Published online by Cambridge University Press: 05 January 2012
One of the major non-perturbative methods used to study atoms in intense laser fields is the direct numerical integration of the wave equations describing atoms interacting with laser fields [1]. This is an attractive alternative to the methods discussed in the two preceding chapters, since solutions of the wave equations can be obtained by numerical integration for a wide range of laser intensities and frequencies. In addition, no restrictions need to be imposed on the type of laser pulses which are used, making the numerical integration of wave equations particularly useful for the study of interaction of atoms with short laser pulses.
However, the numerical integration of the wave equations is computationally very intensive, for the following reasons. Firstly, at high laser intensities, and especially for low frequencies, the ionized electrons can acquire quite high velocities and their quiver motion becomes much larger than the size of the initial atomic orbit. The corresponding wave packets can therefore travel large distances in short time intervals. As a result, the spatial grids used to follow the motion of these wave packets must be large and have small spatial separations. Secondly, the discretization of time, used in all numerical integration schemes, requires a large number of small steps in order to obtain accurate results. Thirdly, the direct numerical integration of the wave equations becomes extremely demanding for atoms with more than one active electron.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.