Published online by Cambridge University Press: 15 December 2009
Abstract. Much of physics concerns temporal dynamics, which describes a spatial world (or Cauchy surface) evolving in time. In Relativity, the causal structure suggests that null dynamics is more relevant. This article sketches Lagrangian and Hamiltonian formalisms for dual-null dynamics, which describes the evolution of initial data prescribed on two intersecting null surfaces. The application to the Einstein gravitational field yields variables with recognisable geometrical meaning, initial data which divide naturally into gravitational and coordinate parts, and evolution equations which are covariant on the intersection surface and free of constraints.
INTRODUCTION
The ADM or “3+1” formalism [1,2] is a natural approach to the Cauchy problem in General Relativity, and has been used widely both analytically and numerically. By comparison, null (or characteristic) evolution problems are more appropriate to the study of problems involving radiation, whether gravitational or otherwise, since radiation propagates in null directions. Null surfaces also have a central place in the causal structure of General Relativity which spatial surfaces do not.
A distinction should be drawn between the null-cone problem discussed elsewhere in this volume, in which the initial surface is a null cone, and the dual-null problem, in which there are two intersecting null initial surfaces. The latter problem was originally described by Sachs [3], with existence and uniqueness proofs being given by Müller zum Hagen and Seifert [4], Friedrich [5] and Rendall [6], and a general “2+2” formalism being developed by d'Inverno, Smallwood and Stachel [7–9].
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.