Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T13:25:23.393Z Has data issue: false hasContentIssue false

10 - Geometrically constrained molecules

Published online by Cambridge University Press:  28 February 2011

D. C. Rapaport
Affiliation:
Bar-Ilan University, Israel
Get access

Summary

Introduction

Some internal degrees of freedom are important to molecular motion, while others can be regarded as frozen. Classical mechanics allows geometrical relations between coordinates to be included as holonomic constraints. We have already encountered constraints in connection with non-Newtonian modifications of the dynamical equations (Chapter 6); here the constraints occur in a Newtonian context, so that there is little doubt as to the physical nature of the trajectories.

In this chapter we focus on a class of model where constraints play an important role, namely, the polymer models used for studying alkane chains and more complex molecules, in which a combination of geometrical constraints and internal motion is required. The treatment of constraints is not the only new feature of such models; the interactions responsible for bond bending and torsion are essentially three- and four-body potentials, and some rather intricate vector algebra is required to determine the forces. The particular alkane model described here incorporates one further simplification, namely, the use of the often encountered ‘united atom’ approximation – the hydrogen atoms attached to each carbon atom in the backbone are absorbed into the backbone atoms and are thereby eliminated from the problem.

Geometric constraints

Role of constraints

The notion of a constraint acting at the molecular level is merely an attempt at simplification; the justification for assuming that certain bond lengths and angles are constant is that, at the prevailing temperature, there is insufficient energy to excite the associated vibrational degrees of freedom (or modes) out of their quantum ground states.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×