Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T14:37:52.058Z Has data issue: false hasContentIssue false

16 - Granular dynamics

Published online by Cambridge University Press:  28 February 2011

D. C. Rapaport
Affiliation:
Bar-Ilan University, Israel
Get access

Summary

Introduction

The importance of understanding the processes governing the transport of granular materials [jae96] has long been recognized, particularly because of its industrial relevance. Methods analogous to MD modeling turn out to be appropriate for the study of granular matter, although the constituent particles are, of course, no longer the atoms and molecules of MD.

Mere inspection reveals the complexity of granular matter. The grains themselves are irregularly shaped, often covered with asperities, and are normally polydisperse. Grain collisions are highly inelastic and friction is important for forming heaps. The wear and tear of collisions can alter the shape of the grains to some extent; electrostatic forces, moisture, adhesion and the presence of air can all affect the behavior. Which of these, and other, characteristics must be incorporated into the model to reproduce the key features of the behavior can only be established empirically.

The goal of this brief departure from simulation at the molecular scale is to demonstrate the wider applicability of the approach, but not to provide a survey of either granular dynamics simulation techniques or applications; reviews of the subject include [bar94, her95]. The discussion of this chapter deals with methods based on soft-particle MD and, while there are many fascinating granular systems to choose from, the examples here deal with vibrating layers [biz98, rap98], mainly because of the visual impact of the results. The methods are readily extended to other kinds of problem.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Granular dynamics
  • D. C. Rapaport, Bar-Ilan University, Israel
  • Book: The Art of Molecular Dynamics Simulation
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816581.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Granular dynamics
  • D. C. Rapaport, Bar-Ilan University, Israel
  • Book: The Art of Molecular Dynamics Simulation
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816581.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Granular dynamics
  • D. C. Rapaport, Bar-Ilan University, Israel
  • Book: The Art of Molecular Dynamics Simulation
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511816581.019
Available formats
×