Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-08T16:29:40.790Z Has data issue: false hasContentIssue false

4 - Gravitational (micro)lensing of quasars and AGN

Published online by Cambridge University Press:  05 September 2016

Joachim Wambsganss
Affiliation:
Universität Heidelberg, Germany
Evencio Mediavilla
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Jose A. Muñoz
Affiliation:
University of Valencia
Francisco Garzón
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Terence J. Mahoney
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Active galactic nuclei (AGN) and quasi-stellar radio sources (quasars) are very luminous compact objects at cosmological distances. Right after their discovery in the 1960s, Sjur Refsdal realized that these properties made them ideal targets for determining the Hubble constant with a measurement of the time delay in a gravitationally lensed quasar system. The discovery of the first double quasar Q0957+561 in 1979 (Walsh, Carswell and Weymann 1979) paved the way for monitoring of multiple quasars. Chang and Refsdal (1979) immediately realized that individual stars in a lensing galaxy can act as microlenses and modify the magnification on time scales of years or months. Today, a few hundred gravitationally lensed quasars are known. Time delays have been determined with an accuracy of a few per cent in a few dozen systems. Averaged over an ensemble of lenses, the Hubble constant H0 can be determined with an uncertainty of about 5%, the error budget being usually dominated by the mass model of the lensing galaxy. Uncorrelated fluctuations in the multiple images of a lensed quasar originate from microlensing and contain information on the lensing objects as well as on the quasar luminosity profile and size. Originally, quasar microlensing studies focused on the visual light; more recently, microlensing fluctuations in the broad emission lines have been analysed as well. Microlensing is a natural explanation for the flux-ratio anomaly in some of the quadruply imaged quasars: A smooth dark matter component produces an asymmetric magnification distribution between the two images in a close pair, with a relatively high probability of high demagnification of the saddle point (negative parity) image. Comparison of the observed flux ratios with microlensing simulations even allows us to quantify the most likely dark matter fraction in such systems.

This chapter summarizes the four lectures that the author presented at the XXIV Canary Islands Winter School of Astrophysics in Puerto de La Cruz, Tenerife, which took place over November 4–16, 2012. A very brief introduction to AGN/quasars is followed by a section on the basics of (micro)lensing and the relevant length and time scales. The two main sections then present results on time delay measurements in multiple quasar systems and subsequent determinations of the Hubble constant on the one hand and on various applications of quasar microlensing on the other.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agol, E. & Krolik, J. 1999, ApJ, 524, 49
Agol, E., Jones, B. & Blaes, O. 2000, ApJ, 545, 657
Agol, E., Gogarten, S. M., Gorjian, V. & Kimball, A. 2009, ApJ, 697, 1010
Anguita, T., Schmidt, R. W., Turner, E. L., Wambsganss, J., Webster, R. L., Loomis, K. A., Long, D. & McMillan, R. 2008, A&A, 480, 327
Chang, K. & Refsdal, S. 1979, Nature, 282, 561
Chang, K. & Refsdal, S. 1984, A&A, 132, 168
Colley, W. N. & Schild, R. E. 2003, ApJ, 594, 97
Colley, W. N. et al. 2003a, ApJ, 587, 71
Colley, W. N. et al. 2003b, ApJ, 588, 711
Dai, X., Kochanek, C. S., Chartas, G., Kozlowski, S., Morgan, C. W., Garmire, G. & Agol, E. 2010, ApJ, 709, 278
Dobler, G. & Keeton, C. R. 2006, ApJ, 653, 1391
Dobler, G., Keeton, C. R. & Wambsganss, J. 2007, MNRAS, 377, 977
Dyson, F. W., Eddington, A. S. & Davidson|C. 1920, Phil. Trans., A220, 291
Eigenbrod, A., Courbin, F., Vuissoz, C., Meylan, G., Saha, P. & Dye, S. 2005, A&A, 436, 25
Eigenbrod, A., Courbin, F., Sluse, D., Meylan, G. & Agol, E. 2008a, A&A, 480, 647
Eigenbrod, A. et al. 2008b, A&A, 490, 933
Falco, E. E., Lehar, J., Perley, R. A., Wambsganss, J. & Gorenstein, M. V. 1996, AJ, 112, 897
Fohlmeister, J. et al. 2007, ApJ, 662, 62
Fohlmeister, J., Kochanek, C. S., Falco, E. E., Morgan, C. W. & Wambsganss, J. 2008, ApJ, 676, 761
Garsden, H. & Lewis, G. F. 2010, New Astron., 15, 181
Gil-Merino, R. & Lewis, G. F. 2006, ApJ, 643, 260
Grieger, B., Kayser, R. & Schramm, T. 1991, ApJ, 252, 508
Inada, N. et al. 2003, Nature, 426, 810
Irwin, M. J., Webster, R. L., Hewett, P. C., Corrigan, R. T. & Jedrzejewski, R. I. 1989, ApJ, 98, 1989
Kayser, R., Refsdal, S. & Stabell, R. 1986, A&A, 166, 36
Kochanek, C. S. 2004, ApJ, 605, 58
Kochanek, C. S., Morgan, N. D., Falco, E. E., McLeod, B. A., Winn, J. N., Dembicky, J. & Ketzeback, B. 2006, ApJ, 640, 47
Kundic, T. et al. 1995, ApJ, 455, L5
Kundic, T. et al. 1997, ApJ, 482, 75
Lewis, G. F. & Ibata, R. A. 1998, ApJ, 501, 478
Matthews, T. A. & Sandage, A. R. 1963, ApJ, 138, 30
Mediavilla, E., Mediavilla, T., Muñoz, J. A., Ariza, O., López, P., González-Morcillo, C. & Jiménez-Vicente, J. 2011, ApJ, 741, 42
Mineshige, S. & Yonehara, A. 1999, ApJ, 343, 41
Mortonson, M. J., Schechter, P. L. & Wambsganss, J. 2005, ApJ, 628, 594
Mosquera, A. M., Muñoz, J. A. & Mediavilla, E. 2009, ApJ, 691, 1292
Oguri, M. 2007, ApJ, 660, 1
Paczyński, B. 1986, ApJ, 301, 503
Paris, I. et al. 2012, A&A, 548, A66
Pelt, J. et al. 1998, A&A, 336, 829
Pooley, D., Rappaport, S., Blackburne, J., Schechter, P. L., Schwab, J. & Wambsganss, J. 2009, ApJ, 697, 1892
Press, W. H., Rybicki, G. B. & Hewitt, J. N. 1992a, ApJ, 385, 404
Press, W. H., Rybicki, G. B. & Hewitt, J. N. 1992b, ApJ, 385, 416
Refsdal, S. 1964, MNRAS, 128, 307
Refsdal, S. & Stabell, R. 1991, A&A, 250, 62
Refsdal, S. & Stabell, R. 1993, A&A, 278, L5
Refsdal, S., Stabell, R., Pelt, J. & Schild, R. 2000, A&A, 360, 10
Schechter, P. L. & Wambsganss, J. 2002, ApJ, 580, 685
Schild, R. E. 1990, AJ, 100, 1771
Schild, R. E. 1996, ApJ, 464, 125
Schild, R. E. 2005, AJ, 129, 1225
Schmidt, M. 1963, Nature, 197, 4872
Schmidt, R. & Wambsganss, J. 1998, A&A, 335, 379
Schmidt, R. & Wambsganss, J. 2010 Gen. Rel. Grav., 42, 2127
Schneider, P. 1985, A&A, 143, 413
Schneider, P. & Weiss, A. 1986, A&A, 164, 237
Schneider, P. & Weiss, A. 1987, A&A, 171, 49
Schneider, P., Ehlers, J. & Falco, E. E. 1992, Gravitational Lenses (Heidelberg: Springer-Verlag)
Schneider, P., Kochanek, C. S. & Wambsganss, J. 2006, SAAS-FEE Advanced Course 33, Gravitational Lensing: Strong, Weak, Micro, ed. G., Meylan, P., Jetzer, P., North, P., Schneider, C. S., Kochanek, & J., Wambsganss (Berlin: Springer-Verlag)
Shalyapin, V. N., Goicoechea, L. J., Koptelova, E., Ullan, A. & Gil-Merino, R. 2008, A&A, 492, 401
Sharon, K. et al. 2005, ApJ, 629, L73
Suyu, S. et al. 2013, ApJ, 766, 70
Tewes, M. et al. 2013, A&A, 556, A22
Thompson, A. C., Fluke, C. J., Barnes, D. G. & Barsdell, B. R. 2010, New Astron., 15, 16
Treyer, M. & Wambsganss, J. 2004, A&A, 416, 19
Udalski, A. et al. 2006, Acta Astron., 56, 293
Vanderriest, C., Schneider, J., Herpe, G., Chevreton, M., Moles, M. & Wlerick, G. 1989, A&A, 215, 1
Walsh, D., Carswell, R. F. & Weymann, R. J. 1979, Nature, 279, 381
Wambsganss, J. 1990, PhD Thesis (also available as report MPA 550), Munich University
Wambsganss, J. 1998, Living Reviews in Relativity 1998-12, http://relativity.livingreviews.org/Articles/lrr-1998-12
Wambsganss, J. 2010, in IAUS261, Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, ed. S., Klioner, K., Seidelmann & M., Soffel (Cambridge: Cambridge University Press), 249
Wambsganss, J. & Paczyński, B. 1991, AJ, 102, 864
Wambsganss, J., Paczyński, B. & Schneider, P. 1990, ApJ, 358, L33
Wambsganss, J., Cen, R., Xu, G. & Ostriker, J. P. 1997, ApJ, 475, L81
Wambsganss, J., Schmidt, R. W., Colley, W. N., Kundic, T. & Turner, E. L. 2000, A&A, 362, L37
Weinberg, S. 1972, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (New York: Wiley-VCH)
Williams, L. L. R. & Saha, P. 1995, AJ, 110, 1471
Witt, H. J., Mao, S. & Schechter, P. L. 1995, ApJ, 443, 18
Wyithe, J. S. B., Webster, R. L. & Turner, E. L. 2000, MNRAS, 318, 762
Yonehara, A. 2001, ApJ, 548, 127
Yonehara, A. et al. 1998, ApJ, 501, 41

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×