understanding Evolution. New York: Oxford University Press.Google Scholar
Hargreaves, A. D., Tucker, A. S., Mulley, J. F. (2015). A critique of the toxicoferan hypothesis. Pages 6986 in Gopalakrishnakone, P., Malhotra, A., eds. Evolution of Venomous Animals and Their Toxins. Dordrecht: Springer Netherlands.Google Scholar
Härlin, M. (1998). Tree-thinking and nemertean systematics, with a systematization of the Eureptantia. Hydrobiologia 365:3346.Google Scholar
Hart, M. W., Grosberg, R. K. (2009). Caterpillars did not evolve from onychophorans by hybridogenesis. Proceedings of the National Academy of Sciences USA 106:1990619909.Google Scholar
Hartman, W. D. (1963). A critique of the enterocoele theory. Pages 5577 in Dougherty, E. C., ed. The Lower Metazoa. Comparative Biology and Phylogeny. Berkeley: University of California Press.Google Scholar
Hartnoll, R. (2016). In remembrance of Donald Williamson (6 January 1922 – 29 January 2016), planktologist, carcinologist, and evolutionist: a metamorphosis. Journal of Crustacean Biology 36:408413.Google Scholar
Harvey, L. A. (1961). Speculations on ancestry and evolution. Science Progress 49:111121.Google Scholar
Haszprunar, G. (1996). The Mollusca: coelomate turbellarians or mesenchymate annelids? Pages 128 in Taylor, J., ed. Origin and Evolutionary Radiation of the Mollusca. Oxford: Oxford University Press.Google Scholar
Haszprunar, G., Wanninger, A. (2012). Molluscs. Current Biology 22:R510R514.Google Scholar
Hatschek, B. (1878). Studien über die Entwicklungsgeschichte der Anneliden. Ein Beitrag zur Morphologie der Bilaterien. Arbeiten aus dem Zoologischen Institut der Universität Wien und der Zoologischen Station in Triest 1:1128.Google Scholar
Hatschek, B. (1888). Lehrbuch der Zoologie. Eine Morphologische Übersicht des Thierreiches zur Einführung in das Studium dieser Wissenschaft. Jena: Verlag von Gustav Fischer.Google Scholar
Hausdorf, B. (2000). Early evolution of the Bilateria. Systematic Biology 49:130142.Google Scholar
Havstad, J. C., Assis, L. C., Rieppel, O. (2015). The semaphorontic view of homology. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 324:578587.Google Scholar
Heider, K. v. (1914). Phylogenie der Wirbellosen. Pages 453529 in Hertwig, R., Wettstein, R. v, eds. Die Kultur der Gegenwart. Teil 3. Abteilung 4. Band 4. Abstammungslehre, Systematik, Paläontologie, Biogeographie. Leipzig: Druck und Verlag von B. G. Teubner.Google Scholar
Hejnol, A., Lowe, C. J. (2015). Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Philosophical Transactions of the Royal Society B: Biological Sciences 370:20150045.Google Scholar
Hejnol, A., Martín-Durán, J. M. (2015). Getting to the bottom of anal evolution. Zoologischer Anzeiger 256:6174.Google Scholar
Hejnol, A., Martindale, M. Q. (2009). The mouth, the anus and the blastopore—open questions about questionable openings. Pages 3340 in Telford, M. J., Littlewood, D. T. J., eds. Animal Evolution. Genomes, Fossils, and Trees. Oxford: Oxford University Press.Google Scholar
Hennig, W. (1965). Phylogenetic systematics. Annual Review of Entomology 10:97116.Google Scholar
Hennig, W. (1966). Phylogenetic Systematics. Urbana, IL: University of Illinois Press.Google Scholar
Hertwig, O., Hertwig, R. (1882). Die Coelomtheorie. Versuch einder Erklärung des mittleren Keimblattes. Jenaische Zeitschrift für Naturwissenschaft 15:1150.Google Scholar
Hessler, R. R. (1983). A defense of the caridoid facies; wherein the early evolution of the Eumalacostraca is discussed. Pages 145164 in Schram, F. R., ed. Crustacean Phylogeny. Rotterdam: A. A. Balkema.Google Scholar
Hessler, R. R., Newman, W. A. (1975). A trilobitomorph origin for the Crustacea. Fossils and Strata 4:437459.Google Scholar
Hilgendorf, F. (1881). Die neu erschienene Schrift “The genesis of the tertiary species of Planorbis at Steinheim” by A. Hyatt. Sitzungsberichte der Gesellschaft naturforschender Freunde Berlin 95–100.Google Scholar
Hitchens, C. (2007). God Is Not Great. The Case Against Religion. London: Atlantic Books.Google Scholar
Holland, N. D. (2003). Early central nervous system evolution: an era of skin brains? Nature Reviews Neuroscience 4:111.Google Scholar
Holland, N. D. (2011). Walter Garstang: a retrospective. Theory in Biosciences 130:247258.Google Scholar
Holland, N. D., Holland, L. Z., Holland, P. W. H. (2015). Scenarios for the making of vertebrates. Nature 520:450455.Google Scholar
Holland, P. W. H. (2010). From genomes to morphology: a view from amphioxus. Acta Zoologica 91:8186.Google Scholar
Hölldobler, B., Wilson, E. O. (2009). The Superorganism. The Beauty, Elegance, and Strangeness of Insect Societies. New York: W. W. Norton & Company.Google Scholar
Hopwood, N. (2006). Pictures of evolution and charges fraud. Ernst Haeckel’s embryological illustrations. Isis 97:260301.Google Scholar
Hopwood, N. (2015a). The cult of amphioxus in German Darwinism; or, our gelatinous ancestors in Naples’ blue and balmy bay. History and Philosophy of the Life Sciences 36:371393.Google Scholar
Hopwood, N. (2015b). Haeckel’s Embryos. Images, Evolution, and Fraud. Chicago: The University of Chicago Press.Google Scholar
Hossfeld, U., Olsson, L. (2003). The road from Haeckel: the Jena tradition in evolutionary morphology and the origins of “evo-devo.” Biology & Philosophy 18:285307.Google Scholar
Hossfeld, U., Olsson, L. (2005). The history of the homology concept and the “Phylogenetisches Symposium.” Theory in Biosciences 124:243253.Google Scholar
Hossfeld, U., Porges, K., Levit, G. S., Olsson, L., Watts, E. (2019). Ernst Haeckel’s embryology in biology textbooks in the German Democratic Republic, 1951–1988. Theory in Biosciences 138:3148.Google Scholar
Hubrecht, A. (1905). The Gastrulation of the vertebrates. Quarterly Journal of Microscopical Science 49:403419.Google Scholar
Hubrecht, A. (1908). Early ontogenetic phenomena in mammals and their bearing on our interpretation of the phylogeny of the vertebrates. The Quarterly Journal of Microscopical Science, New Series, 53:1181.Google Scholar
Hubrecht, A. A. W. (1883). On the ancestral form of the Chordata. Quarterly Journal of Microscopical Science 23:349368.Google Scholar
Hubrecht, A. A. W. (1887). The relation of the Nemertea to the Vertebrata. Quarterly Journal of Microscopical Science 27:605644.Google Scholar
Hui, J. H. L., Raible, F., Korchagina, N., et al. (2009). Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes. BMC Biology 7:43.Google Scholar
Hull, D. L. (1975). Central subjects and historical narratives. History and Theory 14:253274.Google Scholar
Hull, D. L. (1989). The Metaphysics of Evolution. New York: State University of New York Press.Google Scholar
Huxley, J. (1957). The three types of evolutionary process. Nature 180:454455.Google Scholar
Huxley, J. (1958). The evolutionary process. Pages 933 in Huxley, J., Hardy, A. C., Ford, E. B., eds. Evolution as a Process. New York: Collier Books.Google Scholar
Huxley, J., Hardy, A. C., Ford, E. B., eds. (1958). Evolution as a Process New York: Collier Books.Google Scholar
Huxley, T. H. (1849). On the anatomy and the affinities of the family of the Medusae. Philosophical Transactions of the Royal Society of London 139:413434.Google Scholar
Huxley, T. H. (1850). Notes on medusae and polypes. The Annals and Magazine of Natural History, Including Zoology, Botany, and Geology 6:6667.Google Scholar
Huxley, T. H. (1853). On the morphology of the cephalous Mollusca, as illustrated by the anatomy of certain Heteropoda and Pteropoda collected during the voyage of H. M. S. “Rattlesnake” in 1846–50. Philosophical Transactions of the Royal Society of London 143:2965.Google Scholar
Huxley, T. H. (1858). On the theory of the vertebrate skull. Proceedings of the Royal Society of London 9:381457.Google Scholar
Huxley, T. H. (1863). Evidence as to Man’s Place in Nature. New York: D. Appleton and Co.Google Scholar
Huxley, T. H. (1868). On the animals which are most nearly intermediate between birds and reptiles. The Popular Science Review 7:237247.Google Scholar
Huxley, T. H. (1870). The anniversary address of the president. Quarterly Journal of the Geological Society London 18:xxixlxiv.Google Scholar
Huxley, T. H. (1875). On the classification of the animal kingdom. Quarterly Journal of Microscopical Science 15:5256.Google Scholar
Huxley, T. H. (1888). A Manual of the Anatomy of Invertebrated Animals. New York: D. Appleton and Company.Google Scholar
Hyatt, A. (1866). On the parallelism between the different stages of life in the individual and those in the entire group of the molluscous order Tetrabranchiata. Memoirs of the Boston Society of Natural History 1:193209.Google Scholar
Hyatt, A. (1880). The genesis of the Tertiary species of Planorbis at Steinheim. Anniversary Memoirs of the Boston Society of Natural History. Boston: Boston Society of Natural History 1114.Google Scholar
Hyman, L. H. (1940). The Invertebrates. Protozoa through Ctenophora. New York: McGraw-Hill.Google Scholar
Hyman, L. H. (1951). The Invertebrates. Platyhelminthes and Rhynchocoela. The Acoelomate Bilateria. Volume II. New York: McGraw-Hill.Google Scholar
Hyman, L. H. (1959). The Invertebrates. Smaller Coelomate Groups. Chaetognatha, Hemichordata, Pogonophora, Phoronida, Ectoprocta, Brachipoda [sic], Sipunculida. The Coelomate Bilateria. Volume V. New York: McGraw-Hill.Google Scholar
Irie, N., Satoh, N., Kuratani, S. (2018). The phylum Vertebrata: a case for zoological recognition. Zoological Letters 4:32.Google Scholar
Ivanov, A. V. (1988). On the early evolution of the Bilateria. Fortschritte der Zoologie 36:349352.Google Scholar
Ivanova-Kazas, O. M. (2008). Origin of Chordata and the “Upside-Down Theory.” Russian Journal of Marine Biology 34:391402.Google Scholar
Ivanova-Kazas, O. M. (2013). Origin of arthropods and of the clades of Ecdysozoa. Russian Journal Developmental Biology 44:221231.Google Scholar
Ivanova-Kazas, O. M. (2015). The secondary mouth and its phylogenetic significance. Russian Journal of Marine Biology 41:8393.Google Scholar
Jackson, T., Fry, B. (2016). A tricky trait: applying the fruits of the “function debate” in the philosophy of biology to the “venom debate” in the science of toxinology. Toxins 8:263.Google Scholar
Jackson, T. N. M., Jouanne, H., Vidal, N. (2019). Snake venom in context: neglected clades and concepts. Frontiers in Ecology and Evolution 7:332.Google Scholar
Jacobs, N. X. (1989). From unit to unity: protozoology, cell theory, and the new concept of life. Journal of the History of Biology 22:215242.Google Scholar
Jägersten, G. (1955). On the early phylogeny of the Metazoa. The Bilaterogastrea Theory. Zoologiska Bidrag Uppsala 30:321354.Google Scholar
Jahn, I. (2002). Das ,,Meckel-Serres-Gesetz”, sein Ursprung und seine Beziehung zu Evolutionstheorien des 19. Jahrhunderts. Annals of Anatomy 184:509517.Google Scholar
Janecka, J., Chowdhary, B., Murphy, W. (2012). Exploring the correlations between sequence evolution rate and phenotypic divergence across the mammalian tree provides insights into adaptive evolution. Journal of Biosciences 37:897909.Google Scholar
Janssen, R., Budd, G. E. (2017). Investigation of endoderm marker-genes during gastrulation and gut-development in the velvet worm Euperipatoides kanangrensis. Developmental Biology 427:155164.Google Scholar
Janssen, R., Jörgensen, M., Lagebro, L., Budd, G. E. (2015). Fate and nature of the onychophoran mouth–anus furrow and its contribution to the blastopore. Proceedings of the Royal Society B 282:20142628.Google Scholar
Janz, H. (1999). Hilgendorf’s planorbid tree – the first introduction of Darwin’s theory of transmutation into palaeontology. Paleontological Research 3:287293.Google Scholar
Jefferies, R. P. S. (1988). How to characterize the Echinodermata – some implications of the sister-group relationship between echinoderms and chordates. Pages 312 in Paul, C. R. C., Smith, A. B., eds. Echinoderm Phylogeny and Evolutionary Biology. Oxford: Clarendon Press.Google Scholar
Jenkins, B. (2016). Neptunism and transformism: Robert Jameson and other evolutionary theorists in early nineteenth-century Scotland. Journal of the History of Biology 49:527557.Google Scholar
Jenner, R. A. (1999). Metazoan phylogeny as a tool in evolutionary biology: current problems and discrepancies in application. Belgian Journal of Zoology 129:245262.Google Scholar
Jenner, R. A. (2000). Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. Evolution & Development 2:208221.Google Scholar
Jenner, R. A. (2001). Bilaterian phylogeny and uncritical recycling of morphological data sets. Systematic Biology 50:730742.Google Scholar
Jenner, R. A. (2002). Boolean logic and character state identity: pitfalls of character coding in metazoan cladistics. Contributions to Zoology 71:6791.Google Scholar
Jenner, R. A. (2003). Unleashing the force of cladistics? Metazoan phylogenetics and hypothesis testing. Integrative and Comparative Biology 43:207218.Google Scholar
Jenner, R. A. (2004a). Libbie Henrietta Hyman (1888–1969): from developmental mechanics to the evolution of animal body plans. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 5:413423.Google Scholar
Jenner, R. A. (2004b). The scientific status of metazoan cladistics: why current research practice must change. Zoologica Scripta 33:293310.Google Scholar
Jenner, R. A. (2004c). Towards a phylogeny of the Metazoa: evaluating alternative phylogenetic positions of Platyhelminthes, Nemertea, and Gnathostomulida, with a critical reappraisal of cladistic characters. Contributions to Zoology 73:3163.Google Scholar
Jenner, R. A. (2004d). When molecules and morphology clash: reconciling conflicting phylogenies of the Metazoa by considering secondary character loss. Evolution & Development 6:372378.Google Scholar
Jenner, R. A. (2005a). Foiling vertebrate inversion with the humble nemertean. Palaeontological Association Newsletter 58:3239.Google Scholar
Jenner, R. A. (2005b). Meeting a nemertean nemesis. Palaeontological Association Newsletter 59:3742.Google Scholar
Jenner, R. A. (2006). Unburdening evo-devo: ancestral attractions, model organisms, and basal baloney. Evolution & Development 216:385394.Google Scholar
Jenner, R. A. (2009). Idalatry. Palaeontological Association Newsletter 71:94102.Google Scholar
Jenner, R. A. (2014). Macroevolution of animal body plans: is there science after the tree? Bioscience 64:653664.Google Scholar
Jenner, R. A. (2018). Evolution is linear: debunking life’s little joke. BioEssays 40:doi: 10.1002/bies.201700196.Google Scholar
Jenner, R. A. (2019). The origin of evolutionary storytelling. Pages 357368 in Fusco, G., ed. Perspectives on Evolutionary and Developmental Biology. Essays for Alessandro Minelli. Padova: Padova University Press.Google Scholar
Jenner, R. A., Scholtz, G. (2005). Playing another round of metazoan phylogenetics: historical epistemology, sensitivity analysis, and the position of Arthropoda within the Metazoa on the basis of morphology. Pages 355385 in Koenemann, S., Jenner, R. A., eds. Crustacea and Arthropod Relationships. Boca Raton, FL: CRC Press.Google Scholar
Jenner, R. A., Schram, F. R. (1999). The grand game of metazoan phylogeny: rules and strategies. Biological Reviews of the Cambridge Philosophical Society 74:121142.Google Scholar
Jenner, R. A., Wills, M. A. (2007). The choice of model organisms in evo-devo. Nature Reviews Genetics 8:311319.Google Scholar
Jepsen, G. L. (1949). Selection, “orthogenesis,” and the fossil record. Proceedings of the American Philosophical Society 93:479500.Google Scholar
Jockusch, E. L. (2017). Developmental and evolutionary perspectives on the origin and diversification of arthropod appendages. Integrative and Comparative Biology 57:533545.Google Scholar
Jones, W. T., Feldmann, R. M., Schram, F. R., Schweitzer, C. E., Maguire, E. P. (2016). The proof is in the pouch: Tealliocaris is a peracarid. Palaeodiversity 9:7588.Google Scholar
Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T., Poon, A. F. Y. (2016). Ancestral reconstruction. PLoS Computational Biology 12:e1004763.Google Scholar
Kapli, P., Telford, M. J. (2020). Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha. Science Advances 6:eabc5162.Google Scholar
Kappers, C. U. A. (1921). On structural laws in the nervous system: the principles of neurobiotaxis. Brain 44:125149.Google Scholar
Kappers, C. U. A. (1927). On neurobiotaxis. A pschycical law in the structure of the nervous system. Acta Psychiatrica Scandinavica 2:118145.Google Scholar
Kemp, T. S. (1988). Haemothermia or Archosauria? The interrelationships of mammals, birds and crocodiles. Zoological Journal of the Linnean Society 92:67104.Google Scholar
King, N., Rokas, A. (2017). Embracing uncertainty in reconstructing early animal evolution. Current Biology 27:R1081R1088.Google Scholar
Kingsley, J. S. (1885). Notes on the embryology of Limulus. Quarterly Journal of Microscopical Science 2:521576.Google Scholar
Kingsolver, J. G., Pfennig, D. W. (2004). Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58:16081612.Google Scholar
Kleinenberg, N. (1886). Die Entstehung des Annelids aus der Larve von Lopadorhynchus, nebst Bemerkungen über die Entwicklung anderer Polychaeten. Zeitschrift für wissenschaftliche Zoologie 44:1227.Google Scholar
Kluge, A. G. (2007). Completing the neo-Darwinian synthesis with an event criterion. Cladistics 23:613633.Google Scholar
Kluge, A. G. (2009). Explanation and falsification in phylogenetic inference: exercises in Popperian philosophy. Acta Biotheoretica 57:171186.Google Scholar
Kocot, k. M., Poustka, A. J., Stöger, I., Halanych, K. M., Schrödl, M. (2020). New data from Monoplacophora and a carefully-curated dataset resolve molluscan relationships. Scientific Reports 10:101.Google Scholar
Koduru, S., Vegiraju, S. R., Nadimpalli, S. K., et al. (2006). The early vertebrate Danio rerio Mr 46000 mannose-6-phosphate receptor: biochemical and functional characterisation. Development, Genes and Evolution 216:133143.Google Scholar
Kolchinsky, E., Levit, G. S. (2019). The reception of Haeckel in pre-revolutionary Russia and his impact on evolutionary theory. Theory in Biosciences 138:7388.Google Scholar
Kolchinsky, E. I. (2019). Russian editions of E. Haeckel’s works and the evolution of their perception. Theory in Biosciences 138:4971.Google Scholar
Korschelt, E., Heider, K. (1899). Text-book of the Embryology of Invertebrates. Vol. III. Arachnida, Pentastomidae, Pantopoda, Tardigrada, Onychophora, Myriopoda, Insects. London: Swan Sonnenschein and Co.Google Scholar
Koshi, J. M., Goldstein, R. A. (1996). Probabilistic reconstruction of ancestral protein sequences. Journal of Molecular Evolution 42:313320.Google Scholar
Kotikova, E. A., Mamkaev, Y. V. (2006). Artemii Vasil’evich Ivanov, an outstanding zoologist-evolutionist (to the 100-anniversary). Journal of Evolutionary Biochemistry and Physiology 42:226229.Google Scholar
Krell, F.-T., Cranston, P. S. (2004). Which side of the tree is more basal? Systematic Entomology 29:279281.Google Scholar
Kuntner, M., Agnarsson, I. (2009). Phylogeny accurately predicts behaviour in Indian Ocean Clitaetra spiders (Araneae : Nephilidae). Invertebrate Systematics 23:193204.Google Scholar
Kusnezov, N. (1959). Die allgemeinen Gesetze der organischen Evolution. Acta Biotheoretica 13:4786.Google Scholar
Kutschera, U. (2007). Palaeobiology: the origin and evolution of a scientific discipline. Trends in Ecology & Evolution 22:172173.Google Scholar
Kutschera, U. (2011). From the scala naturae to the symbiogenetic and dynamic tree of life. Biology Direct 6:33.Google Scholar
Kutschera, V., Maas, A., Mayer, G., Waloszek, D. (2015). Calcitic sclerites at base of malacostracan pleopods (Crustacea) – part of a coxa. BMC Evolutionary Biology 15:117.Google Scholar
Kuznetsov, A. N. (2012). Five longitudes in chordate body. Theoretical Biology Forum 105:2135.Google Scholar
Lacalli, T. C. (1996). Dorsoventral axis inversion: a phylogenetic perspective. BioEssays 18:251254.Google Scholar
Lacalli, T. C. (1997). The nature and origin of deuterostomes: some unresolved issues. Invertebrate Biology 116:363370.Google Scholar
Lacalli, T. C. (1999). Tunicate tails, stolons, and the origin of the vertebrate trunk. Biological Reviews of the Cambridge Philosophical Society 74:177198.Google Scholar
Lacalli, T. C. (2010). The emergence of the chordate body plan: some puzzles and problems. Acta Zoologica 91:410.Google Scholar
Landau, M. (1984). Human evolution as narrative: have hero myths and folktales influenced our interpretations of the evolutionary past? American Scientist 72:262268.Google Scholar
Landau, M. (1991). Narratives of Human Evolution. New Haven, CT: Yale University Press.Google Scholar
Lankester, E. R. (1873). On the primitive cell-layers of the embryo as the basis of genealogical classification of animals, and on the origin of vascular and lymph systems. The Annals and Magazine of Natural History 11:321338.Google Scholar
Lankester, E. R. (1875). Dohrn on the origin of the Vertebrata and on the principle of succession of functions. Nature 12:479481.Google Scholar
Lankester, E. R. (1876). An account of Professor Haeckel’s recent additions to the Gastraea Theory. Quarterly Journal of Microscopical Science s216:5166.Google Scholar
Lankester, E. R. (1877). Notes on the embryology and classification of the animal kingdom: comprising a revision of speculations relative to the origin and significance of the germ-layers. Quarterly Journal of Microscopical Science 17:399454.Google Scholar
Lankester, E. R. (1880). Degeneration. A Chapter in Darwinism. London: Macmillan.Google Scholar
Lankester, E. R. (1881). Limulus an Arachnid. Quarterly Journal of Microscopical Science 21:504548, 609649.Google Scholar
Lankester, E. R., ed. (1900). A Treatise on Zoology. Part II. The Porifera and Coelenterata. London: Adam and Charles Black.Google Scholar
Lankester, E. R., (1904). The structure and classification of the Arthropoda. Quarterly Journal of Microscopical Science 47:523582.Google Scholar
Laumer, C. E., Fernández, R., Lemer, S., et al. (2019). Revisiting metazoan phylogeny with genomic sampling of all phyla. Proceedings of the Royal Society B: Biological Sciences 286:20190831.Google Scholar
Laumer, C. E., Gruber-Vodicka, H., Hadfield, M. G., et al. (2018). Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. Elife 7:e36278.Google Scholar
Laundon, D., Larson, B. T., McDonald, K., King, N., Burkhardt, P. (2019). The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLoS Biology 17:e3000226.Google Scholar
Le Guyader, H. (2004). Geoffroy Saint-Hilaire. A Visionary Naturalist. Chicago: The University of Chicago Press.Google Scholar
Lee, M. S. Y., Doughty, P. (1997). The relationship between evolutionary theory and phylogenetic analysis. Biological Reviews of the Cambridge Philosophical Society 72:471495.Google Scholar
Lefèvre, W. (2001). Jean Baptiste Lamarck. Pages 176201 in Jahn, I., Schmitt, M., eds. Darwin & Co. Munich: Verlag C. H. Beck.Google Scholar
Lemche, H., Wingstrand, K. G. (1959). The anatomy of Neopilina galatheae Lemche, 1957. Galathea Report 3:171.Google Scholar
Lenoir, T. (1981). The Göttingen school and the development of transcendental Naturphilosophie in the Romantic era. Studies in the History of Biology 5:111205.Google Scholar
Lenoir, T. (1987). The eternal laws of form: morphotypes and the conditions of existence in Goethe’s biological thought. Pages 1728 in Amrine, F., Zucker, F. J., Wheeler, H., eds. Goethe and the Sciences: A Reappraisal. Dordrecht: D. Reidel.Google Scholar
Leroi, A. M. (2014). The Lagoon. How Aristotle Invented Science. London: Bloomsbury Circus.Google Scholar
Lester, J., Bowler, P. J. (1995). E. Ray Lankester and the Making of Modern British Biology. Oxford: British Society for the History of Science.Google Scholar
Levit, G. S. (2007). The roots of evo-devo in Russia: is there a characteristic ‘‘Russian Tradition’’? Theory in Biosciences 126:131148.Google Scholar
Levit, G. S., Hossfeld, U., Olsson, L. (2004). The integration of Darwinism and evolutionary morphology: Alexej Nikolajevich Swertzoff (1866–1936) and the developmental basis of evolutionary change. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 302B:343354.Google Scholar
Levit, G. S., Hossfeld, U., Olsson, L. (2006). From the “modern synthesis” to cybernetics: Ivan Ivanovich Schmalhausen (1884–1963) and his research program for a synthesis of evolutionary and developmental biology. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 306B:89106.Google Scholar
Levit, G. S., Hossfeld, U., Olsson, L. (2014). The Darwinian revolution in Germany: from evolutionary morphology to the modern synthesis. Endeavour 38:268279.Google Scholar
Levit, G. S., Meister, K. (2006). The history of essentialism vs. Ernst Mayr’s “Essentialism Story”: a case study of German idealistic morphology. Theory in Biosciences 124:281307.Google Scholar
Levit, G. S., Olsson, L. (2006). “Evolution on rails”: mechanisms and levels of orthogenesis. Annals for the History and Philosophy of Biology 11:97136.Google Scholar
Lewes, G. H. (1871). The History of Philosophy from Thales to Comte, Volume I. London: Longmans, Green.Google Scholar
Lewis, J. G. E. (1981). The Biology of Centipedes. Cambridge: Cambridge University Press.Google Scholar
Leys, S. P., Eerkes-Medrano, D. (2005). Gastrulation in calcareous sponges: in search of Haeckel’s Gastraea. Integrative and Comparative Biology 45:342351.Google Scholar
Li, C.-W., Chen, J.-Y., Hua, T.-E. (1998). Precambrian sponges with cellular structures. Science 279:879882.Google Scholar
Li, Y., Shen, X.-X., Evans, B., Dunn, C. W., Rokas, A. (2021). Rooting the animal tree of life. Molecular Biology and Evolution 38:43224333.Google Scholar
Lightner, J. K., Cserhati, M. (2019). The uniqueness of humans is clearly demonstrated by the gene-content statistical baraminology method. Creation Research Society Quarterly Journal 55:132141.Google Scholar
Lindberg, D. R., Ghiselin, M. T. (2003). Fact, theory and tradition in the study of molluscan origins. Proceedings of the California Academy of Sciences 54:663686.Google Scholar
Linz, D. M., Hu, Y., Moczek, A. P. (2020). From descent with modification to the origins of novelty. Zoology 143:125836.Google Scholar
Lipscomb, D. (1992). Parsimony, homology and the analysis of multistate characters. Cladistics 8:4565.Google Scholar
Litsios, G., Salamin, N. (2012). Effects of phylogenetic signal on ancestral state reconstruction. Systematic Biology 61:533538.Google Scholar
Lorenz, K. (1941). Vergleichende Bewegungsstudien an Anatinen. Journal für Ornithologie 89:194294.Google Scholar
Lovejoy, A. O. (1936). The Great Chain of Being. A Study of the History of an Idea. Cambridge, MA: Harvard University Press.Google Scholar
Lozano-Fernandez, J., Giacomelli, M., Fleming, J., et al. (2019). Pancrustacean evolution illuminated by taxon-rich genomic-scale data sets with an expanded remipede sampling. Genome Biology and Evolution 11:20552070.Google Scholar
Lynch, M. (2006). The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences USA 104:85978604.Google Scholar
Lyons, S. (1993). Thomas Huxley: fossils, persistence, and the argument from design. Journal of the History of Biology 26:545569.Google Scholar
MacBride, E. W. (1895). Sedgwick’s theory of the embryonic phase of ontogeny as an aid to phylogenetic theory. Quarterly Journal of Microscopical Science s237:325342.Google Scholar
MacBride, E. W. (1909). The formation of the layers in amphioxus and its bearing on the interpretation of the early ontogenetic processes in other vertebrates. Quarterly Journal of Microscopical Science 54:279345.Google Scholar
MacBride, E. W. (1914). Text-book of Embryology. Vol. I. Invertebrata. London: Macmillan.Google Scholar
MacBride, E. W. (1929a). Mimicry. Nature 123:712713.Google Scholar
MacBride, E. W. (1929b). Natural selection. Nature 124:225.Google Scholar
MacFadden, B. J., Oviedo, L. H., Seymour, G. M., Ellis, S. (2012). Fossil horses, orthogenesis, and communicating evolution in museums. Evolution: Education and Outreach 5:2937.Google Scholar
Macfarlane, J. M. (1918). The Causes and Course of Organic Evolution. A Study in Bioenergics. New York: Macmillan.Google Scholar
Mackessy, S. P., Saviola, A. J. (2016). Understanding biological roles of venoms among the Caenophidia: the importance of rear-fanged snakes. Integrative and Comparative Biology 56:10041021.Google Scholar
MacLeay, W. S. (1819–1821). Horae Entomologicae or Essays on the Annulose Animals. London: S. Bagster.Google Scholar
Mah, J. L., Christensen-Dalsgaard, K. K., Leys, S. P. (2014). Choanoflagellate and choanocyte collar-flagellar systems and the assumption of homology. Evolution & Development 16:2537.Google Scholar
Maienschein, J. (1994). “It’s a long way from Amphioxus” Anton Dohrn and late nineteenth century debates about vertebrate origins. History and Philosophy of the Life Sciences 16:465478.Google Scholar
Maienschein, J. (2000). Competing epistemologies and developmental biology. Pages 1221137 in Creath, R., Maienschein, J., eds. Biology and Epistemology. Cambridge: Cambridge University Press.Google Scholar
Malakhov, V. V. (2013). A revolution in zoology: new concepts of the metazoan system and phylogeny. Herald of the Russian Academy of Sciences 83:123127.Google Scholar
Malakhov, V. V., Bogomolova, E. V., Kuzmina, T. V., Temereva, E. N. (2019). Evolution of metazoan life cycles and the origin of pelagic larvae. Russian Journal of Developmental Biology 50:303316.Google Scholar
Mallatt, J., Chen, J. Y. (2003). Fossil sister group of craniates: predicted and found. Journal of Morphology 258:131.Google Scholar
Manton, S. M. (1973). Arthropod phylogeny – a modern synthesis. Journal of the Zoological Society of London 171:111130.Google Scholar
Manuel, M. (2009). Early evolution of symmetry and polarity in metazoan body plans. Comptes Rendus Biologies 332:184209.Google Scholar
Marcus, E. (1958). On the evolution of the animal phyla. Quarterly Review of Biology 33:2458.Google Scholar
Margulis, L., Chapman, M., Guerrero, R., Hall, J. (2006). The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proceedings of the National Academy of Sciences USA 103:1308013085.Google Scholar
Marlétaz, F., Peijnenburg, K. T. C. A., Goto, T., Satoh, N., Rokhsar, D. (2019). A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Current Biology 29:312318.Google Scholar
Martin, J. W., Davis, G. E. (2001). An updated classification of the Recent Crustacea. Natural History Museum of Los Angeles County Science Series 39:1124.Google Scholar
Martín-Durán, J. M., Hejnol, A. (2021). A developmental perspective on the evolution of the nervous system. Developmental Biology 475:181192.Google Scholar
Martín-Durán, J. M., Pang, K., Børve, A., et al. (2018). Convergent evolution of bilaterian nerve cords. Nature 553:4550.Google Scholar
Martín-Durán, J. M., Passamaneck, Y. J., Martindale, M. Q., Hejnol, A. (2017). The developmental basis for the recurrent evolution of deuterostomy and protostomy. Nature Ecology & Evolution 1:0005.Google Scholar
Martindale, M. Q., Hejnol, A. (2009). A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Developmental Cell 17:162174.Google Scholar
Martynov, A. V. (2012). Ontogeny, systematics, and phylogenetics: perspectives of future synthesis and a new model of the evolution of Bilateria. Biology Bulletin of the Russian Academy of Sciences 39:393401.Google Scholar
Maslin, T. P. (1952). Morphological criteria of phyletic relationships. Systematic Zoology 1:4970.Google Scholar
Masterman, A. T. (1897a). On the Diplochorda. Quarterly Journal of Microscopical Science 40:281338.Google Scholar
Masterman, A. T. (1897b). On the structure of Actinotrocha considered in relation to the suggested chordate affinities of Phoronis. Proceedings of Royal Society of Edinburgh 21:129136.Google Scholar
Masterman, A. T. (1897c). Preliminary note on the structure and affinities of Phoronis. Proceedings of Royal Society of Edinburgh 21:5971.Google Scholar
Masterman, A. T. (1898). On the theory of archimeric segmentation and its bearing upon the phyletic classification of the Coelomata. Proceedings of Royal Society of Edinburgh 22:270310.Google Scholar
Matuk, C., Uttal, D. H. (2011). Narrative spaces in the representation and understanding of evolution. Pages 119144 in Rosengren, K. S., Brem, S. K., Evans, E. M., Sinatra, G. M., eds. Evolution Challenges. Integrating Research and Practice in Teaching and Learning About Evolution. Oxford: Oxford University Press.Google Scholar
Matuk, C., Uttal, D. H. (2020). The effects of invention and recontextualization on representing and reasoning with trees of life. Research in Science Education 50:19912033.Google Scholar
Mayr, E. (1969). Principles of Systematic Zoology. New York: McGraw-Hill.Google Scholar
Mayr, E. (1971). Populations, Species, and Evolution. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Mayr, E. (1972). Lamarck revisited. Journal of the History of Biology 5:5594.Google Scholar
Mayr, E. (1982). The Growth of Biological Thought. Diversity, Evolution, and Inheritance. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Mayr, E. (1988). Towards a New Philosophy of Biology. Observations of an Evolutionist. Cambridge, MA: Harvard University Press.Google Scholar
Mayr, E., Bock, W. J. (2002). Classifications and other ordering systems. Journal of Zoological Systematics and Evolutionary Research 40:169194.Google Scholar
McCann, J., Schneeweiss, G. M., Stuessy, T. F., Villasenor, J. L., Weiss-Schneeweiss, H. (2016). The impact of reconstruction methods, phylogenetic uncertainty and branch lengths on inference of chromosome number evolution in American saisies (Melampodium, Asteraceae). PLoS ONE 11: e0162299.Google Scholar
McGregor, A. P., Hilbrant, M., Pechmann, M., et al. (2008). Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. BioEssays 30:487498.Google Scholar
McLaughlin, P. A., Lemaitre, R. (1997). Carcinization in the Anomura – fact or fiction? I. Evidence form adult morphology. Contributions to Zoology 67:79123.Google Scholar
McLaughlin, P. A., Lemaitre, R., Tudge, C. C. (2004). Carcinization in the Anomura – fact or fiction? II. Evidence from larval, megalopal and early juvenile morphology. Contributions to Zoology 73:165205.Google Scholar
McMurrich, J. P. (1891). The Gastraea Theory and its Successors. Pages 79106. Biological lectures delivered at the Marine Biological Laboratory of Wood’s Holl in the summer session of 1890. Boston: Ginn & Company.Google Scholar
McShea, D. W. (1991). Complexity and evolution: what everybody knows. Biology & Philosophy 6:303324.Google Scholar
McShea, D. W. (2016). Three trends in the history of life: an evolutionary syndrome. Evolutionary Biology 43:531542.Google Scholar
Mead, L. S. (2009). Transforming our thinking about transitional forms. Evolution: Education and Outreach 2:310314.Google Scholar
Medawar, P. (1996). The Strange Case of the Spotted Mice and Other Classic Essays in science. Oxford: Oxford University Press.Google Scholar
Medawar, P. B., Medawar, J. S. (1977). The Life Science. Current Ideas of Biology. London: Wildwood House Ltd.Google Scholar
Meglitsch, P. A. (1967). Invertebrate Zoology. New York: Oxford University Press.Google Scholar
Meglitsch, P. A., Schram, F. R. (1991). Invertebrate Zoology. Oxford: Oxford University Press.Google Scholar
Mendez, F. L., Poznik, G. D., Castellano, S., Bustamante, C. D. (2016). The divergence of Neandertal and modern human Y chromosomes. The American Journal of Human Genetics 98:728734.Google Scholar
Metchnikoff, O. (1921). Life of Elie Metchnikoff 1845–1916. London: Constable and Company Ltd.Google Scholar
Metschnikoff, E. (1874). Zur Entwickelungsgeschichte der Kalkschwämme. Zeitschrift für wissenschaftliche Zoologie 24:114.Google Scholar
Metschnikoff, E. (1882). Vergleichend-embryologische Studien. 3. Über die Gastrula einiger Metazoen. Zeitschrift für wissenschaftliche Zoologie 37:286313.Google Scholar
Metschnikoff, E. (1883). Untersuchungen über die intracelluläre Verdauung bei wirbellosen Thieren. Arbeiten aus dem Zoologischen Institut der Universität Wien und der Zoologischen Station in Triest 5:141168.Google Scholar
Metschnikoff, E. (1886). Embryologische Studien an Medusen. Ein Beitrag zur Genealogie der Primitiv-Organe. Vienna: Alfred Hölder.Google Scholar
Meyrick, E. (1895). A Handbook of British Lepidoptera. London: Macmillan.Google Scholar
Mikhailov, K. V., Konstantinova, A. V., Nikitin, M. A., et al. (2009). The origin of Metazoa: a transition from temporal to spatial cell differentiation. BioEssays 31:758768.Google Scholar
Minelli, A. (2009). Perspectives in Animal Phylogeny and Evolution. Oxford: Oxford University Press.Google Scholar
Minelli, A. (2016). Tracing homologies in an ever-changing world. Rivista di estetica 62:4055.Google Scholar
Minot, C. S. (1897). Cephalic homologies. A contribution to the determination of the ancestry of vertebrates. The American Naturalist 31:927943.Google Scholar
Mivart, S. G. (1874). Man and Apes. An Exposition of Structural Resemblances and Differences Bearing upon Questions of Affinity and Origin. New York: D. Appleton & Co.Google Scholar
Moczek, A. P., Sears, K. E., Stollewerk, A., et al. (2015). The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evolution & Development 17:198219.Google Scholar
Moore, J., Willmer, P. (1997). Convergent evolution in invertebrates. Biological Reviews of the Cambridge Philosophical Society 72:160.Google Scholar
Morgan, T. H. (1895). A study of metamerism. Quarterly Journal of Microscopical Science 2:395476.Google Scholar
Moroz, L. L., Kohn, A. B. (2016). Independent origins of neurons and synapses: insights from ctenophores. Philosophical Transactions of the Royal Society B: Biological Sciences 371:201500241.Google Scholar
Morrison, D. A. (2014). Is the Tree of Life the best metaphor, model, or heuristic for phylogenetics? Systematic Biology 63:628638.Google Scholar
Morrison, D. A. (2015). [Review of] Aristotle’s Ladder, Darwin’s Tree. Systematic Biology 64:892895.Google Scholar
Morrison, D. A. (2016). Genealogies: pedigrees and phylogenies are reticulating networks not just divergent trees. Evolutionary Biology 43:456473.Google Scholar
Moseley, H. N. (1874). On the structure and development of Peripatus capensis. Philosophical Transactions of the Royal Society 164:757782.Google Scholar
Moseley, H. N., Sedgwick, A. (1882). Note on a discovery, as yet unpublished, by the late Professor F. M. Balfour, concerning the existence of a blastopore, and on the origin of the mesoblast in the embryo of Peripatus Capensis. Proceedings of the Royal Society of London 24:390393.Google Scholar
Müller, F. (1869). Facts and Arguments for Darwin. London: John Murray.Google Scholar
Müller, I. (1973). Der “Hydriot” Nikolai Kleinenberg oder: Spekulation und Beobachtung. Medizinhistorisches Journal 8:131153.Google Scholar
Naef, A. (1919). Idealistische Morphologie und Phylogenetik (zur Methodik der Systematischen Morphologie). Jena: Verlag von Gustav Fischer.Google Scholar
Naef, A. (1928). Cephalopoda. Embryology. Part I, Vol. II. Washington D. C.: Smithsonian Institution Libraries.Google Scholar
Nakanishi, N., Sogabe, S., Degnan, B. M. (2014). Evolutionary origin of gastrulation: insights from sponge development. BMC Biology 12:26.Google Scholar
Nardi, F., Spinsanti, G., Boore, J. L., et al. (2003). Hexapod origins: monophyletic or paraphyletic? Science 299:18871889.Google Scholar
Negrisolo, E., Minelli, A., Valle, G. (2004). The mitochondrial genome of the house centipede Scutigera and the monophyly versus paraphyly of myriapods. Molecular Biology and Evolution 21:770780.Google Scholar
Neiber, M. T., Hartke, T. R., Stemme, T., et al. (2011). Global biodiversity and phylogenetic evaluation of Remipedia (Crustacea). PLoS ONE 6:e19627.Google Scholar
Nelson, G. (1994). Homology and systematics. Pages 101149 in Hall, B. K., ed. Homology. The Hierarchical Basis of Comparative biology. San Diego: Academic Press.Google Scholar
Nelson, G. (2004). Cladistics: its arrested development in Williams, D. M., Forey, P. L., eds. Milestones in Systematics. Boca Raton: CRC Press.Google Scholar
Nelson, G., Platnick, N. (1981). Systematics and Biogeography. Cladistics and vicariance. New York: Columbia University Press.Google Scholar
Nelson, G. J. (1970). Outline of a theory of comparative biology. Systematic Zoology 19:373384.Google Scholar
Nelson, G. J. (1971). Paraphyly and polyphyly: redefinitions. Systematic Zoology 20:471472.Google Scholar
Newell, N. D. (1959). The nature of the fossil record. Proceedings of the American Philosophical Society 103:264285.Google Scholar
Newman, W. A. (2005). Origin of the Ostracoda and their maxillopodan and hexapodan affinities. Hydrobiologia 538:121.Google Scholar
Newman, W. A., Arnold, R. (2001). Prospectus on larval cirriped setation formulae, revisited. Journal of Crustacean Biology 21:5677.Google Scholar
Nezlin, L. P. (2010). The golden age of comparative morphology: laser scanning microscopy and neurogenesis in trochophore animals. Russian Journal of Developmental Biology 41:381390.Google Scholar
Nielsen, C. (1985). Animal phylogeny in the light of the trochaea theory. Biological Journal of the Linnean Society 25:243299.Google Scholar
Nielsen, C. (1987). Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zoologica 68:205262.Google Scholar
Nielsen, C. (2001). Animal Evolution. Interrelationships of the Living Phyla. Oxford: Oxford University Press.Google Scholar
Nielsen, C. (2003). Proposing a solution to the Articulata-Ecdysozoa controversy. Zoologica Scripta 32:475482.Google Scholar
Nielsen, C. (2008). Six major steps in animal evolution: are we derived sponge larvae? Evolution & Development 10:241257.Google Scholar
Nielsen, C. (2012). Animal Evolution. Interrelationships of the Living Phyla, 3rd ed. Oxford: Oxford University Press.Google Scholar
Nielsen, C. (2013). Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? BMC Evolutionary Biology 13:11.Google Scholar
Nielsen, C. (2017). Evolution of deuterostomy – and origin of the chordates. Biological Reviews of the Cambridge Philosophical Society 92:316325.Google Scholar
Nielsen, C. (2019). Early animal evolution: a morphologist’s view. Royal Society Open Science 6:190638.Google Scholar
Nielsen, C., Brunet, T., Arendt, D. (2018). Evolution of the bilaterian mouth and anus. Nature Ecology & Evolution 2:13581376.Google Scholar
Nielsen, C., Nørrevang, A. (1985). The trochaea theory-an example of life cycle phylogeny. Pages 2841 in Conway Morris, S., George, J. D., Gibson, R., Platt, H. M., eds. The Origin and Relationships of Lower Invertebrate Groups. Oxford: Oxford University Press.Google Scholar
Nielsen, C., Scharff, N., Eibye-Jacobsen, D. (1996). Cladistic analyses of the animal kingdom. Biological Journal of the Linnean Society 57:385410.Google Scholar
Nieuwenhuys, R., Ten Donkelaar, H. J., Nicholson, C. (1998). The Central Nervous System of Vertebrates. Volume 1. Berlin: Springer-Verlag.Google Scholar
Nieuwkoop, P., Sutasurya, L. (1976). Embryological evidence for a possible polyphyletic origin of the recent amphibians. Journal of Embryology and Experimental Morphology 35:159167.Google Scholar
Nixon, K. C., Carpenter, J. M. (1993). On outgroups. Cladistics 9:413426.Google Scholar
Noever, C., Glenner, H. (2018). The origin of king crabs: hermit crab ancestry under the magnifying glass. Zoological Journal of the Linnean Society 182:300318.Google Scholar
Nojiri, T., Wilson, L. A. B., Lopez-Aguirre, C., et al. (2021). Embryonic evidence uncovers convergent origins of laryngeal echolocation in bats. Current Biology 31:13531365.Google Scholar
Nolan, C. M., McCarthy, K., Eivers, E., Jirtle, R. L., Byrnes, L. (2006). Mannose 6-phosphate receptors in an ancient vertebrate, zebrafish. Development, Genes and Evolution 216:144151.Google Scholar
Northcutt, R. G. (2012). Evolution of centralized nervous systems: two schools of evolutionary thought. Proceedings of the National Academy of Sciences USA 109:1062610633.Google Scholar
Novick, L. R., Shade, C. K., Catley, K. M. (2011). Linear versus branching depictions of evolutionary history: implications for diagram design. Topics in Cognitive Science 3:536559.Google Scholar
Nübler-Jung, K., Arendt, D. (1994). Is ventral in insects dorsal in vertebrates? A history of embryological arguments favouring axis inversion in chordate ancestors. Roux’s Archive for Developmental Biology 203:357366.Google Scholar
Nyhart, L. K. (1995). Biology Takes Form. Animal Morphology and the German universities, 1800–1900. Chicago: University of Chicago Press.Google Scholar
Nyhart, L. K. (2002). Learning from history: morphology’s challenges in Germany ca. 1900. Journal of Morphology 252:214.Google Scholar
Nyhart, L. K. (2003). The importance of the “Gegenbaur School” for German morphology. Theory in Biosciences 122:162173.Google Scholar
O’Hara, R. J. (1988). Homage to Clio, or, toward an historical philosophy for evolutionary biology. Systematic Zoology 37:142155.Google Scholar
O’Hara, R. J. (1991). Representations of the natural system in the nineteenth century. Biology & Philosophy 6:255274.Google Scholar
O’Hara, R. J. (1992). Telling the tree: narrative representation and the study of evolutionary history. Biology & Philosophy 7:135160.Google Scholar
O’Hara, R. J. (1994). Evolutionary history and the species problem. American Zoologist 34:1222.Google Scholar
O’Hara, R. J. (1997). Population thinking and tree thinking in systematics. Zoologica Scripta 26:323329.Google Scholar
O’Leary, M. A., Bloch, J. I., Flynn, J. J., et al. (2013). The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662667.Google Scholar
O’Reilly, J. E., dos Reis, M., Donoghue, P. C. J. (2015). Dating tips for divergence-time estimation. Trends in Genetics 31:637650.Google Scholar
Oakley, T. H., Pankey, M. S. (2008). Opening the “Black Box”: the genetic and biochemical basis of eye evolution. Evolution: Education and Outreach 1:390402.Google Scholar
Oakley, T. H., Wolfe, J. M., Lindgren, A. R., Zaharoff, A. K. (2012). Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Molecular Biology and Evolution 30:215233.Google Scholar
Ochoa, C. (2021). Inertia, trend, and momentum reconsidered: G. G. Simpson—an orthogeneticist? Pages 261290 in Delisle, R. G., ed. Natural Selection. Revisiting its Explanatory Role in Evolutionary Biology. Cham, Switzerland: Springer Nature Switzerland.Google Scholar
Ochoa, C., Barahona, A. (2014). El jano de la morfología. De la homología a la homoplasia, historia, debates y evolución. Mexico City: Universidad Nacional Autónoma de México and Centro de Estudios Filosóficos, Políticos y Sociales Vicente Lombardo Toledano.Google Scholar
Ogilvie, B. W. (2006). The Science of Describing. Natural History in Renaissance Europe. Chicago: The University of Chicago Press.Google Scholar
Oikkonen, V. (2009). Narrating descent: popular science, evolutionary theory and gender politics. Science as Culture 18:121.Google Scholar
Olson, M. E. (2012). Linear trends in botanical systematics and the major trends of xylem evolution. The Botanical Review 78:154183.Google Scholar
Olsson, L. (2007). A clash of traditions: the history of comparative and experimental embryology in Sweden as exemplified by the research of Gösta Jägersten and Sven Hörstadius. Theory in Biosciences 126:117129.Google Scholar
Olsson, L., Levit, G. S., Hossfeld, U. (2017). The “Biogenetic Law” in zoology: from Ernst Haeckel’s formulation to current approaches. Theory in Biosciences 136:1929.Google Scholar
Omland, K. E., Cook, L. G., Crisp, M. D. (2008). Tree thinking for all biology: the problem with reading phylogenies as ladders of progress. BioEssays 30:854867.Google Scholar
Ommundsen, A., Noever, C., Glenner, H. (2016). Caught in the act: phenotypic consequences of a recent shift in feeding strategy of the shark barnacle Anelasma squalicola (Lovén, 1844). Zoomorphology 135:5165.Google Scholar
Oppenheimer, J. M. (1940). The non-specificity of the germ-layers. The Quarterly Review of Biology 15:127.Google Scholar
Ortega-Hernández, J., Janssen, R., Budd, G. E. (2019). The last common ancestor of Ecdysozoa had an adult terminal mouth. Arthropod Structure & Development 49:155158.Google Scholar
Osborn, H. F. (1922). Orthogenesis as observed from paleontological evidence beginning in the year 1889. The American Naturalist 56:134143.Google Scholar
Osigus, H.-J., Eitel, M., Schierwater, B. (2013). Chasing the urmetazoon: striking a blow for quality data? Molecular Phylogenetics and Evolution 66:551557.Google Scholar
Ospovat, D. (1981). The Development of Darwin’s Theory. Natural History, Natural theology, and Natural Selection, 1838–1859. Cambridge: Cambridge University Press.Google Scholar
Otto, S. P., Rosales, A. (2020). Theory in service of narratives in evolution and ecology. The American Naturalist 195:290299.Google Scholar
Owen, R. (1848). On the Archetype and Homologies of the Vertebrate Skeleton. London: John van Voorst.Google Scholar
Owen, R. (1849). On the Nature of Limbs. A Discourse. London: John Van Voorst.Google Scholar
Owen, R. (1894). The Life of Richard Owen, Volume II. London: John Murray.Google Scholar
Padian, K. (2007). Richard Owen’s Quadrophenia: The Pull of Opposing Forces in Victorian Cosmogony. PagesLIII–XCI in On the Nature of Limbs: A Discourse. Chicago: The University of Chicago Press.Google Scholar
Padian, K., Angielczyk, K. D. (2007). “Transitional forms” versus transtional features. Pages 197230 in Petto, A. J., Godfrey, L. R., eds. Scientists Confront Intelligent Design and Creationism. New York: Norton.Google Scholar
Pagel, M. (1994). Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society B: Biological Sciences 255:3745.Google Scholar
Pagel, M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48:612622.Google Scholar
Pagel, M., Meade, A., Barker, D. (2004). Bayesian estimation of ancestral character states on phylogenies. Systematic Biology 53:673684.Google Scholar
Pagel, M., Venditti, C., Meade, A. (2006). Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science 314:119121.Google Scholar
Panchen, A. L. (1992). Classification, Evolution, and the Nature of Biology. Cambridge: Cambridge University Press.Google Scholar
Panchen, A. L. (2001). Étienne Geoffory St.-Hilaire: father of “evo-devo”? Evolution & Development 3:4146.Google Scholar
Pandey, A., Braun, E. L. (2020). Phylogenetic analyses of sites in different protein structural environments result in distinct placements of the metazoan root. Biology 9:64.Google Scholar
Parins-Fukuchi, C., Greiner, E., MacLatchy, L. M., Fisher, D. C. (2019). Phylogeny, ancestors, and anagenesis in the hominin fossil record. Paleobiology 45:378393.Google Scholar
Parry, L., Tanner, A., Vinther, J. (2014). The origin of annelids. Palaeontology 57:10911103.Google Scholar
Patten, W. (1912). The Evolution of the Vertebrates and Their Kin. London: J. & A. Churchill.Google Scholar
Patten, W. (1920). The Grand Strategy of Evolution. The Social Philosophy of a Biologist. Boston: Richard G. Badger, The Gorham Press.Google Scholar
Patterson, C. (1978). Verifiability in systematics. Systematics Zoology 27:218222.Google Scholar
Patterson, C. (1981). Significance of fossils in determining evolutionary relationships. Annual Review of Ecology and Systematics 12:195223.Google Scholar
Patterson, C. (2002). Evolutionism and creationism. The Linnean 18:1533.Google Scholar
Patterson, C., Williams, D. M., Gill, A. C. (2011). Adventures in the fish trade. Zootaxa 2946:118136.Google Scholar
Penny, D. (2011). Darwin’s Theory of Descent with Modification, versus the Biblical Tree of Life. PloS Biology 9:e1001096.CrossRefGoogle ScholarPubMed
Perrard, A. (2020). Wasp waist and flight: convergent evolution in wasps reveals a link between wings and body shapes. The American Naturalist 195:181191.Google Scholar
Peterson, K. J., Cameron, R. A., Davidson, E. H. (1997). Set-aside cells in maximal indirect development: evolutionary and developmental significance. BioEssays 19:623631.Google Scholar
Peterson, K. J., Eernisse, D. J. (2001). Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution & Development 3:170205.Google Scholar
Peterson, K. J., Eernisse, D. J. (2016). The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. Organisms Diversity & Evolution 16:401418.Google Scholar
Peterson, K. J., McPeek, M. A., Evans, D. A. D. (2005). Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks. Paleobiology 31:3655.Google Scholar
Philippe, H., Brinkmann, H., Copley, R. R., et al. (2011). Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255258.Google Scholar
Pietsch, T. W. (2012). Trees of Life. A Visual History of Evolution. Baltimore: The Johns Hopkins University Press.Google Scholar
Pinto-Correia, C. (1997). The Ovary of Eve. Egg and Sperm and Preformation. Chicago: The University of Chicago Press.Google Scholar
Pobiner, B. (2016). Accepting, understanding, teaching, and learning (human) evolution: obstacles and opportunities. American Journal of Physical Anthropology 159:232274.Google Scholar
Podani, J. (2019). The coral of life. Evolutionary Biology 46:123144.CrossRefGoogle Scholar
Podgorny, I. (2017). Manifest ambiguity: intermediate forms, variation, and mammal paleontology in Argentina, 1830–1880. Studies in History and Philosophy of Biological and Biomedical Sciences 66:2736.CrossRefGoogle ScholarPubMed
Poore, G. C. B. (2005). Peracarida: monophyly, relationships and evolutionary success. Nauplius 13:127.Google Scholar
Pozdnyakov, I. R., Sokolova, A. M., Ereskovsky, A. V., Karpov, S. A. (2017). Kinetid structure of choanoflagellates and choanocytes of sponges does not support their close relationship. Protistology 11:248264.Google Scholar
Prendini, L. (2001). Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus examplars revisited. Systematic Biology 50:290300.Google Scholar
Prothero, D. R. (2007). Evolution. What the Fossils Say and Why it Matters. New York: Columbia University Press.Google Scholar
Prüfer, K., et al., (2017). A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358:655658.Google Scholar
Putten, K. v. (2020). Trees, coral, and seaweed: an interpretation of sketches found in Darwin’s papers. Journal of the History of Biology 53:544.Google Scholar
Pyron, R. A., Burbrink, F. T. (2014). Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecology Letters 17:1321.Google Scholar
Quammen, D. (2003). The man who knew too much: Stephen Jay Gould’s opus posthumous. Harper’s Magazine June:7380.Google Scholar
Queiroz, K. d. (1988). Systematics and the Darwinian revolution. Philosophy of Science 55:238259.Google Scholar
Quinn, A. (2017). When is a cladist not a cladist? Biology & Philosophy 32:581598.Google Scholar
Raff, R. A. (1996). The Shape of Life. Genes, Development, and the Evolution of Animal Form. Chicago: The University of Chicago Press.Google Scholar
Ragan, M. A. (2009). Trees and networks before and after Darwin. Biology Direct 4:43.Google Scholar
Raia, P., Fortelius, M. (2013). Cope’s Law of the Unspecialized, Cope’s Rule, and weak directionality in evolution. Evolutionary Ecology Research 15:747756.Google Scholar
Raineri, M. (2008). Old and new concepts in EvoDevo. Pages 95114 in Pontarotti, P., ed. Evolutionary Biology from Concept to Application. Heidelberg: Springer-Verlag.Google Scholar
Raineri, M. (2009). On some historical and theoretical foundations of the concept of chordates. Theory in Biosciences 128:5373.Google Scholar
Rainger, R. (1981). The continuation of the morphological tradition: American paleontology, 1880–1910. Journal of the History of Biology 14:129158.Google Scholar
Rainger, R. (1985). Paleontology and philosophy: a critique. Journal of the History of Biology 18:267287.Google Scholar
Rasser, M. W. (2013). Darwin’s dilemma: the Steinheim snails’ point of view. Zoosystematics and Evolution 89:1320.Google Scholar
Rasser, M. W. (2014). Evolution in isolation: the Gyraulus species flock from Miocene Lake Steinheim revisited. Hydrobiologia 739:724.Google Scholar
Raw, F. (1953). The external morphology of the trilobite and its significance. Journal of Paleontology 27:82129.Google Scholar
Raw, F. (1960). Outline of a theory of origin of the vertebrate. Journal of Paleontology 34:497539.Google Scholar
Redmond, A. K., McLysaght, A. (2021). Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nature Communications 12:1783.Google Scholar
Rees, David J., Noever, C., Høeg, Jens T., Ommundsen, A., Glenner, H. (2014). On the origin of a novel parasitic-feeding mode within suspension-feeding barnacles. Current Biology 24:14291434.Google Scholar
Regier, J. C., Shultz, J. W., Zwick, A., et al. (2010). Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:10791083.Google Scholar
Rehbock, P. F. (1975). Huxley, Haeckel, and the oceanographers: the case of Bathybius haeckelii. Isis 66:504533.Google Scholar
Rehbock, P. F. (1983). The Philosophical Naturalists. Themes in Early Nineteenth Century British Biology. Madison, WI: The University of Wisconsin Press.Google Scholar
Reif, W.-E. (1983). Hilgendorf’s (1863) dissertation on the Steinheim planorbids (Gastropoda; Miocene): the development of a phylogenetic research program for paleontology. Paläontologische Zeitschrift 57:720.Google Scholar
Reif, W.-E. (1986). The search for a macroevolutionary theory in German paleontology. Journal of the History of Biology 19:79130.Google Scholar
Reif, W.-E. (2002). Evolution of organ systems: phylogeny, function and reciprocal illumination. Senckenbergiana lethaea 82:357366.Google Scholar
Reisinger, E. (1972). Die Evolution des Orthogons der Spiralier und das Archicölomatenproblem. Zeitschrift für zoologische Systematik und Evolutionsforschung 10:143.Google Scholar
Reisz, R. R., Müller, J. (2004). The comparative method for evaluating fossil calibration dates: a reply to Hedges and Kumar. Trends in Genetics 20:596597.Google Scholar
Remane, A. (1950). Entstehung der Metamerie der Wirbellosen. Zoologischer Anzeiger Supplement 14:1623.Google Scholar
Remane, A. (1956). Die Grundlagen des Natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik. Leipzig: Akademische Verlagsgesellschaft Geest & Portig K.-G.Google Scholar
Remane, A. (1963). The enterocoelic origin of the celom. Pages 7890 in DOugherty, E. C., ed. The Lower Metazoa. Comparative Biology and Phylogeny. Berkeley, CA: University of California Press.Google Scholar
Remane, A. (1967). Die Geschichte der Tiere. Pages 589677 in Heberer, G., ed. Die Evolution der Organismen, vol. I. Jena: Gustav Fischer.Google Scholar
Rensch, B. (1960a). Evolution above the Species Level. New York: Columbia University Press.Google Scholar
Rensch, B. (1960b). The laws of evolution. Pages 95116 in Tax, S., ed. Evolution after Darwin. Volume 1. The Evolution of Life. Chicago: The University of Chicago Press.Google Scholar
Rensch, B. (1991). Das universale Weltbild. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
Reynolds, A., Hülsmann, N. (2008). Ernst Haeckel’s discovery of Magosphaera planula: a vestige of metazoan origins? History and Philosophy of the Life Sciences 30:339386.Google Scholar
Richards, R. J. (1992a). The Meaning of Evolution. The Morphological Construction and Ideological Reconstruction of Darwin’s Theory. Chicago: The University of Chicago Press.Google Scholar
Richards, R. J. (1992b). The structure of narrative explanation in history and biology. Pages 1953 in Nitecki, M. H., Nitecki, D. V., eds. History and Evolution. New York: State University and New York Press.Google Scholar
Richards, R. J. (2000). The epistemology of historical interpretation. Progressivity and recapitulation in Darwin’s theory. Pages 6488 in Creath, R., Maienschein, J., eds. Biology and Epistemology. Cambridge: Cambridge University Press.Google Scholar
Richards, R. J. (2002). The Romantic Conception of Life. Science and Philosophy in the Age of Goethe. Chicago: The University of Chicago Press.Google Scholar
Richards, R. J. (2006). Nature is the poetry of mind, or how Schelling solved Goethe’s Kantian problems. Pages 2750 in Friedman, M., Nordman, A., eds. The Kantian Legacy in Nineteenth Century Science. Cambridge, MA: MIT Press.Google Scholar
Richards, R. J. (2008). The Tragic Sense of Life. Ernst Haeckel and the Struggle over Evolutionary Thought. Chicago: The University of Chicago Press.Google Scholar
Richards, R. J. (2013). Was Hitler a Darwinian? Disputed Questions in the History of Evolutionary Theory. Chicago: The University of Chicago Press.Google Scholar
Richards, R. J., Ruse, M. (2016). Debating Darwin. Chicago: The University of Chicago Press.Google Scholar
Rieger, R. M. (1986). Über den Ursprung der Bilateria: die Bedeutung der Ultrastrukturforschung für ein neues Verstehen der Metazoenevolution. Verhandlungen der Deutschen Zoologischen Gesellschaft 79:3150.Google Scholar
Rieger, R. M. (1994). The biphasic life cycle – a central theme of metazoan evolution. American Zoologist 34:484491.Google Scholar
Rieger, R. M. (2003). The phenotypic transition from uni- to multicellular animals. Pages 247258 in Legakis, A., Sfenthourakis, S., Polymeni, R., Thessalou-Legaki, M., eds. The New Panorama of Animal Evolution. Sofia: PENSOFT Publishers.Google Scholar
Rieger, R. M., Haszprunar, G., Schuchert, P. (1991). On the origin of the Bilateria: traditional views and recent alternative concepts. Pages 107112 in Simonetta, A. M., Conway Morris, S., eds. The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge: Cambridge University Press.Google Scholar
Riegner, M. F. (2013). Ancestor of the new archetypal biology: Goethe’s dynamic typology as a model for contemporary evolutionary developmental biology. Studies in History and Philosophy of Biological & Biomedical Sciences 44:735744.Google Scholar
Rieppel, O. (1985). Ontogeny and the hierarchy of types. Cladistics 1:234246.Google Scholar
Rieppel, O. (1986). Atomism, epigenesis, preformation and pre-existence: a clarification of terms and consequences. Biological Journal of the Linnean Society 28:331341.Google Scholar
Rieppel, O. (1988a). Fundamentals of Comparative Biology. Basal: Birkhäuser Verlag.Google Scholar
Rieppel, O. (1988b). Louis Agassiz (1807–1973) and the reality of natural groups. Biology & Philosophy 3:2947.Google Scholar
Rieppel, O. (2001a). Étienne Geoffroy Saint-Hilaire (1772–1844). Pages 157175 in Jahn, I., Schmitt, M., eds. Darwin & Co. München: Verlag C. H. Beck.Google Scholar
Rieppel, O. (2001b). Preformationist and epigenetic biases in the history of the morphological character concept. Pages 5775 in Wagner, G. P., ed. The Character Concept in Evolutionary Biology. San Diego: Academic Press.Google Scholar
Rieppel, O. (2006). On concept formation in systematics. Cladistics 22:474492.Google Scholar
Rieppel, O. (2007). The nature of parsimony and instrumentalism in systematics. Journal of Zoological Systematics and Evolutionary Research 45:177183.Google Scholar
Rieppel, O. (2010a). The series, the network, and the tree: changing metaphors of order in nature. Biology & Philosophy 25:475496.Google Scholar
Rieppel, O. (2010b). Sinai Tschulok (1875–1945) – a pioneer of cladistics. Cladistics 26:103111.Google Scholar
Rieppel, O. (2011a). Adolf Naef (1883–1949), systematic morphology and phylogenetics. Journal of Zoological Systematics and Evolutionary Research 50:213.Google Scholar
Rieppel, O. (2011b). Ernst Haeckel (1834–1919) and the monophyly of life. Journal of Zoological Systematics and Evolutionary Research 49:15.Google Scholar
Rieppel, O. (2011c). The Gegenbaur Transformation: a paradigm change in comparative biology. Systematics and Biodiversity 9:177190.Google Scholar
Rieppel, O. (2011d). Species are individuals-the German tradition. Cladistics 27:629645.Google Scholar
Rieppel, O. (2012a). The dark side of the moon. Cladistics 28:13.Google Scholar
Rieppel, O. (2012b). Othenio Abel (1875–1946) and ‘‘the phylogeny of the parts’’. Cladistics 29:328335.Google Scholar
Rieppel, O. (2013a). Biological Individuals and natural kinds. Biological Theory 7:162169.Google Scholar
Rieppel, O. (2013b). Othenio Abel (1875–1946): the rise and decline of paleobiology in German paleontology. Historical Biology 25:313325.Google Scholar
Rieppel, O. (2016). Phylogenetic Systematics. Haeckel to Hennig. Boca Raton, FL: CRC Press.Google Scholar
Rieppel, O. (2020). Morphology and phylogeny. Journal of the History of Biology 53:217230.Google Scholar
Rieppel, O., Kearney, M. (2002). Similarity. Biological Journal of the Linnean Society 75:5982.Google Scholar
Rieppel, O., Williams, D. M., Ebach, M. C. (2013). Adolf Naef (1883–1949): on foundational concepts and principles of systematic morphology. Journal of the History of Biology 46:445510.Google Scholar
Rigato, E., Minelli, A. (2013). The great chain of being is still here. Evolution: Education and Outreach. 6:18Google Scholar
Romer, A. S. (1946). The early evolution of fishes. The Quarterly Review of Biology 21:3369.Google Scholar
Romer, A. S. (1964). Vertebrate Paleontology. Chicago: The University of Chicago Press.Google Scholar
Romer, A. S. (1972). The vertebrate as a dual animal – somatic and visceral. Evolutionary Biology 6:121156.Google Scholar
Romero, A. (2001). Scientists prefer them blind: the history of hypogean fish research. Environmental Biology of Fishes 62:4371.Google Scholar
Ros-Rocher, N., Perez-Posada, A., Leger, M. M., Ruiz-Trillo, I. (2021). The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biology 11:200359.Google Scholar
Rosen, D. E., Forey, P. L., Gardiner, B. G., Patterson, C. (1981). Lungfishes, tetrapods, paleontology, and plesiomorphy. Bulletin of the American Museum of Natural History 167:159276.Google Scholar
Rouse, G. W., Fauchald, K. (1997). Cladistics and polychaetes. Zoologica Scripta 26:139204.Google Scholar
Rouse, G. W., Pleijel, F. (2001). Polychaetes. Oxford: Oxford University Press.Google Scholar
Rudwick, M. J. S. (1985). The Meaning of Fossils. Episodes in the History of Palaeontology. Chicago: The University of Chicago Press.Google Scholar
Rudwick, M. J. S. (1992). Scenes from Deep Time. Early Pictorial Representations of the Prehistoric World. Chicago: The University of Chicago Press.Google Scholar
Rudwick, M. J. S. (1997). Georges Cuvier, Fossil Bones, and Geological Catastrophes. New Translations & Interpretations of the Primary Texts. Chicago: The University of Chicago Press.Google Scholar
Rudwick, M. J. S. (2005). Bursting the Limits of time. The Reconstruction of Geohistory in the Age of Revolution. Chicago: The University of Chicago Press.Google Scholar
Rudwick, M. J. S. (2008). Worlds before Adam. The Reconstruction of Geohistory in the Age of Reform. Chicago: The University of Chicago Press.Google Scholar
Ruiz-Trillo, I., de Mendoza, A. (2020). Towards understanding the origin of animal development. Development 147:dev192575.Google Scholar
Rupke, N. A. (1993). Richard Owen’s vertebrate archetype. Isis 84:231251.Google Scholar
Rupke, N. A. (2005). Neither creation nor evolution: the third way in mid-nineteenth century thinking about the origin of species. Annals of the History and Philosophy of Biology 10:143172.Google Scholar
Rupke, N. A. (2009). Richard Owen. Biology without Darwin, A Revised Edition. London: The University of Chicago Press.Google Scholar
Ruppert, E. E., Fox, R. S., Barnes, R. D. (2004). Invertebrate Zoology. Belmont: Brooks/Cole.Google Scholar
Ruse, M. (1996). Monad to Man. The Concept of Progress in Evolutionary Biology. Cambridge, MA: Harvard University Press.Google Scholar
Ruse, M. (2000). Darwin and the philosophers. Epistemological factors in the development and reception of the theory of the Origin of Species. Pages 326 in Creath, R., Maienschein, J., eds. Biology and epistemology. Cambridge: Cambridge University Press.Google Scholar
Russell, E. S. (1916). Form and Function. A Contribution to the History of Animal Morphology. London: John Murray.Google Scholar
Salvini-Plawen, L. v. (1978). On the origin and evolution of the lower Metazoa. Zeitschrift für zoologische Systematik und Evolutionsforschung 16:4088.Google Scholar
Salvini-Plawen, L. v. (1980). Phylogenetischer Status und Bedeutung der mesenchymaten Bilateria. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere 103:354373.Google Scholar
Salvini-Plawen, L. v. (1982). A paedomorphic origin of the oligomerous animals? Zoologica Scripta 11:7781.CrossRefGoogle Scholar
Salvini-Plawen, L. v. (1985). Early evolution and the primitive groups. Mollusca 10:59150.Google Scholar
Salvini-Plawen, L. v. (1989). Mesoderm heterochrony and metamery in Chordata. Fortschritte der Zoologie 35:213219.Google Scholar
Salvini-Plawen, L. v. (1998a). Morphologie: Haeckel’s Gastraea-Theorie und ihre Folgen. Stapfia 56:147168.Google Scholar
Salvini-Plawen, L. v. (1998b). The urochordate larva and archichordate organization: chordate origin and anagenesis revisited. Journal of Zoological Systematics and Evolutionary Research 36:129145.Google Scholar
Salvini-Plawen, L. v. (2000). What is convergent/homoplastic in Pogonophora? Journal of Zoological Systematics and Evolutionary Research 38:133147.CrossRefGoogle Scholar
Salvini-Plawen, L. v., Steiner, G. (2014). The Testaria concept (Polyplacophora+ Conchifera) updated. Journal of Natural History 48:27512772.Google Scholar
Sanders, H. L. (1955). The Cephalocarida, a new subclass of Crustacea from Long Island Sound. Proceedings of the National Academy of Sciences USA 41:6166.Google Scholar
Sanders, H. L. (1957). The Cephalocarida and crustacean phylogeny. Systematic Zoology 6:112128, 148.Google Scholar
Sandvik, H. (2008). Tree thinking cannot taken for granted: challenges for teaching phylogenetics. Theory in Biosciences 127:4551.Google Scholar
Sandvik, H. (2009). Anthropocentrisms in cladograms. Biology & Philosophy 24:425440.Google Scholar
Satoh, N., Rokhsar, D., Nishikawa, T. (2014). Chordate evolution and the three-phylum system. Proceedings of the Royal Society B: Biological Sciences 281:20141729.Google Scholar
Schaeffer, B., Hecht, M. K., Eldredge, N. (1972). Phylogeny and paleontology. Evolutionary Biology 6:3146.Google Scholar
Schaffner, J. H. (1937). Examples of orthogenetic series in plants and animals. The Ohio Journal of Science 37:267287.Google Scholar
Schechter, V. (1959). Invertebrate Zoology. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Scheltema, A. H. (1993). Aplacophora as progenetic aculiferans and the coelomate origin of mollusks as the sister taxon of Sipuncula. Biological Bulletin 184:5778.Google Scholar
Scheltema, A. H., Schander, C. (2006). Exoskeletons: tracing molluscan evolution. Venus 65:1926.Google Scholar
Schierwater, B. (2005). My favorite animal, Trichoplax adhaerens. BioEssays 27:12941302.Google Scholar
Schierwater, B., de Jong, D., Desalle, R. (2009a). Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. The International Journal of Biochemistry & Cell Biology 41:370379.Google Scholar
Schierwater, B., Eitel, M., Jakob, W., et al. (2009b). Concatenated analysis sheds light on early metazoan evolution and fuels a modern “Urmetazoon” hypothesis. PLoS Biology 7:e20.Google Scholar
Schierwater, B., Eitel, M., Osigus, H.-J., et al. (2011). Trichoplax and Placozoa: one of the crucial keys to understanding metazoan evolution. Pages 289326 in DeSalle, R., Schierwater, B., eds. Key Transitions in Animal Evolution. Boca Raton, FL: CRC Press.Google Scholar
Schiffer, P. H., Robertson, H. E., Telford, M. J. (2018). Orthonectids are highly degenerate annelid worms. Current Biology 28:19701974.Google Scholar
Schileyko, A. A., Pavlinov, I. J. (1997). A cladistic analysis of the order Scolopendromorpha (Chilopoda). Entomologica Scandinavica 51:3340.Google Scholar
Schindewolf, O. H. (1927). Prinzipienfragen der biologischen Systematik. Palaeontologische Zeitschrift 9:122169.Google Scholar
Schindewolf, O. H. (1962). “Neue Systematik.” Palaeontologische Zeitschrift 36:5978.Google Scholar
Schindewolf, O. H. (1993). Basic Questions in Paleontology. Geologic Time, Organic Evolution, and Biological Systematics. Chicago: The University of Chicago Press.Google Scholar
Schluter, D., Price, T., Mooers, A. O., Ludwig, D. (1997). Likelihood of ancestor states in adaptive radiation. Evolution 51:16991711.Google Scholar
Schmidt-Rhaesa, A. (2007). The Evolution of Organ Systems. Oxford: Oxford University Press.Google Scholar
Schmitt, S. (2004). Histoire d’une Question Anatomique: La Répétition des Parties. Paris: Publications Scientifiques du Muséum National d’Histoire Naturelle.Google Scholar
Schmitt, S. (2009). From physiology to classification: comparative anatomy and Vicq d’Azyr’s plan of reform for life sciences and medicine (1774–1794). Science in Context 22:145193.Google Scholar
Schmitt, S. (2017). Serial homology as a challenge to evolutionary theory. The repeated parts of organisms from idealistic morphology to evo-devo. Pages 317347 in Huneman, P., Walsh, D., eds. Challenging the Modern Synthesis. Adaptation, Development, and Inheritance. Oxford: Oxford University Press.Google Scholar
Schram, F. R. (1978). Arthropods: a convergent phenomenon. Fieldiana Geology 39:61108.Google Scholar
Schram, F. R. (1982). The fossil record and evolution of Crustacea. Pages 93147 in Abele, L. G., ed. The Biology of Crustacea, Volume 1. New York: Academic Press.Google Scholar
Schram, F. R. (1983). Remipedia and crustacean phylogeny. Pages 2328 in Schram, F. R, ed. Crustacean Issues Vol. 1. Crustacean phylogeny. Rotterdam: Balkema.Google Scholar
Schram, F. R. (1986). Crustacea. Oxford: Oxford University Press.Google Scholar
Schram, F. R. (1991). Cladistic analysis of metazoan phyla and the placement of fossil problematica. Pages 3546 in Simonetta, A. M., Conway Morris, S., eds. The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge: Cambridge University Press.Google Scholar
Schram, F. R., Hof, C. H. J. (1998). Fossils and interrelationships of major crustacean groups. Pages 233302 in Edgecombe, G. D., ed. Arthropod Fossils and Phylogeny. New York: Columbia University Press.Google Scholar
Schram, F. R., Koenemann, S. (2004). Are the crustaceans monophyletic? Pages 319329 in Cracraft, J., Donoghue, M. J., eds. Assembling the Tree of Life. New York: Oxford University Press.Google Scholar
Schrödl, M. (2014). Time to say “Bye-bye Pulmonata”? Spixiana 37:161164.Google Scholar
Schuchert, C. (1926). Biographical memoir of John Mason Clarke. National Academy Biographical Memoirs 12:183244.Google Scholar
Schuchert, P. (1993). Phylogenetic analysis of the Cnidaria. Zeitschrift für zoologische Systematik und Evolutionsforschung 31:161173.Google Scholar
Schulze, F. E. (1883). Trichiplax adhaerens, nov. gen., nov. spec. Zoologischer Anzeiger 6:9297.Google Scholar
Schwalbe, G. (1899). Studien über Pithecanthropus erectus Dubois. Zeitschrift für Morphologie und Anthropologie 1:16240.Google Scholar
Schwalbe, G. (1906). Studien zur Vorgeschichte des Menschen. Stuttgart: Verlag der E. Schwiezerbartschen Verlagsbuchhandlung (E. Nägele).Google Scholar
Schwentner, M., Combosch, D. J., Pakes Nelson, J., Giribet, G. (2017). A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships. Current Biology 27:18181824.Google Scholar
Schwentner, M., Richter, S., Rogers, D. C., Giribet, G. (2018). Tetraconatan phylogeny with special focus on Malacostraca and Branchiopoda: highlighting the strength of taxon-specific matrices in phylogenomics. Proceedings of the Royal Society B: Biological Sciences 285:20181524.Google Scholar
Scott, E. C. (2004). Evolution vs. Creationism. An Introduction. Berkeley: University of California Press.Google Scholar
Secord, J. (1991). Edinburgh Lamarckians: Robert Jameson and Robert E. Grant. Journal of the History of Biology 24:118.Google Scholar
Sedgwick, A. (1884). On the origin of metameric segmentation and some other morphological questions. Quarterly Journal of Microscopical Science 24:4382.Google Scholar
Sedgwick, A. (1885). The development of Peripatus Capensis. Proceedings of the Royal Society of London 38:354361.Google Scholar
Seligmann, H. (2010). Positive correlations between molecular and morphological rates of evolution. Journal of Theoretical Biology 264:799807.Google Scholar
Semper, C. (1875). Die Stammesverwandschaft der Wirbelthiere und Wirbellosen. Arbeiten aus dem Zoologisch-Zootomischen Institut in Würzburg 2:2576.Google Scholar
Sewertzoff, A. N. (1929). Directions of evolution. Acta Zoologica 10:59141.Google Scholar
Sewertzoff, A. N. (1931). Morphologische Gesetzmässigkeiten der Evolution. Jena: Verlag von Gustav Fischer.Google Scholar
Sewertzoff, A. N. (1932). Ueber die Bedeutung des Princips der Substitution und einiger anderer Principien in der Phylogenese. Archivio Zoologico Italiano 16:128139.Google Scholar
Shipman, P. (2001). The Man Who Found the Missing Link. The Extraordinary Life of Eugene Dubois. New York: Simon & Schuster.Google Scholar
Shipman, P., Storm, P. (2002). Missing links: Eugène Dubois and the origins of paleoanthropology. Evolutionary Anthropology 11:108116.Google Scholar
Shubin, N., Tabin, C., Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature 457:818823.Google Scholar
Siewing, R. (1969). Diskussionsbeitrag zur Phylogenie der Coelomaten. Zoologischer Anzeiger 179:132176.Google Scholar
Siewing, R. (1972). Zur Deszendenz der Chordaten – Erwiderung und Versuch einer Geschichte der Archicoelomaten. Zeitschrift für zoologische Systematik und Evolutionsforschung 10:267291.Google Scholar
Siewing, R. (1976). Probleme und neuere Erkenntnisse in der Großsystematik der Wirbellosen. Verhandlungen der Deutschen Zoologischen Gesellschaft 70:5983.Google Scholar
Siewing, R. (1980). Das Archicoelomatenkonzept. Zool. Jahrb. Abt. Anat. 103:439482.Google Scholar
Simion, P., Philippe, H., Baurain, D., et al. (2017). A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Current Biology 27:958967.Google Scholar
Simpson, G. G. (1944). Tempo and Mode in Evolution. New York: Hafner Publishing Company.Google Scholar
Simpson, G. G. (1953). The Major Features of Evolution. New York: Columbia University Press.Google Scholar
Simpson, G. G. (1956). The Meaning of Evolution. A Special Revised and Abridged Edition. New York: Mentor Books.Google Scholar
Simpson, G. G. (1959). Anatomy and morphology: classification and evolution: 1859 and 1959. Proceedings of the American Philosophical Society 103:286306.Google Scholar
Siomava, N., Fuentes, J. S. M., Diogo, R. (2020). Deconstructing the long-standing a priori assumption that serial homology generally involves ancestral similarity followed by anatomical divergence. Journal of Morphology 281:11101132.Google Scholar
Sloan, P. R. (2003). Whewell’s philosophy of discovery and the archetype of the vertebrate skeleton: the role of German philosophy of science in Richard Owen’s biology. Annals of Science 60:3961.Google Scholar
Smith, A. B. (1994). Systematics and the Fossil Record. Documenting Evolutionary Patterns. Oxford: Blackwell Scientific Publications.Google Scholar
Smith, J. P. (1900). The biogenetic law from the standpoint of paleontology. The Journal of Geology 8:413425.Google Scholar
Snodgrass, R. E. (1935). The Principles of Insect Morphology. New York: McGraw-Hill.Google Scholar
Snodgrass, R. E. (1938). Evolution of Annelida, Onychophora and Arthropoda. Smithsonian Miscellaneous Collections 97:1159.Google Scholar
Sober, E. (2008). Evidence and Evolution. The Logic Behind the Science. Cambridge: Cambridge University Press.Google Scholar
Sober, E. (2009). Did Darwin write the Origin backwards? Proceedings of the National Academy of Sciences USA 106:1004810055.Google Scholar
Sogabe, S., Hatleberg, W. L., Kocot, K. M., et al. (2019). Pluripotency and the origin of animal multicellularity. Nature 570:519522.Google Scholar
Sollas, W. J. (1884). On the development of Halisarca lobularis (O. Schmidt). Quarterly Journal of Microscopical Science 24:603621.Google Scholar
Sørensen, M. V., Funch, P., Willerslev, E., Hansen, A. J., Olesen, J. (2000). On the phylogeny of the Metazoa in the light of Cycliophora and Micrognathozoa. Zoologischer Anzeiger 239:297318.Google Scholar
Sperling, E., Peterson, K., Pisani, D. (2009). Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa. Molecular Biology and Evolution 26:22612274.Google Scholar
Sperling, E. A., Pisani, D., Peterson, K. J. (2007). Poriferan paraphyly and its implications for Precambrian palaeobiology. Geological Society, London, Special Publications 286:355368.Google Scholar
Stafleu, F. A. (1971). Lamarck: the birth of biology. Taxon 20:397442.Google Scholar
Stamos, D. N. (2005). Pre-Darwinian taxonomy and essentialism – a reply to Mary Winsor. Biology & Philosophy 20:7996.Google Scholar
Starunov, V. V., Dray, N., Belikova, E. V., et al. (2015). A metameric origin for the annelid pygidium? BMC Evolutionary Biology 15:25.Google Scholar
Steigerwald, J. (2002). Goethe’s morphology: Urphänomene and aesthetic appraisal. Journal of the History of Biology 35:291328.Google Scholar
Steinböck, O. (1958a). Schlusswort zur Diskussion Remane-Steinböck. Zoologischer Anzeiger Supplement 21:196218.Google Scholar
Steinböck, O. (1958b). Zur Phylogenie der Gastrotrichen. Zoologischer Anzeiger Supplement 21:128169.Google Scholar
Steinböck, O. (1963). Origin and affinities of the lower Metazoa. The “aceloid” ancestry of the Eumetazoa. Pages 4054 in Dougherty, E. C., Norwood Brown, Z., Hanson, E. D., Hartman, W. D., eds. The Lower Metazoa. Comparative Biology and Phylogeny. Berkeley: University of California Press.Google Scholar
Steinmetz, P. R. H. (2019). A non-bilaterian perspective on the development and evolution of animal digestive systems. Cell and Tissue Research 377:321339.Google Scholar
Stevens, P. F. (1994). The Development of Biological Systematics. Antoine-Laurent de Jussieu, Nature and the Natural System. New York: Columbia University Press.Google Scholar
Stoczkowski, W. (2002). Explaining Human Origins. Myth, Imagination and Conjecture. Cambridge: Cambridge University Press.Google Scholar
Strausfeld, N. J., Hirth, F. (2013). Homology versus convergence in resolving transphyletic correspondences of brain organization. Brain Behavior and Evolution 82:215219.Google Scholar
Strickland, H. E. (1840). Observations upon the affinities and analogies of organized beings. Magazine of Natural History 4:219226.Google Scholar
Strickland, H. E. (1841). On the true method of discovering the natural system in zoology and botany. The Annals and Magazine of Natural History 6:184194.Google Scholar
Striedter, G. F. (2020). A history of ideas in evolutionary neuroscience. Pages 316 in Kaas, J. H., ed. Evolutionary Neuroscience. London: Academic Press.Google Scholar
Struck, T. H., Paul, C., Hill, N., et al. (2011). Phylogenomic analyses unravel annelid evolution. Nature 470:9598.Google Scholar
Tamborini, M. (2017). The reception of Darwin in late nineteenth-century German paleontology as a case of pyrrhic victory. Studies in History and Philosophy of Biological and Biomedical Sciences 66:3745.Google Scholar
Tassy, P. (2011). Trees before and after Darwin. Journal of Zoological Systematics and Evolutionary Research 49:89101.Google Scholar
Tattersall, I. (2000). Paleoanthropology: the last half-century. Evolutionary Anthropology 9:216.Google Scholar
Tattersall, I. (2013). Stephen, J. Gould’s intellectual legacy to anthropology. Pages 115127 in Danieli, G. A., Minelli, A., Pievani, T., eds. Stephen J. Gould: The Scientific Legacy. Milan: Springer Verlag.Google Scholar
Tattersall, I. (2015). The Strange Case of the Rickety Cossack. And Other Cautionary Tales from Human Evolution. New York: Palgrave Macmillan.Google Scholar
Tattersall, I., Eldredge, N. (1976). Fact, theory, and fantasy in human paleontology. American Scientist 65:204211.Google Scholar
Tauber, A. I. (2003). Metchnikoff and the phagocytosis theory. Nature Reviews Molecular Cell Biology 4:897901.Google Scholar
Taylor, P. D. (2020). Bryozoan Paleobiology. Hoboken, NJ: Wiley-Blackwell.Google Scholar
Telford, M. J. (2006). Animal phylogeny. Current Biology 16:R981R985.Google Scholar
Telford, M. J. (2007). A single origin of the central nervous system? Cell 129:237239.Google Scholar
Telford, M. J., Budd, G. E. (2011). Invertebrate evolution: bringing order to the molluscan chaos. Current Biology 21:R964R966.Google Scholar
Telford, M. J., Budd, G. E., Philippe, H. (2015). Phylogenomic Insights into animal evolution. Current Biology 25:R876R887.Google Scholar
Tessmar-Raible, K., Arendt, D. (2003). Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. Current Opinion in Genetics & Development 13:331340.Google Scholar
Theobald, D. L. (2010). A formal test of the theory of universal common ancestry. Nature 465:219222.Google Scholar
Theunissen, B. (1989). Eugène Dubois and the Ape-Man from Java. The History of the First “Missing Link” and Its Discoverer. Dordrecht: Kluwer.Google Scholar
Tiegs, O. W., Manton, S. M. (1958). The evolution of the Arthropoda. Biological Reviews of the Cambridge Philosophical Society 33:255333.Google Scholar
Trienes, R. (1989). Type concept revisited. A survey of German idealistic morphology in the first half of the twentieth century. History and Philosophy of the Life Sciences 11:2342.Google Scholar
Trueman, J. W. H., Pfeil, B. E., Kelchner, S. A., Yeates, D. K. (2004). Did stick insects really regain their wings? Systematic Entomology 29:138139.Google Scholar
Tsai, C.-H., Fordyce, R. E. (2015). Ancestor-descendant relationships in evolution: origin of the extant pygmy right whale, Caperea marginata. Biology Letters 11:2014087520140875.Google Scholar
Tsang, L. M., Chan, T.-Y., Ahyong, S. T., Chu, K. H. (2011). Hermit to king, or hermit to all: multiple transitions to crab-like forms from hermit crab ancestors. Systematic Biology 60:616629.Google Scholar
Tschopp, P., Tabin, C. J. (2017). Deep homology in the age of next-generation sequencing. Philosophical Transactions of the Royal Society B: Biological Sciences 372:20150475.Google Scholar
Tschulok, S. (1922). Deszendenzlehre. Jena: Gustav Fischer.Google Scholar
Tyndall, J. (1870). The Scientific Use of the Imagination. London: Longmans, Green, and Co.Google Scholar
Ulett, M. A. (2014). Making the case for orthogenesis: the popularization of definitely directed evolution (1890–1926). Studies in History and Philosophy of Biological and Biomedical Sciences 45:124132.Google Scholar
Ulrich, W. (1972). Die Geschichte des Archicoelomatenbegriffs und die Archicoelomatennatur der Pogonophoren. Zeitschrift für zoologische Systematik und Evolutionsforschung 10:301320.Google Scholar
Vagvolgyi, J. (1967). On the origin of molluscs, the coelom, and coelomic segmentation. Systematic Zoology 16:153168.Google Scholar
Valentine, J. W. (2004). On the Origin of Phyla. Chicago: The University of Chicago Press.Google Scholar
Valentine, J. W., Marshall, C. R. (2015). Fossil and transcriptomic perspectives on the origins and success of metazoan multicellularity. Pages 3146 in Ruiz-Trillo, I., Nedelcu, A. M., eds. Evolutionary Transitions to Multicellular Life. Principles and Mechanisms. Dordrecht: Springer.Google Scholar
Van Cleave, H. J. (1931). Invertebrate Zoology. New York: McGraw-Hill.Google Scholar
Van den Biggelaar, J. A. M., Edsinger-Gonzales, E., Schram, F. R. (2002). The improbability of dorso-ventral axis inversion during animal evolution, as presumed by Geoffroy-Saint Hilaire. Contributions to Zoology 71:2936.Google Scholar
Van der Hammen, L. (1981). Type-concept, higher classification and evolution. Acta Biotheoretica 30:348.Google Scholar
Van Dijk, E. M., Reydon, T. A. C. (2010). A conceptual analysis of evolutionary theory for teacher education. Science & Education 19:655677.Google Scholar
Vanderlaan, T., Ebach, M., Williams, D., Wilkins, J. (2013). Defining and redefining monophyly: Haeckel, Hennig, Ashlock, Nelson and the proliferation of definitions. Australian Systematic Botany 26:347355.Google Scholar
Vaux, F., Trewick, S. A., Morgan-Richards, M. (2016). Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary. Biological Journal of the Linnean Society 117:165176.Google Scholar
Venditti, C., Meade, A., Pagel, M. (2006). Detecting the node-density artifact in phylogeny reconstruction. Systematic Biology 55:637643.Google Scholar
Vigors, N. A. (1825). Observations on the natural affinities that connect the orders and families of birds. Transactions of the Linnean Society of London 14:395517.Google Scholar
Vikhanski, L. (2016). Immunity. How Elie Metchnikoff Changed the Course of Modern Medicine. Chicago: Chicago Review Press.Google Scholar
Vinther, J., Parry, L., Briggs, D. E. G., Roy, P. V. (2017). Ancestral morphology of crown-group molluscs revealed by a new Ordovician stem aculiferan. Nature Publishing Group 542:471474.Google Scholar
Voje, K. L. (2016). Tempo does not correlate with mode in the fossil record. Evolution 70:26782689.Google Scholar
Voje, K. L., Di Martino, E., Porto, A. (2020). Revisiting a landmark study system: no evidence for a punctuated mode of evolution in Metrarabdotos. American Naturalist 195:899917.Google Scholar
von Baer, K. E. (1828). Über Entwicklungsgeschichte der Thiere. Beobachtung und Reflexion. Erster Theil. Königsberg: Gebrüdern Bornträger.Google Scholar
von Baer, K. E. (1876). Reden gehalten in wissenschaftlichen Versammlungen und kleinere Aufsätze vermischten Inhalts, Zweiter Theil. St. Petersburg: Verlag der Kaiserlichen Hofbuchhandlung, H. Schmitzdorff.Google Scholar
von Graff, L. (1891). Die Organisation der Turbellaria Acoela. Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
Von Ihering, H. (1877). Vergleichende Anatomie des Nervensystemes und Phylogenie der Mollusken. Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
von Reumont, B. M., Jenner, R. A., Wills, M. A., et al. (2012). Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the sister group of Hexapoda. Molecular Biology and Evolution 29:10311045.Google Scholar
Vopalensky, P., Pergner, J., Liegertova, M., et al. (2012). Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. Proceedings of the National Academy of Sciences USA 109:1538315388.Google Scholar
Waagen, W. (1869). Die Formenreihe des Ammonites Subradiatus. Versuch einer Paläontologischen Monographie. Geognostisch-Paläontologische Beiträge 2:179256.Google Scholar
Wägele, J. W., Erikson, T., Lockart, P., Misof, B. (1999). The Ecdysozoa: artifact or monophylum? Journal of Zoological Systematics and Evolutionary Research 37:211223.Google Scholar
Wägele, J. W., Kück, P. (2013). Arthropod phylogeny and the origin of Tracheata (= Atelocerata) from Remipedia-like ancestors. Pages 285341 in Wägele, J. W., Bartolomaeus, T., eds. Deep Metazoan Phylogeny: The Backbone of the Tree of Life. Berlin: De Gruyter.Google Scholar
Wägele, J. W., Misof, B. (2001). On quality of evidence in phylogeny reconstruction: a reply to Zrzavy’s defence of the “Ecdysozoa” hypothesis. Journal of Zoological Systematics and Evolutionary Research 39:165176.Google Scholar
Wagner, G. P. (2014). Homology, Genes, and Evolutionary Innovation. Princeton: Princeton University Press.Google Scholar
Wagner, G. P. (2015). Evolutionary innovations and novelties: let us get down to business! Zoologischer Anzeiger 256:7581.Google Scholar
Wake, M. H. (2003). Reproductive modes, ontogenies, and the evolution of body form. Animal Biology 53:209223.Google Scholar
Walcott, C. D. (1912). Middle Cambrian Branchiopoda, Malacostraca, Trilobita, and Merostomata. Smithsonian Miscellaneous Collections 57:145228.Google Scholar
Wallace, A. R. (1855). On the law which has regulated the introduction of new species. Annals and Magazine of Natural History 2nd Series 16:184196.Google Scholar
Wallace, A. R. (1856). Attempts at a natural arrangement of birds. The Annals and Magazine of Natural History (Ser. 2) 18:193219.Google Scholar
Wallace, A. R. (1891). Darwinism. An Exposition of the Theory of Natural Selection with Some of its Applications. London: Macmillan.Google Scholar
Wanninger, A., Wollesen, T. (2015). Mollusca. Pages 103153 in Wanninger, A., ed. Evolutionary Developmental Biology of Invertebrates 2. Vienna: Springer-Verlag.Google Scholar
Wanninger, A., Wollesen, T. (2019). The evolution of molluscs. Biological Reviews of the Cambridge Philosophical Society 94:102115.Google Scholar
Watling, L., Hof, C. H. J., Schram, F. R. (2000). The place of the Hoplocarida in the malacostracan pantheon. Journal of Crustacean Biology 20 special no. 2:111.Google Scholar
Watson, D. M. S. (1940). George Albert Boulenger, 1858–1937. Biographical Memoirs of Fellows of the Royal Society 3:1317.Google Scholar
Weigert, A., Bleidorn, C. (2016). Current status of annelid phylogeny. Organisms Diversity & Evolution 16:345365.Google Scholar
Wenderoth, H. (1986). Transepithelial cytophagy by Trichoplax adhaerens F. E. Schulze (Placozoa) feeding on yeast. Zeitschrift für Naturforschung 41c:343347.Google Scholar
West, D. A. (2003). Fritz Müller. A Naturalist in Brazil. Blacksburg, VA: Pocahontas Press.Google Scholar
West-Eberhard, M. J. (2019). Modularity as a universal emergent property of biological traits. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 332:356364.Google Scholar
Westheide, W. (1997). The direction of evolution within the Polychaeta. Journal of Natural History 31:115.Google Scholar
Westheide, W., McHugh, D., Purschke, G., Rouse, G. (1999). Systematization of the Annelida: different approaches. Hydrobiologia 402:291307.Google Scholar
Wheeler, W. C. (2012). Systematics: A Course of Lectures Oxford:Wiley-Blackwell. Google Scholar
Whelan, N. V., Kocot, K. M., Moroz, T. P., et al. (2017). Ctenophore relationships and their placement as the sister group to all other animals. Nature Ecology & Evolution 1:17371746.Google Scholar
White, P. (2003). Thomas Huxley: Making the “Man of Science”. Cambridge: Cambridge University Press.Google Scholar
White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P., Suwa, G. (2015). Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proceedings of the National Academy of Sciences USA 112:48774884.Google Scholar
Whiting, M., Whiting, A. S. (2004). Is wing recurrence really impossible?: a reply to Trueman et al. Systematic Entomology 29:140141.Google Scholar
Whiting, M. F., Bradler, S., Maxwell, T. (2003). Loss and recovery of wings in stick insects. Nature 421:264267.Google Scholar
Wiley, E. O., Siegel-Causey, D., Brooks, D. R., Funk, V. A. (1991). The Compleat Cladist. A Primer of Phylogenetic Procedures. Lawrence, KS: The University of Kansas Museum of Natural History.Google Scholar
Wilkins, A. S. (2002). The Evolution of Developmental Pathways. Sunderland, MA: Sinauer Associates.Google Scholar
Wilkins, J. S. (2009). Species. A History of the Idea. Berkeley: University of California Press.Google Scholar
Willey, A. (1894). Amphioxus and the Ancestry of the Vertebrates. New York: MacMillan.Google Scholar
Willey, A. (1896). On Ctenoplana. Quarterly Journal of Microscopical Science 39:323342.Google Scholar
Williams, D., Ebach, M. (2009). What, exactly, is cladistics? Re-writing the history of systematics and biogeography. Acta Biotheoretica 57:249268.Google Scholar
Williams, D., Schmitt, M., Wheeler, Q., eds. (2016). The Future of Phylogenetic Systematics. The Legacy of Willi Hennig. Cambridge: Cambridge University Press.Google Scholar
Williams, D. M., Ebach, M. C. (2004). The reform of palaeontology and the rise of biogeography – 25 years after “ontogeny, phylogeny, palaeontology and the biogenetic law” (Nelson, 1978). Journal of Biogeography 31:685712.Google Scholar
Williams, D. M., Ebach, M. C. (2008). Foundations of Systematics and Biogeography. New York: Springer.Google Scholar
Williams, D. M., Ebach, M. C. (2020). Cladistics. A Guide to Biological Classifcation. Cambridge: Cambridge University Press.Google Scholar
Williams, D. M., Forey, P. L., eds. (2004). Milestones in Systematics. Boca Raton, FL: CRC Press.Google Scholar
Williams, D. M., Scotland, R. W., Humphries, C. J., Siebert, D. J. (1996). Confusion in philosophy: a comment on Williams (1992). Synthese 108:127136.Google Scholar
Williams, J. B. (1996). Sessile lifestyle and origin of chordates. New Zealand Journal of Zoology 23:111133.Google Scholar
Williamson, D. I. (2009). Caterpillars evolved from onychophorans by hybridogenesis. Proceedings of the National Academy of Sciences USA 106:1990119905.Google Scholar
Williamson, D. I. (2012). The origins of chordate larvae. Cell & Developmental Biology 1:1.Google Scholar
Williamson, D. I. (2013). Larvae, lophophores and chimeras in classification. Cell & Developmental Biology 2:4.Google Scholar
Williamson, D. I. (2014). The origin of barnacles (Thecostraca, Cirripedia). Crustaceana 87:755765.Google Scholar
Williamson, D. I. (2015). Rhizocephala revisited. Crustaceana 88:939943.Google Scholar
Willmann, R. (2003). From Haeckel to Hennig: the early development of phylogenetics in German-speaking Europe. Cladistics 19:449479.Google Scholar
Willmer, E. N. (1974). Nemertines as possible ancestors of the vertebrates. Biological Reviews of the Cambridge Philosophical Society 49:321363.Google Scholar
Willmer, P. (1990). Invertebrate Relationships. Patterns in Animal Evolution. Cambridge: Cambridge University Press.Google Scholar
Willmer, P., Holland, P. W. H. (1991). Modern approaches to metazoan relationships. Journal of Zoology 224:689694.Google Scholar
Wills, M. A. (1998). Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biological Journal of the Linnean Society 65:455500.Google Scholar
Wilson, E. B. (1891). Some problems of annelid morphology. Pages 5378. Biological Lectures Delivered at the Marine Biological Laboratory of Wood’s Holl in the Summer Session of 1890. Boston: Ginn & Company.Google Scholar
Wilson, E. O. (1990). Success and Dominance in Ecosystems: The Case of the Social Insects. Oldendorf/Luhe: Ecology Institute.Google Scholar
Winchell, C. J., Valencia, J. E., Jacobs, D. K. (2010). Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae). Frontiers in Zoology 7:17.Google Scholar
Winsor, M. P. (1976). Starfish, Jellyfish, and the Order of Life. New Haven, CT: Yale University Press.Google Scholar
Winsor, M. P. (1991). Reading the Shape of Nature. Comparative Zoology at the Agassiz Museum. Chicago: The University of Chicago Press.Google Scholar
Winsor, M. P. (1995). The English debate on taxonomy and phylogeny, 1937–1940. History and Philosophy of the Life Sciences 17:227252.Google Scholar
Winsor, M. P. (2003). Non-essentialist methods in pre-Darwinian taxonomy. Biology & Philosophy 18:387400.Google Scholar
Winsor, M. P. (2006). The creation of the essentialism story: an exercise in metahistory. History and Philosophy of the Life Sciences 28:149174.Google Scholar
Winther, R. G. (2008). Systemic Darwinism. Proceedings of the National Academy of Sciences USA 105:1183311838.Google Scholar
Winther, R. G. (2011). Part-whole science. Synthese 178:397427.Google Scholar
Witteveen, J. (2018). Typological thinking: then and now. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 330:123131.Google Scholar
Woltereck, R. (1904). Beiträge zur praktischen Analyse der Polygordius-Entwicklung nach dem “Nordsee-“ und dem “Mittelmeer-typus.” Archiv für Entwicklungsmechanik der Organismen 18:377403.Google Scholar
Wood, T. C. (2011). Using creation science to demonstrate evolution? Senter’s strategy revisited. Journal of Evolutionary Biology 24:914918.Google Scholar
Worsaae, K., Kerbl, A., Di Domenico, M., et al. (2021). Interstitial Annelida. Diversity 13:77.Google Scholar
Wyse Jackson, P. N., Maderson, P. F. A. (2014). James Edwin Duerden (1865–1937): zoological polymath. Pages 231265 in Wyse Jackson, P. N., Spencer Jones, M. E., eds. Annals of Bryozoology 4. Aspects of the history of research on bryzoans. Dublin: International Bryozoology Association.Google Scholar
Yager, J. (1981). Remipedia, a new class of Crustacea from a marine cave in the Bahamas. Journal of Crustacean Biology 1:328333.Google Scholar
Yajima, M. (2007). Franz Hilgendorf (1839–1904): introducer of evolutionary theory to Japan around 1873. Geological Society, London, Special Publications 287:389393.Google Scholar
Yang, Z. H., Kumar, S., Nei, M. (1995). A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141:16411650.Google Scholar
Yeates, D. K. (1995). Groundplans and exemplars – paths to the tree of life. Cladistics 11:343357.Google Scholar
Yu, Y. L., Zhang, C., Xu, X. (2021). Deep time diversity and the early radiations of birds. Proceedings of the National Academy of Sciences USA 118:e2019865118.Google Scholar
Yue, G., Liew, W. C., Orban, L. (2006). The complete mitochondrial genome of a basal teleost, the Asian arowana (Scleropages formosus, Osteoglossidae). BMC Genomics 7:242.Google Scholar
Zangerl, R. (1948). The methods of comparative anatomy and its contribution to the study of evolution. Evolution 2:351374.Google Scholar
Zhang, H., Dong, X.-P. (2015). The oldest known larva and its implications for the plesiomorphy of metazoan development. Science Bulletin 60:19471953.Google Scholar
Zrzavý, J., Hypsa, V., Tietz, D. F. (2001). Myzostomida are not annelids: molecular and morphological support for a clade of animals with anterior sperm flagella. Cladistics 17:170198.Google Scholar
Zrzavý, J., Mihulka, S., Kepka, P., Bezdek, A., Tietz, D. (1998). Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249285.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ronald A. Jenner, Natural History Museum, London
  • Book: Ancestors in Evolutionary Biology
  • Online publication: 08 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781316226667.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ronald A. Jenner, Natural History Museum, London
  • Book: Ancestors in Evolutionary Biology
  • Online publication: 08 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781316226667.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ronald A. Jenner, Natural History Museum, London
  • Book: Ancestors in Evolutionary Biology
  • Online publication: 08 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781316226667.013
Available formats
×