Skip to main content
×
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This (lowercase (translateProductType product.productType)) has been cited by the following publications. This list is generated based on data provided by CrossRef.

    DARMON, HENRI LAUDER, ALAN and ROTGER, VICTOR 2015. STARK POINTS AND -ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE. Forum of Mathematics, Pi, Vol. 3, Issue. ,

    ×
  • Print publication year: 2014
  • Online publication date: October 2014

3 - p-adic L-functions and Euler systems: a tale in two trilogies

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Automorphic Forms and Galois Representations
  • Online ISBN: 9781107446335
  • Book DOI: https://doi.org/10.1017/CBO9781107446335
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
[BD1] M., Bertolini, H., Darmon, Kato' Euler system and rational points on elliptic curves I: A p-adic Beilinson formula, Israel J. Math., to appear.
[BD2] M., Bertolini, H., Darmon, Kato' Euler system and rational points on elliptic curves II: The explicit reciprocity law, in preparation.
[BDP] M., Bertolini, H., Darmon, K., Prasanna, Generalised Heegner cycles and p-adic Rankin L-series, Duke Math. J. 162, (2013) no. 6, 1033–1148.
[BDR1] M., Bertolini, H., Darmon, V., Rotger, Beilinson-Flach elements and Euler systems I: syntomic regulators and p-adic Rankin L-series, submitted for publication.
[BDR2] M., Bertolini, H., Darmon, V., Rotger, Beilinson-Flach elements and Euler systems II: p-adic families and the Birch and Swinnerton-Dyer conjecture, in preparation.
[Bei1] A.A., Beilinson, Higher regulators and values of L-functions, in Current problems in mathematics 24, 181–238, Akad. Nauk SSSR, Vsesoyuz, Inst. Nauchn. Tekhn. Inform., Moscow, 1984.
[Bei2] A.A., Beilinson, Higher regulators of modular curves. Applications of algebraic K -theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), 1-34, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986.
[Bes1] A., Besser, A generalization of Coleman' p-adic integration theory, Invent. Math. 142 (2000), 397–434.
[Bes2] A., Besser, Syntomic regulators and p-adic integration I: rigid syntomic regulators, Israel J. Math. 120 (2000), 291–334.
[Bes3] A., Besser, Syntomic regulators and p-adic integration, II. K2 of curves. Proceedings of the Conference on p-adic Aspects of the Theory of Auto-morphic Representations (Jerusalem, 1998). Israel J. Math. 120 (2000), part B, 335–359.
[Bes4] A., Besser, On the syntomic regulator for K1 of a surface, Israel J. Math. 190 (2012) 29–66.
[BK] Bannai, Kenichi; Kings, Guido. p-adic elliptic polylogarithm, p-adic Eisenstein series and Katz measure, Amer. J. Math. 132 (2010), no. 6, 1609–1654.
[Br] F., Brunault, Valeur en 2 de fonctions L de formes modulaires de poids 2: théorème de Beilinson explicite, Bull. Soc. Math. France 135 (2007), no. 2, 215–246.
[Cas1] F., Castella, Heegner cycles and higher weight specializations of big Heegner points, Math. Annalen 356 (2013), 1247–1282.
[Cas2] F., Castella, p-adic L-functions and the p-adic variation of Heegner points, submitted.
[Cit] C., Citro, ℒ -invariants of adjoint square Galois representations coming from modular forms, Int. Math. Res. Not. (2008), no. 14.
[Col] R.F., Coleman, A p-adic Shimura isomorphism and p-adic periods of modular forms, in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), 21–51, Contemp. Math. 165, Amer. Math. Soc., Providence, RI, 1994.
[CW] J., Coates and A., Wiles. On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39 (3) (1977) 223–251.
[Cz1] P., Colmez. Fonctions L p-adiques, Séminaire Bourbaki, Vol. 1998/99. Astérisque 266 (2000), Exp. No. 851, 3, 21–58.
[Cz2] P., Colmez. La conjecture de Birch et Swinnerton-Dyer p-adique, Astérisque 294 (2004), ix, 251–319.
[DR1] H., Darmon, V., Rotger, Diagonal cycles and Euler systems I: A p-adic Gross-Zagier formula, Ann. Sci. Ec. Norm. Supé., to appear.
[DR2] H., Darmon, V., Rotger, Diagonal cycles and Euler systems II: the Birch– Swinnerton-Dyer conjecture for Hasse–Weil–Artin L-series, submitted.
[DRS1] H., Darmon, V., Rotger, I., Sols, Iterated integrals, diagonal cycles, and rational points on elliptic curves, Publications Mathématiques de Besançon 2 (2012), 19–46.
[Das] S., Dasgupta, Factorization of p-adic Rankin L-series, in preparation.
[Gar] P., Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann. Math. 125 (1987), 209–235.
[Gr] B., Gross. On the factorization of p-adic L-series. Invent. Math. 57 (1980), no. 1, 83–95.
[GrKu] B., Gross, S., Kudla, Heights and the central critical values of triple product L-functions, Compositio Math. 81 (1992), no. 2, 143–209.
[GrSc] B., Gross, C., Schoen, The modified diagonal cycle on the triple product of a pointed curve, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 3, 649–679.
[GZ] B.H., Gross and D.B., Zagier. Heegner points and derivatives of L-series. Invent. Math. 84 (1986), no. 2, 225–320.
[HaKu] M., Harris, S., Kudla, The central critical value of a triple product L-function, Ann. Math. (2) 133 (1991), 605–672.
[HaTi] M., Harris and J., Tilouine, p-adic measures and square roots of special values of triple product L-functions, Math. Annalen 320 (2001), 127–147.
[Hi1] H., Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms II, Ann. Inst. Fourier (Grenoble) 38 (1988) 1–83.
[Hi2] H., Hida, Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student Texts 26, 1993.
[How] B., Howard, Variation of Heegner points in Hida families, Invent. Math. 167 (2007), 91–128.
[Kato] K., Kato, p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques. III. Astérisque No. 295 (2004), ix, 117–290.
[Katz] N.M., Katz, p-adic interpolation of real analytic Eisenstein series, Ann. Math. (2) 104 (1976), no. 3, 459–571.
[Ko] V.A., Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, 435–483, Progr. Math. 87, Birkhäuser Boston, Boston, MA, 1990.
[Lau] A., Lauder, Efficient computation of Rankin p-adic L-functions, to appear in the proceedings of the Heidelberg conference “Computations with Modular Forms 2011”.
[LLZ] A., Lei, D., Loeffler, S. L., Zerbes, Euler systems for Rankin-Selberg convolutions of modular forms, to appear in Ann. Math.
[MR] B., Mazur, K., Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168, no. 799, 2004.
[MTT] B., Mazur, J., Tate, J., Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48.
[Nik] M., Niklas, Rigid syntomic regulators and the p-adic L-function of a modular form, Regensburg PhD Thesis, 2010, available at http://epub.uniregensburg.de/19847/
[PR1] B., Perrin-Riou, Point de Heegner et dérivées de fonctions L p-adiques, Invent. Math. 89 (1987), no. 3, 455–510.
[PR2] B., Perrin-Riou, Fonctions L p-adiques d'une courbe elliptique et points rationnels, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 945–995.
[PR3] B., Perrin-Riou, Théorie d'Iwasawa des représentations p-adiques sur un corps local, with an appendix by J.-M. Fontaine, Invent. Math. 115 (1994), no. 1, 81–161.
[PR4] B., Perrin-Riou, La fonction L p-adique de Kubota-Leopoldt, Arithmetic geometry (Tempe, AZ, 1993), 65–93, Contemp. Math. 174, Amer. Math. Soc., Providence, RI, 1994.
[Ru] K., Rubin, Euler systems. Annals of Mathematics Studies 147, Hermann Weyl Lectures, The Institute for Advanced Study, Princeton University Press, Princeton, NJ, 2000.
[Se] J.-P., Serre, Formes modulaires et fonctions zêta p-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 191–268. Lecture Notes in Math. 350, Springer, Berlin, 1973.
[Sh1] G., Shimura, The special values of the zeta functions associated with cusp forms, Commun. Pure and Appl. Math. 29, (1976) 783–795.
[Sh2] G., Shimura, On a class of nearly holomorphic automorphic forms, Ann. Math. 123 (1986), 347–406.
[YZZ] X., Yuan, S., Zhang, W., Zhang, Triple product L-series and Gross–Schoen cycles I: split case, preprint.
[Zh] S., Zhang, Arithmetic of Shimura curves, Sci. China Math. 53 (2010), 573–592.