Published online by Cambridge University Press: 15 December 2009
Abstract. Penrose has described a method for computing a solution for the characteristic initial value problem for the spin-2 equation for the Weyl spinor. This method uses the spinorial properties in an essential way. From the symmetrized derivatives of the Weyl spinor which are known from the null datum on a cone one can compute all the derivatives by using the field equation and thus one is able to write down a power series expansion for a solution of the equation. A recursive algorithm for computing the higher terms in the power series is presented and the possibility of its implementation on a computer is discussed.
INTRODUCTION
Due to the nonlinear nature of general relativity it is very difficult to obtain exact solutions of the field equations that are in addition of at least some physical significance. Prominent examples are the Schwarzschild, Kerr and Friedmann solutions. Given a concrete physical problem it is more often than not rather hopeless to try to solve the equations using analytical techniques only. Therefore, in recent years, attention has turned towards the methods of numerical relativity where one can hope to obtain answers to concrete questions in a reasonable amount of time given enough powerful machines. However, it is still a formidable task to obtain a reliable code. There is first of all the inherent complexity of the field equations themselves when written out in full without the imposition of symmetries or other simplifying assumptions.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.