Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T08:09:49.972Z Has data issue: false hasContentIssue false

10 - Chemolithotrophy

Published online by Cambridge University Press:  05 September 2012

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Some prokaryotes grow by using reduced inorganic compounds as their energy source and CO2 as the carbon source. These are called chemolithotrophs. The electron donors used by chemolithotrophs include nitrogen and sulfur compounds, Fe(II), H2, and CO. The Calvin cycle is the most common CO2 fixation mechanism, and the reductive TCA cycle, acetyl-CoA pathway and 3-hydroxypropionate cycle are found in some chemolithotrophic prokaryotes. Some can use organic compounds as their carbon source while metabolizing an inorganic electron donor. This kind of bacterial metabolism is referred to as mixotrophy.

Reverse electron transport

As with chemoorganotrophs, metabolism of chemolithotrophs requires ATP and NAD(P)H for carbon metabolism and biosynthetic processes. Some of the electron donors used by chemolithotrophs have a redox potential higher than that of NAD(P)+/NAD(P)H (Table 10.1). Electrons from these electron donors are transferred to coenzyme Q or to cytochromes. Some of the electrons are used to generate a proton motive force reducing O2 while the remaining electrons reduce NAD(P)+ to NAD(P)H through a reverse of the electron transport chain. The latter is an uphill reaction and coupled with the consumption of the proton motive force (Figure 10.1). This is referred to as reverse electron transport. In most cases, electron donors with a redox potential lower than NAD(P)+/NAD(P)H are oxidized and this is coupled with the reduction of coenzyme Q or cytochromes for the efficient utilization of the electron donors at low concentration.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Douglas, S. & Beveridge, T. J. (1998). Mineral formation by bacteria in natural microbial communities. FEMS Microbiology Ecology 26, 79–88.CrossRefGoogle Scholar
Ehrlich, H. L. (1999). Microbes as geologic agents: their role in mineral formation. Geomicrobiology Journal 16, 135–153.CrossRefGoogle Scholar
Gadd, G. M., Semple, K. T. & Lappin-Scott, H. M. (2005). Micro-organisms and Earth Systems: Advances in Geomicrobiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Heijnen, J. J. & Vandijken, J. P. (1992). In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnology and Bioengineering 39, 833–858.CrossRefGoogle ScholarPubMed
Maden, B. E. H. (1995). No soup for starters? Autotrophy and the origins of metabolism. Trends in Biochemical Sciences 20, 337–341.CrossRefGoogle Scholar
Mansch, R. & Beck, E. (1998). Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegradation 9, 47–64.CrossRefGoogle ScholarPubMed
Stevens, T. O. (1997). Lithoautotrophy in the subsurface. FEMS Microbiology Reviews 20, 327–337.CrossRefGoogle Scholar
Elbehti, A., Brasseur, G. & Lemesle-Meunier, D. (2000). First evidence for existence of an uphill electron transfer through the bc1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. Journal of Bacteriology 182, 3602–3606.CrossRefGoogle Scholar
Jin, Q. & Bethke, C. M. (2003). A new rate law describing microbial respiration. Applied and Environmental Microbiology 69, 2340–2348.CrossRefGoogle ScholarPubMed
Arp, D. J., Sayavedra-Soto, L. A. & Hommes, N. G. (2002). Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Archives of Microbiology, 178, 250–255.CrossRefGoogle ScholarPubMed
Bothe, H., Jost, G., Schloter, M., Ward, B. B. & Witzel, K. P. (2000). Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiology Reviews 24, 673–690.CrossRefGoogle ScholarPubMed
Costa, E., Perez, J. & Kreft, J. U. (2006). Why is metabolic labour divided in nitrification?Trends in Microbiology 14, 213–219.CrossRefGoogle ScholarPubMed
Head, I. M., Hiorns, W. D., Embley, T. M., McCarthy, A. J. & Saunders, J. R. (1993). The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. Journal of General Microbiology 139, 1147–1153.CrossRefGoogle ScholarPubMed
Hermansson, A. & Lindgren, P. E. (2001). Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Applied and Environmental Microbiology 67, 972–976.CrossRefGoogle ScholarPubMed
Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. (1995). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiology Letters 132, 203–208.CrossRefGoogle ScholarPubMed
Hooper, A. B., Vannelli, T., Bergmann, D. J. & Arciero, D. M. (1997). Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek 71, 59–67.CrossRefGoogle ScholarPubMed
Ivanova, I. A., Stephen, J. R., Chang, Y. J., Bruggemann, J., Long, P. E., McKinley, J. P., Kowalchuk, G. A., White, D. C. & Macnaughton, S. J. (2000). A survey of 16 S rRNA and amoA genes related to autotrophic ammonia-oxidizing bacteria of the beta-subdivision of the class proteobacteria in contaminated groundwater. Canadian Journal of Microbiology 46, 1012–1020.CrossRefGoogle Scholar
Koch, G., Egli, K., Meer, J. R. Jr. & Siegrist, H. (2000). Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Science and Technology 41, 191–198.CrossRefGoogle Scholar
Kowalchuk, G. A. & Stephen, J. R. (2001). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology 55, 485–529.CrossRefGoogle ScholarPubMed
Nicol, G. W. & Schleper, C. (2006). Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle?Trends in Microbiology 14, 207–212.CrossRefGoogle ScholarPubMed
Richardson, D. J. & Watmough, N. J. (1999). Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology 3, 207–219.CrossRefGoogle ScholarPubMed
Schramm, A., Larsen, L. H., Revsbech, N. P., Ramsing, N. B., Amann, R. & Schleifer, K. H. (1996). Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Applied and Environmental Microbiology 62, 4641–4647.Google ScholarPubMed
Whittaker, M., Bergmann, D., Arciero, D. & Hooper, A. B. (2000). Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochimica et Biophysica Acta – Bioenergetics 1459, 346–355.CrossRefGoogle ScholarPubMed
Ye, R. W. & Thomas, S. M. (2001). Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology 4, 307–312.CrossRefGoogle ScholarPubMed
Appia-Ayme, C., Guiliani, N., Ratouchniak, J. & Bonnefoy, V. (1999). Characterization of an operon encoding two c-type cytochromes, an aa3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Applied and Environmental Microbiology 65, 4781–4787.Google Scholar
Bharathi, P. A. L., Nair, S. & Chandramohan, D. (1997). Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria. Journal of Marine Biotechnology 5, 172–177.Google Scholar
Buonfiglio, V., Polidoro, M., Flora, L., Citro, G., Valenti, P. & Orsi, N. (1993). Identification of two outer membrane proteins involved in the oxidation of sulphur compounds in Thiobacillus ferrooxidans. FEMS Microbiology Reviews 11, 43–50.CrossRefGoogle Scholar
Friedrich, C. G. (1998). Physiology and genetics of sulfur-oxidizing bacteria. Advances in Microbial Physiology, 39, 235–289.CrossRefGoogle ScholarPubMed
Gevertz, D., Telang, A. J., Voordouw, G. & Jenneman, G. E. (2000). Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Applied and Environmental Microbiology 66, 2491–2501.CrossRefGoogle ScholarPubMed
Howarth, R., Unz, R. F., Seviour, E. M., Seviour, R. J., Blackall, L. L., Pickup, R. W., Jones, J. G., Yaguchi, J. & Head, I. M. (1999). Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021 N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. International Journal of Systematic Bacteriology 49, 1817–1827.CrossRefGoogle Scholar
Johnson, D. B., Ghauri, M. A. & McGinness, S. (1993). Biogeochemical cycling of iron and sulphur in leaching environments. FEMS Microbiology Reviews 11, 63–70.CrossRefGoogle Scholar
Jorgensen, B. B. & Gallardo, V. A. (1999). Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiology Ecology 28, 301–313.CrossRefGoogle Scholar
Kelly, D. P. (1999). Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Archives of Microbiology 171, 219–229.CrossRefGoogle Scholar
Kelly, D. P., Shergill, J. K., Lu, W. P. & Wood, A. P. (1997). Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71, 95–107.CrossRefGoogle ScholarPubMed
Norris, P. R., Burton, N. P. & Foulis, N. A. M. (2000). Acidophiles in bioreactor mineral processing. Extremophiles 4, 71–76.CrossRefGoogle ScholarPubMed
Sand, W., Gerke, T., Hallmann, R. & Schippers, A. (1995). Sulfur chemistry, biofilm, and the (in)direct attack mechanism: a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology 43, 961–966.CrossRefGoogle Scholar
Schippers, A., Jozsa, P. G. & Sand, W. (1996). Sulfur chemistry in bacterial leaching of pyrite. Applied and Environmental Microbiology 62, 3424–3431.Google ScholarPubMed
Sorokin, D. Y. (1994). Use of microorganisms in protection of environments from pollution by sulfur compounds. Microbiology-Moscow 63, 533–547.Google Scholar
Vasquez, M. & Espejo, R. T. (1997). Chemolithotrophic bacteria in copper ores leached at high sulfuric acid concentration. Applied and Environmental Microbiology 63, 332–334.Google ScholarPubMed
Bacelar-Nicolau, P. & Johnson, D. B. (1999). Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Applied and Environmental Microbiology 65, 585–590.Google ScholarPubMed
Blake, R. C., Shute, E. A., Greenwood, M. M., Spencer, G. H. & Ingledew, W. J. (1993). Enzymes of aerobic respiration on iron. FEMS Microbiology Reviews 11, 9–18.CrossRefGoogle Scholar
Briand, L., Thomas, H. & Donati, E. (1996). Vanadium(V) reduction in Thiobacillus thiooxidans cultures on elemental sulfur. Biotechnology Letters 18, 505–508.CrossRefGoogle Scholar
Buchholz-Cleven, B. E. E., Rattunde, B. & Straub, K. L. (1997). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology 20, 301–309.CrossRefGoogle Scholar
Elbehti, A. & Lemeslemeunier, D. (1996). Identification of membrane-bound c-type cytochromes in an acidophilic ferrous ion oxidizing bacterium Thiobacillus ferrooxidans. FEMS Microbiology Letters 136, 51–56.CrossRefGoogle Scholar
Fuchs, T., Huber, H., Teiner, K., Burggraf, S. & Stetter, K. O. (1996). Metallosphaera prunae, sp nov, a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Systematic and Applied Microbiology 18, 560–566.CrossRefGoogle Scholar
Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondrat'eva, T. F., Moore, E. R. B., Abraham, W. R., Lunsdorf, H., Timmis, K. N., Yakimov, M.M. & Golyshin, P. N. (2000). Ferroplasma acidiphilum gen. nov., sp nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. International Journal of Systematic and Evolutionary Microbiology 50, 997–1006.CrossRefGoogle ScholarPubMed
Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Rossnagel, P., Burggraf, S., Huber, H. & Stetter, K. O. (1996). Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2 + at neutral pH under anoxic conditions. Archives of Microbiology 166, 308–314.CrossRefGoogle ScholarPubMed
Johnson, D. B., Ghauri, M. A. & McGinness, S. (1993). Biogeochemical cycling of iron and sulphur in leaching environments. FEMS Microbiology Reviews 11, 63–70.CrossRefGoogle Scholar
Leduc, L. G. & Ferroni, G. D. (1994). The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiology Reviews 14, 103–119.CrossRefGoogle Scholar
Rawlings, D. E. & Silver, S. (1995). Mining with microbes. Biotechnology 13, 773–778.CrossRefGoogle Scholar
Rawlings, D. E., Tributsch, H. & Hansford, G. S. (1999). Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology-UK 145, 5–13.CrossRefGoogle ScholarPubMed
Santini, J. M., Sly, L. I., Schnagl, R. D. & Macy, J. M. (2000). A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Applied and Environmental Microbiology 66, 92–97.CrossRefGoogle ScholarPubMed
Seeger, M. & Jerez, C. A. (1993). Response of Thiobacillus ferrooxidans to phosphate limitation. FEMS Microbiology Reviews 11, 37–42.CrossRefGoogle Scholar
Straub, K. L. & Buchholz-Cleven, B. E. (1998). Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Applied and Environmental Microbiology 64, 4846–4856.Google ScholarPubMed
Straub, K. L., Benz, M., Schink, B. & Widdel, F. (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology 62, 1458–1460.Google ScholarPubMed
Sugio, T., Hirayama, K., Inagaki, K., Tanaka, H. & Tano, T. (1992). Molybdenum oxidation by Thiobacillus ferrooxidans. Applied and Environmental Microbiology 58, 1768–1771.Google ScholarPubMed
Yamanaka, T. & Fukumori, Y. (1995). Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiology Reviews 17, 401–413.CrossRefGoogle ScholarPubMed
Aono, S., Kamachi, T. & Okura, I. (1993). Characterization and thermostability of a membrane-bound hydrogenase from a thermophilic hydrogen oxidizing bacterium, Bacillus schlegelii. Bioscience, Biotechnology and Biochemistry 57, 1177–1179.CrossRefGoogle ScholarPubMed
Dobbek, H., Gremer, L., Meyer, O. & Huber, R. (1999). Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proceedings of the National Academy of Sciences, USA 96, 8884–8889.CrossRefGoogle ScholarPubMed
Gonzalez, J. M. & Robb, F. T. (2000). Genetic analysis of Carboxydothermus hydrogenoformans carbon monoxide dehydrogenase genes cooF and cooS. FEMS Microbiology Letters 191, 243–247.CrossRefGoogle ScholarPubMed
Gremer, L., Kellner, S., Dobbek, H., Huber, R. & Meyer, O. (2000). Binding of flavin adenine dinucleotide to molybdenum-containing carbon monoxide dehydrogenase from Oligotropha carboxidovorans: structural and functional analysis of a carbon monoxide dehydrogenase species in which the native flavoprotein has been replaced by its recombinant counterpart produced in Escherichia coli. Journal of Biological Chemistry 275, 1864–1872.CrossRefGoogle ScholarPubMed
Grzeszik, C., Lubbers, M., Reh, M. & Schlegel, H. G. (1997). Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology-UK 143, 1271–1286.CrossRefGoogle ScholarPubMed
Grzeszik, C., Ross, K., Schneider, K., Reh, M. & Schlegel, H. G. (1997). Location, catalytic activity, and subunit composition of NAD-reducing hydrogenases of some Alcaligenes strains and Rhodococcus opacus MR22. Archives of Microbiology 167, 172–176.CrossRefGoogle ScholarPubMed
Hanzelmann, P. & Meyer, O. (1998). Effect of molybdate and tungstate on the biosynthesis of CO dehydrogenase and the molybdopterin cytosine-dinucleotide-type of molybdenum cofactor in Hydrogenophaga pseudoflava. European Journal of Biochemistry 255, 755–765.CrossRefGoogle ScholarPubMed
Nishihara, H., Yaguchi, T., Chung, S. Y., Suzuki, K., Yanagi, M., Yamasato, K., Kodama, T. & Igarashi, Y. (1998). Phylogenetic position of an obligately chemoautotrophic, marine hydrogen-oxidizing bacterium, Hydrogenovibrio marinus, on the basis of 16S rRNA gene sequences and two form I RuBisCO gene sequences. Archives of Microbiology 169, 364–368.CrossRefGoogle Scholar
Santiago, B. & Meyer, O. (1996). Characterization of hydrogenase activities associated with the molybdenum CO dehydrogenase from Oligotropha carboxidovorans. FEMS Microbiology Letters 136, 157–162.CrossRefGoogle Scholar
Suzuki, M., Cui, Z. J., Ishii, M. & Igarashi, Y. (2001). Nitrate respiratory metabolism in an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6. Archives of Microbiology 175, 75–78.CrossRefGoogle Scholar
Tachil, J. & Meyer, O. (1997). Redox state and activity of molybdopterin cytosine dinucleotide (MCD) of CO dehydrogenase from Hydrogenophaga pseudoflava. FEMS Microbiology Letters 148, 203–208.CrossRefGoogle Scholar
Yun, N. R., Arai, H., Ishii, M. & Igarashi, Y. (2001). The genes for anabolic 2-oxoglutarate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6. Biochemical and Biophysical Research Communications 282, 589–594.CrossRefGoogle ScholarPubMed
Yurkova, N. A., Saveleva, N. D. & Lyalikova, N. N. (1993). Oxidation of molecular hydrogen and carbon monoxide by facultatively chemolithotrophic vanadate-reducing bacteria. Microbiology-Moscow 62, 367–370.Google Scholar
Beller, H. R., Letain, T. E., Chakicherla, A., Kane, S. R., Legler, T. C. & Coleman, M. A. (2006). Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. Journal of Bacteriology 188, 7005–7015.CrossRefGoogle ScholarPubMed
Berg, I. A., Keppen, O. I., Krasil'nikova, E. N., Ugol'kova, N. V. & Ivanovsky, R. N. (2005). Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae. Microbiology-Moscow 74, 258–264.CrossRefGoogle ScholarPubMed
Cannon, G. C., Baker, S. H., Soyer, F., Johnson, D. R., Bradburne, C. E., Mehlman, J. L., Davies, P. S., Jiang, Q. L., Heinhorst, S. & Shively, J. M. (2003). Organization of carboxysome genes in the thiobacilli. Current Microbiology 46, 115–119.CrossRefGoogle ScholarPubMed
Eisenreich, W., Strauss, G., Werz, U., Fuchs, G. & Bacher, A. (1993). Retrobiosynthetic analysis of carbon fixation in the photosynthetic eubacterium Chloroflexus aurantiacus. European Journal of Biochemistry 215, 619–632.CrossRefGoogle Scholar
Finn, M. W. & Tabita, F. R. (2004). Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic Archaea. Journal of Bacteriology 186, 6360–6366.CrossRefGoogle ScholarPubMed
Friedmann, S., Alber, B. E. & Fuchs, G. (2006). Properties of succinyl-coenzyme A:D-citramalate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. Journal of Bacteriology 188, 6460–6468.CrossRefGoogle ScholarPubMed
Friedmann, S., Steindorf, A., Alber, B. E. & Fuchs, G. (2006). Properties of succinyl-coenzyme A:L-malate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. Journal of Bacteriology 188, 2646–2655.CrossRefGoogle ScholarPubMed
Gibson, J. L. & Tabita, F. R. (1996). The molecular regulation of the reductive pentose phosphate pathway in Proteobacteria and cyanobacteria. Archives of Microbiology 166, 141–150.CrossRefGoogle ScholarPubMed
Hernandez, J. M., Baker, S. H., Lorbach, S. C., Shively, J. M. & Tabita, F. R. (1996). Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. Journal of Bacteriology 178, 347–356.CrossRefGoogle Scholar
Herter, S., Fuchs, G., Bacher, A. & Eisenreich, W. (2002). A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. Journal of Biological Chemistry 277, 20277–20283.CrossRefGoogle ScholarPubMed
Huegler, M., Huber, H., Stetter, K. O. & Fuchs, G. (2003). Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Archives of Microbiology 179, 160–173.CrossRefGoogle Scholar
Hugler, M., Wirsen, C. O., Fuchs, G., Taylor, C. D. & Sievert, S. M. (2005). Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the ∊-subdivision of Proteobacteria. Journal of Bacteriology 187, 3020–3027.CrossRefGoogle ScholarPubMed
Ishii, M., Miyake, T., Satoh, T., Sugiyama, H., Oshima, Y., Kodama, T. & Igarashi, Y. (1996). Autotrophic carbon dioxide fixation in Acidianus brierleyi. Archives of Microbiology 166, 368–371.CrossRefGoogle ScholarPubMed
Ishii, M., Chuakrut, S., Arai, H. & Igarashi, Y. (2004). Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle. Applied Microbiology and Biotechnology 64, 605–610.CrossRefGoogle ScholarPubMed
Ivanovsky, R. N., Fal, Y. I., Berg, I. A., Ugolkova, N. V., Krasilnikova, E. N., Keppen, O. I., Zakharchuc, L. M. & Zyakun, A. M. (1999). Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6. Microbiology-UK 145, 1743–1748.CrossRefGoogle Scholar
Joshi, H. M. & Tabita, F. R. (2000). Induction of carbon monoxide dehydrogenase to facilitate redox balancing in a ribulose bisphosphate carboxylase/oxygenase-deficient mutant strain of Rhodospirillum rubrum. Archives of Microbiology 173, 193–199.CrossRefGoogle Scholar
Lelait, M. & Grivet, J. P. (1996). Carbon metabolism in Eubacterium limosum: a C-13 NMR study. Anaerobe 2, 181–189.CrossRefGoogle Scholar
Menon, S. & Ragsdale, S. W. (1999). The role of an iron-sulfur cluster in an enzymatic methylation reaction: methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein. Journal of Biological Chemistry 274, 11513–11518.CrossRefGoogle Scholar
Qian, Y. L. & Tabita, F. R. (1996). A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. Journal of Bacteriology 178, 12–18.CrossRefGoogle ScholarPubMed
Roberts, D. L., Zhao, S. Y., Doukov, T. & Ragsdale, S. W. (1994). The reductive acetyl coenzyme A pathway. Sequence and heterologous expression of active methyltetrahydrofolate: corrinoid/ iron-sulfur protein methyltransferase from Clostridium thermoaceticum. Journal of Bacteriology 176, 6127–6130.CrossRefGoogle ScholarPubMed
Russell, M. J. & Martin, W. (2004). The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences 29, 358–363.CrossRefGoogle ScholarPubMed
Schouten, S., Strous, M., Kuypers, M. M. M., Rijpstra, W. I., Baas, M., Schubert, C. J., Jetten, M. S. M. & Damste, Sinninghe J. S. (2004). Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology 70, 3785–3788.CrossRefGoogle ScholarPubMed
Shively, J. M., Vankeulen, G. & Meijer, W. G. (1998). Something from almost nothing: carbon dioxide fixation in chemolithotrophs. Annual Review of Microbiology 52, 191–230.CrossRefGoogle Scholar
Tourova, T. P., Spiridonova, E. M., Berg, I. A., Kuznetsov, B. B. & Sorokin, D. Y. (2005). Phylogeny of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in haloalkaliphilic obligately autotrophic sulfur-oxidizing bacteria of the genus Thioalkalivibrio. Microbiology-Moscow 74, 321–328.CrossRefGoogle Scholar
Tourova, T. P., Spiridonova, E. M., Berg, I. A., Kuznetsov, B. B. & Sorokin, D. Y. (2006). Occurrence, phylogeny and evolution of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in obligately chemolithoautotrophic sulfur-oxidizing bacteria of the genera Thiomicrospira and Thioalkalimicrobium. Microbiology-UK 152, 2159–2169.CrossRefGoogle ScholarPubMed
Vorholt, J., Kunow, J., Stetter, K. O. & Thauer, R. K. (1995). Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A-profundus. Archives of Microbiology 163, 112–118.CrossRefGoogle Scholar
Vorholt, J. A., Hafenbradl, D., Stetter, K. O. & Thauer, R. K. (1997). Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Archives of Microbiology 167, 19–23.CrossRefGoogle ScholarPubMed
Yoshizawa, Y., Toyoda, K., Arai, H., Ishii, M. & Igarashi, Y. (2004). CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110. Journal of Bacteriology 186, 5685–5691.CrossRefGoogle ScholarPubMed
Douglas, S. & Beveridge, T. J. (1998). Mineral formation by bacteria in natural microbial communities. FEMS Microbiology Ecology 26, 79–88.CrossRefGoogle Scholar
Ehrlich, H. L. (1999). Microbes as geologic agents: their role in mineral formation. Geomicrobiology Journal 16, 135–153.CrossRefGoogle Scholar
Gadd, G. M., Semple, K. T. & Lappin-Scott, H. M. (2005). Micro-organisms and Earth Systems: Advances in Geomicrobiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Heijnen, J. J. & Vandijken, J. P. (1992). In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnology and Bioengineering 39, 833–858.CrossRefGoogle ScholarPubMed
Maden, B. E. H. (1995). No soup for starters? Autotrophy and the origins of metabolism. Trends in Biochemical Sciences 20, 337–341.CrossRefGoogle Scholar
Mansch, R. & Beck, E. (1998). Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegradation 9, 47–64.CrossRefGoogle ScholarPubMed
Stevens, T. O. (1997). Lithoautotrophy in the subsurface. FEMS Microbiology Reviews 20, 327–337.CrossRefGoogle Scholar
Elbehti, A., Brasseur, G. & Lemesle-Meunier, D. (2000). First evidence for existence of an uphill electron transfer through the bc1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. Journal of Bacteriology 182, 3602–3606.CrossRefGoogle Scholar
Jin, Q. & Bethke, C. M. (2003). A new rate law describing microbial respiration. Applied and Environmental Microbiology 69, 2340–2348.CrossRefGoogle ScholarPubMed
Arp, D. J., Sayavedra-Soto, L. A. & Hommes, N. G. (2002). Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Archives of Microbiology, 178, 250–255.CrossRefGoogle ScholarPubMed
Bothe, H., Jost, G., Schloter, M., Ward, B. B. & Witzel, K. P. (2000). Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiology Reviews 24, 673–690.CrossRefGoogle ScholarPubMed
Costa, E., Perez, J. & Kreft, J. U. (2006). Why is metabolic labour divided in nitrification?Trends in Microbiology 14, 213–219.CrossRefGoogle ScholarPubMed
Head, I. M., Hiorns, W. D., Embley, T. M., McCarthy, A. J. & Saunders, J. R. (1993). The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. Journal of General Microbiology 139, 1147–1153.CrossRefGoogle ScholarPubMed
Hermansson, A. & Lindgren, P. E. (2001). Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Applied and Environmental Microbiology 67, 972–976.CrossRefGoogle ScholarPubMed
Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. (1995). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiology Letters 132, 203–208.CrossRefGoogle ScholarPubMed
Hooper, A. B., Vannelli, T., Bergmann, D. J. & Arciero, D. M. (1997). Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek 71, 59–67.CrossRefGoogle ScholarPubMed
Ivanova, I. A., Stephen, J. R., Chang, Y. J., Bruggemann, J., Long, P. E., McKinley, J. P., Kowalchuk, G. A., White, D. C. & Macnaughton, S. J. (2000). A survey of 16 S rRNA and amoA genes related to autotrophic ammonia-oxidizing bacteria of the beta-subdivision of the class proteobacteria in contaminated groundwater. Canadian Journal of Microbiology 46, 1012–1020.CrossRefGoogle Scholar
Koch, G., Egli, K., Meer, J. R. Jr. & Siegrist, H. (2000). Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Science and Technology 41, 191–198.CrossRefGoogle Scholar
Kowalchuk, G. A. & Stephen, J. R. (2001). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology 55, 485–529.CrossRefGoogle ScholarPubMed
Nicol, G. W. & Schleper, C. (2006). Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle?Trends in Microbiology 14, 207–212.CrossRefGoogle ScholarPubMed
Richardson, D. J. & Watmough, N. J. (1999). Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology 3, 207–219.CrossRefGoogle ScholarPubMed
Schramm, A., Larsen, L. H., Revsbech, N. P., Ramsing, N. B., Amann, R. & Schleifer, K. H. (1996). Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Applied and Environmental Microbiology 62, 4641–4647.Google ScholarPubMed
Whittaker, M., Bergmann, D., Arciero, D. & Hooper, A. B. (2000). Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochimica et Biophysica Acta – Bioenergetics 1459, 346–355.CrossRefGoogle ScholarPubMed
Ye, R. W. & Thomas, S. M. (2001). Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology 4, 307–312.CrossRefGoogle ScholarPubMed
Appia-Ayme, C., Guiliani, N., Ratouchniak, J. & Bonnefoy, V. (1999). Characterization of an operon encoding two c-type cytochromes, an aa3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Applied and Environmental Microbiology 65, 4781–4787.Google Scholar
Bharathi, P. A. L., Nair, S. & Chandramohan, D. (1997). Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria. Journal of Marine Biotechnology 5, 172–177.Google Scholar
Buonfiglio, V., Polidoro, M., Flora, L., Citro, G., Valenti, P. & Orsi, N. (1993). Identification of two outer membrane proteins involved in the oxidation of sulphur compounds in Thiobacillus ferrooxidans. FEMS Microbiology Reviews 11, 43–50.CrossRefGoogle Scholar
Friedrich, C. G. (1998). Physiology and genetics of sulfur-oxidizing bacteria. Advances in Microbial Physiology, 39, 235–289.CrossRefGoogle ScholarPubMed
Gevertz, D., Telang, A. J., Voordouw, G. & Jenneman, G. E. (2000). Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Applied and Environmental Microbiology 66, 2491–2501.CrossRefGoogle ScholarPubMed
Howarth, R., Unz, R. F., Seviour, E. M., Seviour, R. J., Blackall, L. L., Pickup, R. W., Jones, J. G., Yaguchi, J. & Head, I. M. (1999). Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021 N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. International Journal of Systematic Bacteriology 49, 1817–1827.CrossRefGoogle Scholar
Johnson, D. B., Ghauri, M. A. & McGinness, S. (1993). Biogeochemical cycling of iron and sulphur in leaching environments. FEMS Microbiology Reviews 11, 63–70.CrossRefGoogle Scholar
Jorgensen, B. B. & Gallardo, V. A. (1999). Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiology Ecology 28, 301–313.CrossRefGoogle Scholar
Kelly, D. P. (1999). Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Archives of Microbiology 171, 219–229.CrossRefGoogle Scholar
Kelly, D. P., Shergill, J. K., Lu, W. P. & Wood, A. P. (1997). Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71, 95–107.CrossRefGoogle ScholarPubMed
Norris, P. R., Burton, N. P. & Foulis, N. A. M. (2000). Acidophiles in bioreactor mineral processing. Extremophiles 4, 71–76.CrossRefGoogle ScholarPubMed
Sand, W., Gerke, T., Hallmann, R. & Schippers, A. (1995). Sulfur chemistry, biofilm, and the (in)direct attack mechanism: a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology 43, 961–966.CrossRefGoogle Scholar
Schippers, A., Jozsa, P. G. & Sand, W. (1996). Sulfur chemistry in bacterial leaching of pyrite. Applied and Environmental Microbiology 62, 3424–3431.Google ScholarPubMed
Sorokin, D. Y. (1994). Use of microorganisms in protection of environments from pollution by sulfur compounds. Microbiology-Moscow 63, 533–547.Google Scholar
Vasquez, M. & Espejo, R. T. (1997). Chemolithotrophic bacteria in copper ores leached at high sulfuric acid concentration. Applied and Environmental Microbiology 63, 332–334.Google ScholarPubMed
Bacelar-Nicolau, P. & Johnson, D. B. (1999). Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Applied and Environmental Microbiology 65, 585–590.Google ScholarPubMed
Blake, R. C., Shute, E. A., Greenwood, M. M., Spencer, G. H. & Ingledew, W. J. (1993). Enzymes of aerobic respiration on iron. FEMS Microbiology Reviews 11, 9–18.CrossRefGoogle Scholar
Briand, L., Thomas, H. & Donati, E. (1996). Vanadium(V) reduction in Thiobacillus thiooxidans cultures on elemental sulfur. Biotechnology Letters 18, 505–508.CrossRefGoogle Scholar
Buchholz-Cleven, B. E. E., Rattunde, B. & Straub, K. L. (1997). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology 20, 301–309.CrossRefGoogle Scholar
Elbehti, A. & Lemeslemeunier, D. (1996). Identification of membrane-bound c-type cytochromes in an acidophilic ferrous ion oxidizing bacterium Thiobacillus ferrooxidans. FEMS Microbiology Letters 136, 51–56.CrossRefGoogle Scholar
Fuchs, T., Huber, H., Teiner, K., Burggraf, S. & Stetter, K. O. (1996). Metallosphaera prunae, sp nov, a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Systematic and Applied Microbiology 18, 560–566.CrossRefGoogle Scholar
Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondrat'eva, T. F., Moore, E. R. B., Abraham, W. R., Lunsdorf, H., Timmis, K. N., Yakimov, M.M. & Golyshin, P. N. (2000). Ferroplasma acidiphilum gen. nov., sp nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. International Journal of Systematic and Evolutionary Microbiology 50, 997–1006.CrossRefGoogle ScholarPubMed
Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Rossnagel, P., Burggraf, S., Huber, H. & Stetter, K. O. (1996). Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2 + at neutral pH under anoxic conditions. Archives of Microbiology 166, 308–314.CrossRefGoogle ScholarPubMed
Johnson, D. B., Ghauri, M. A. & McGinness, S. (1993). Biogeochemical cycling of iron and sulphur in leaching environments. FEMS Microbiology Reviews 11, 63–70.CrossRefGoogle Scholar
Leduc, L. G. & Ferroni, G. D. (1994). The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiology Reviews 14, 103–119.CrossRefGoogle Scholar
Rawlings, D. E. & Silver, S. (1995). Mining with microbes. Biotechnology 13, 773–778.CrossRefGoogle Scholar
Rawlings, D. E., Tributsch, H. & Hansford, G. S. (1999). Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology-UK 145, 5–13.CrossRefGoogle ScholarPubMed
Santini, J. M., Sly, L. I., Schnagl, R. D. & Macy, J. M. (2000). A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Applied and Environmental Microbiology 66, 92–97.CrossRefGoogle ScholarPubMed
Seeger, M. & Jerez, C. A. (1993). Response of Thiobacillus ferrooxidans to phosphate limitation. FEMS Microbiology Reviews 11, 37–42.CrossRefGoogle Scholar
Straub, K. L. & Buchholz-Cleven, B. E. (1998). Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Applied and Environmental Microbiology 64, 4846–4856.Google ScholarPubMed
Straub, K. L., Benz, M., Schink, B. & Widdel, F. (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology 62, 1458–1460.Google ScholarPubMed
Sugio, T., Hirayama, K., Inagaki, K., Tanaka, H. & Tano, T. (1992). Molybdenum oxidation by Thiobacillus ferrooxidans. Applied and Environmental Microbiology 58, 1768–1771.Google ScholarPubMed
Yamanaka, T. & Fukumori, Y. (1995). Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiology Reviews 17, 401–413.CrossRefGoogle ScholarPubMed
Aono, S., Kamachi, T. & Okura, I. (1993). Characterization and thermostability of a membrane-bound hydrogenase from a thermophilic hydrogen oxidizing bacterium, Bacillus schlegelii. Bioscience, Biotechnology and Biochemistry 57, 1177–1179.CrossRefGoogle ScholarPubMed
Dobbek, H., Gremer, L., Meyer, O. & Huber, R. (1999). Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proceedings of the National Academy of Sciences, USA 96, 8884–8889.CrossRefGoogle ScholarPubMed
Gonzalez, J. M. & Robb, F. T. (2000). Genetic analysis of Carboxydothermus hydrogenoformans carbon monoxide dehydrogenase genes cooF and cooS. FEMS Microbiology Letters 191, 243–247.CrossRefGoogle ScholarPubMed
Gremer, L., Kellner, S., Dobbek, H., Huber, R. & Meyer, O. (2000). Binding of flavin adenine dinucleotide to molybdenum-containing carbon monoxide dehydrogenase from Oligotropha carboxidovorans: structural and functional analysis of a carbon monoxide dehydrogenase species in which the native flavoprotein has been replaced by its recombinant counterpart produced in Escherichia coli. Journal of Biological Chemistry 275, 1864–1872.CrossRefGoogle ScholarPubMed
Grzeszik, C., Lubbers, M., Reh, M. & Schlegel, H. G. (1997). Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology-UK 143, 1271–1286.CrossRefGoogle ScholarPubMed
Grzeszik, C., Ross, K., Schneider, K., Reh, M. & Schlegel, H. G. (1997). Location, catalytic activity, and subunit composition of NAD-reducing hydrogenases of some Alcaligenes strains and Rhodococcus opacus MR22. Archives of Microbiology 167, 172–176.CrossRefGoogle ScholarPubMed
Hanzelmann, P. & Meyer, O. (1998). Effect of molybdate and tungstate on the biosynthesis of CO dehydrogenase and the molybdopterin cytosine-dinucleotide-type of molybdenum cofactor in Hydrogenophaga pseudoflava. European Journal of Biochemistry 255, 755–765.CrossRefGoogle ScholarPubMed
Nishihara, H., Yaguchi, T., Chung, S. Y., Suzuki, K., Yanagi, M., Yamasato, K., Kodama, T. & Igarashi, Y. (1998). Phylogenetic position of an obligately chemoautotrophic, marine hydrogen-oxidizing bacterium, Hydrogenovibrio marinus, on the basis of 16S rRNA gene sequences and two form I RuBisCO gene sequences. Archives of Microbiology 169, 364–368.CrossRefGoogle Scholar
Santiago, B. & Meyer, O. (1996). Characterization of hydrogenase activities associated with the molybdenum CO dehydrogenase from Oligotropha carboxidovorans. FEMS Microbiology Letters 136, 157–162.CrossRefGoogle Scholar
Suzuki, M., Cui, Z. J., Ishii, M. & Igarashi, Y. (2001). Nitrate respiratory metabolism in an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6. Archives of Microbiology 175, 75–78.CrossRefGoogle Scholar
Tachil, J. & Meyer, O. (1997). Redox state and activity of molybdopterin cytosine dinucleotide (MCD) of CO dehydrogenase from Hydrogenophaga pseudoflava. FEMS Microbiology Letters 148, 203–208.CrossRefGoogle Scholar
Yun, N. R., Arai, H., Ishii, M. & Igarashi, Y. (2001). The genes for anabolic 2-oxoglutarate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6. Biochemical and Biophysical Research Communications 282, 589–594.CrossRefGoogle ScholarPubMed
Yurkova, N. A., Saveleva, N. D. & Lyalikova, N. N. (1993). Oxidation of molecular hydrogen and carbon monoxide by facultatively chemolithotrophic vanadate-reducing bacteria. Microbiology-Moscow 62, 367–370.Google Scholar
Beller, H. R., Letain, T. E., Chakicherla, A., Kane, S. R., Legler, T. C. & Coleman, M. A. (2006). Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. Journal of Bacteriology 188, 7005–7015.CrossRefGoogle ScholarPubMed
Berg, I. A., Keppen, O. I., Krasil'nikova, E. N., Ugol'kova, N. V. & Ivanovsky, R. N. (2005). Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae. Microbiology-Moscow 74, 258–264.CrossRefGoogle ScholarPubMed
Cannon, G. C., Baker, S. H., Soyer, F., Johnson, D. R., Bradburne, C. E., Mehlman, J. L., Davies, P. S., Jiang, Q. L., Heinhorst, S. & Shively, J. M. (2003). Organization of carboxysome genes in the thiobacilli. Current Microbiology 46, 115–119.CrossRefGoogle ScholarPubMed
Eisenreich, W., Strauss, G., Werz, U., Fuchs, G. & Bacher, A. (1993). Retrobiosynthetic analysis of carbon fixation in the photosynthetic eubacterium Chloroflexus aurantiacus. European Journal of Biochemistry 215, 619–632.CrossRefGoogle Scholar
Finn, M. W. & Tabita, F. R. (2004). Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic Archaea. Journal of Bacteriology 186, 6360–6366.CrossRefGoogle ScholarPubMed
Friedmann, S., Alber, B. E. & Fuchs, G. (2006). Properties of succinyl-coenzyme A:D-citramalate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. Journal of Bacteriology 188, 6460–6468.CrossRefGoogle ScholarPubMed
Friedmann, S., Steindorf, A., Alber, B. E. & Fuchs, G. (2006). Properties of succinyl-coenzyme A:L-malate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. Journal of Bacteriology 188, 2646–2655.CrossRefGoogle ScholarPubMed
Gibson, J. L. & Tabita, F. R. (1996). The molecular regulation of the reductive pentose phosphate pathway in Proteobacteria and cyanobacteria. Archives of Microbiology 166, 141–150.CrossRefGoogle ScholarPubMed
Hernandez, J. M., Baker, S. H., Lorbach, S. C., Shively, J. M. & Tabita, F. R. (1996). Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. Journal of Bacteriology 178, 347–356.CrossRefGoogle Scholar
Herter, S., Fuchs, G., Bacher, A. & Eisenreich, W. (2002). A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. Journal of Biological Chemistry 277, 20277–20283.CrossRefGoogle ScholarPubMed
Huegler, M., Huber, H., Stetter, K. O. & Fuchs, G. (2003). Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Archives of Microbiology 179, 160–173.CrossRefGoogle Scholar
Hugler, M., Wirsen, C. O., Fuchs, G., Taylor, C. D. & Sievert, S. M. (2005). Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the ∊-subdivision of Proteobacteria. Journal of Bacteriology 187, 3020–3027.CrossRefGoogle ScholarPubMed
Ishii, M., Miyake, T., Satoh, T., Sugiyama, H., Oshima, Y., Kodama, T. & Igarashi, Y. (1996). Autotrophic carbon dioxide fixation in Acidianus brierleyi. Archives of Microbiology 166, 368–371.CrossRefGoogle ScholarPubMed
Ishii, M., Chuakrut, S., Arai, H. & Igarashi, Y. (2004). Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle. Applied Microbiology and Biotechnology 64, 605–610.CrossRefGoogle ScholarPubMed
Ivanovsky, R. N., Fal, Y. I., Berg, I. A., Ugolkova, N. V., Krasilnikova, E. N., Keppen, O. I., Zakharchuc, L. M. & Zyakun, A. M. (1999). Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6. Microbiology-UK 145, 1743–1748.CrossRefGoogle Scholar
Joshi, H. M. & Tabita, F. R. (2000). Induction of carbon monoxide dehydrogenase to facilitate redox balancing in a ribulose bisphosphate carboxylase/oxygenase-deficient mutant strain of Rhodospirillum rubrum. Archives of Microbiology 173, 193–199.CrossRefGoogle Scholar
Lelait, M. & Grivet, J. P. (1996). Carbon metabolism in Eubacterium limosum: a C-13 NMR study. Anaerobe 2, 181–189.CrossRefGoogle Scholar
Menon, S. & Ragsdale, S. W. (1999). The role of an iron-sulfur cluster in an enzymatic methylation reaction: methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein. Journal of Biological Chemistry 274, 11513–11518.CrossRefGoogle Scholar
Qian, Y. L. & Tabita, F. R. (1996). A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. Journal of Bacteriology 178, 12–18.CrossRefGoogle ScholarPubMed
Roberts, D. L., Zhao, S. Y., Doukov, T. & Ragsdale, S. W. (1994). The reductive acetyl coenzyme A pathway. Sequence and heterologous expression of active methyltetrahydrofolate: corrinoid/ iron-sulfur protein methyltransferase from Clostridium thermoaceticum. Journal of Bacteriology 176, 6127–6130.CrossRefGoogle ScholarPubMed
Russell, M. J. & Martin, W. (2004). The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences 29, 358–363.CrossRefGoogle ScholarPubMed
Schouten, S., Strous, M., Kuypers, M. M. M., Rijpstra, W. I., Baas, M., Schubert, C. J., Jetten, M. S. M. & Damste, Sinninghe J. S. (2004). Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology 70, 3785–3788.CrossRefGoogle ScholarPubMed
Shively, J. M., Vankeulen, G. & Meijer, W. G. (1998). Something from almost nothing: carbon dioxide fixation in chemolithotrophs. Annual Review of Microbiology 52, 191–230.CrossRefGoogle Scholar
Tourova, T. P., Spiridonova, E. M., Berg, I. A., Kuznetsov, B. B. & Sorokin, D. Y. (2005). Phylogeny of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in haloalkaliphilic obligately autotrophic sulfur-oxidizing bacteria of the genus Thioalkalivibrio. Microbiology-Moscow 74, 321–328.CrossRefGoogle Scholar
Tourova, T. P., Spiridonova, E. M., Berg, I. A., Kuznetsov, B. B. & Sorokin, D. Y. (2006). Occurrence, phylogeny and evolution of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in obligately chemolithoautotrophic sulfur-oxidizing bacteria of the genera Thiomicrospira and Thioalkalimicrobium. Microbiology-UK 152, 2159–2169.CrossRefGoogle ScholarPubMed
Vorholt, J., Kunow, J., Stetter, K. O. & Thauer, R. K. (1995). Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A-profundus. Archives of Microbiology 163, 112–118.CrossRefGoogle Scholar
Vorholt, J. A., Hafenbradl, D., Stetter, K. O. & Thauer, R. K. (1997). Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Archives of Microbiology 167, 19–23.CrossRefGoogle ScholarPubMed
Yoshizawa, Y., Toyoda, K., Arai, H., Ishii, M. & Igarashi, Y. (2004). CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110. Journal of Bacteriology 186, 5685–5691.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Chemolithotrophy
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Bacterial Physiology and Metabolism
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790461.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Chemolithotrophy
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Bacterial Physiology and Metabolism
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790461.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Chemolithotrophy
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Bacterial Physiology and Metabolism
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790461.011
Available formats
×