Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-08T04:35:34.655Z Has data issue: false hasContentIssue false

11 - Photosynthesis

Published online by Cambridge University Press:  05 September 2012

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access

Summary

Photosynthetic organisms use light energy to fuel their biosynthetic processes. Oxygen is generated in oxygenic photosynthesis where water is used as the electron donor. In anoxygenic photosynthesis, organic or sulfur compounds are used as electron donors. Plants, algae and cyanobacteria carry out oxygenic photosynthesis, whereas the photosynthetic bacteria obtain energy from anoxygenic photosynthesis. Aerobic anoxygenic phototrophic bacteria use light energy in a similar way as the purple bacteria, and are a group of photosynthetic bacteria that grow under aerobic conditions.

Phototrophic organisms have a photosynthetic apparatus consisting of a reaction centre intimately associated with antenna molecules (or a light-harvesting complex). The antenna molecules and the reaction centre absorb light energy. The energy is concentrated at the reaction centre that is activated and initiates light-driven electron transport. Halophilic archaea convert light energy through a photophosphorylation process.

Photosynthetic microorganisms

Microorganisms utilizing light energy include eukaryotic algae, and cyanobacteria, photosynthetic bacteria and aerobic anoxygenic phototrophic bacteria among the prokaryotes. The halophilic archaea synthesize ATP through photophosphorylation, but they are not considered to be photosynthetic organisms since they lack photosynthetic pigments.

Algae and cyanobacteria have similar photosynthetic processes, using chlorophyll, as plants. However, cyanobacteria are members of the proteobacteria according to their cell structure and ribosomal RNA sequences. Photosynthetic bacteria are different from other photosynthetic organisms. They have different photosynthetic pigments and do not use water as their electron donor. Some of them can grow chemoorganotrophically in the dark.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buchan, A., Gonzalez, J. M. & Moran, M. A. (2005). Overview of the marine Roseobacter lineage. Applied and Environmental Microbiology 71, 5665–5677.CrossRefGoogle ScholarPubMed
Fleischman, D. & Kramerb, D. (1998). Photosynthetic rhizobia. Biochimica et Biophysica Acta – Bioenergetics 1364, 17–36.CrossRefGoogle ScholarPubMed
Gupta, R. S., Mukhtar, T. & Singh, B. (1999). Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis. Molecular Microbiology 32, 893–906.CrossRefGoogle ScholarPubMed
Hiraishi, A. & Shimada, K. (2001). Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. Journal of General and Applied Microbiology 47, 161–180.CrossRefGoogle ScholarPubMed
Imhoff, J. F. (2001). True marine and halophilic anoxygenic phototrophic bacteria. Archive of Microbiology 176, 243–254.CrossRefGoogle ScholarPubMed
Lehto, K. M., Lehto, H. J. & Kanervo, E. A. (2006). Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Research in Microbiology 157, 69–76.CrossRefGoogle ScholarPubMed
Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L. & Huner, N. P. A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews 70, 222–252.CrossRefGoogle ScholarPubMed
Yurkov, V. V. & Beatty, J. T. (1998). Aerobic anoxygenic phototrophic bacteria. Microbiology and Molecular Biology Reviews 62, 695–724.Google ScholarPubMed
Zhang, C. C., Laurent, S., Sakr, S., Peng, & Bedu, S. (2006). Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Molecular Microbiology 59, 367–375.CrossRefGoogle ScholarPubMed
Barber, J. (2002). Photosystem II: a multisubunit membrane protein that oxidises water. Current Opinion in Structural Biology 12, 523–530.CrossRefGoogle ScholarPubMed
Elsen, S., Swem, L. R., Swem, D. L. & Bauer, C. E. (2004). RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiology and Molecular Biology Reviews 68, 263–279.CrossRefGoogle ScholarPubMed
Elsen, S., Jaubert, M., Pignol, D. & Giraud, E. (2005). PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Molecular Microbiology 57, 17–26.CrossRefGoogle ScholarPubMed
Frigaard, N.-U. & Bryant, D. A. (2004). Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Archives of Microbiology 182, 265–276.CrossRefGoogle Scholar
Gregor, J. & Klug, G. (1999). Regulation of bacterial photosynthesis genes by oxygen and light. FEMS Microbiology Letters 179, 1–9.CrossRefGoogle ScholarPubMed
Jones, M. R., Fyfe, P. K., Roszak, A. W., Isaacs, N. W. & Cogdell, R. J. (2002). Protein-lipid interactions in the purple bacterial reaction centre. Microbiology and Molecular Biology Reviews 1565, 206–214.Google ScholarPubMed
Kovacs, A. T., Rakhely, G. & Kovacs, K. L. (2005). The PpsR regulator family. Research in Microbiology 156, 619–625.CrossRefGoogle ScholarPubMed
MacColl, R. (2004). Allophycocyanin and energy transfer. Biochimica et Biophysica Acta – Bioenergetics 1657, 73–81.CrossRefGoogle ScholarPubMed
Oh, J. I. & Kaplan, S. (2001). Generalized approach to the regulation and integration of gene expression. Molecular Microbiology 39, 1116–1123.CrossRefGoogle ScholarPubMed
Samsonoff, W. A. & MacColl, R. (2001). Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Archives of Microbiology 176, 400–405.CrossRefGoogle ScholarPubMed
Umeno, D., Tobias, A. V. & Arnold, F. H. (2005). Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiology and Molecular Biology Reviews 69, 51–78.CrossRefGoogle ScholarPubMed
Berry, S. & Rumberg, B. (2001). Kinetic modeling of the photosynthetic electron transport chain. Bioelectrochemistry 53, 35–53.CrossRefGoogle ScholarPubMed
Bryant, D. A. & Frigaard, N. U. (2006). Prokaryotic photosynthesis and phototrophy illuminated. Trends in Microbiology 14, 488–496.CrossRefGoogle ScholarPubMed
Iverson, T. M. (2006). Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Current Opinion in Chemical Biology 10, 91–100.CrossRefGoogle ScholarPubMed
Krauss, N. (2003). Mechanisms for photosystems I and II. Current Opinion in Chemical Biology 7, 540–550.CrossRefGoogle ScholarPubMed
Oprian, D. D. (2003). Phototaxis, chemotaxis and the missing link. Trends in Biochemical Sciences 28, 167–169.CrossRefGoogle ScholarPubMed
Roegner, M., Boekema, E. J. & Barber, J. (1996). How does photosystem 2 split water? The structural basis of efficient energy conversion. Trends in Biochemical Sciences 21, 44–49.CrossRefGoogle Scholar
Vredenberg, W. J. (1997). Electrogenesis in the photosynthetic membrane: fields, fact and features. Bioelectrochemistry and Bioenergetics 44, 1–11.CrossRefGoogle Scholar
Berg, I. A., Keppen, O. I., Krasil'nikova, E. N., Ugol'kova, N. V. & Ivanovsky, R. N. (2005). Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae. Microbiology-Moscow 74, 258–264.CrossRefGoogle ScholarPubMed
Garcia-Fernandez, J. M. & Diez, J. (2004). Adaptive mechanisms of nitrogen and carbon assimilatory pathways in the marine cyanobacteria Prochlorococcus. Research in Microbiology 155, 795–802.CrossRefGoogle ScholarPubMed
Hartman, F. C. & Harpel, M. R. (1994). Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annual Review of Biochemistry 63, 197–234.CrossRefGoogle ScholarPubMed
Neutze, R., Pebay-Peyroula, E., Edman, K., Royant, A., Navarro, J. & Landau, E. M. (2002). Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochimica et Biophysica Acta – Biomembranes 1565, 144–167.CrossRefGoogle ScholarPubMed
Schertler, G. F. (2005). Structure of rhodopsin and the metarhodopsin I photointermediate. Current Opinion in Structural Biology 15, 408–415.CrossRefGoogle ScholarPubMed
Spudich, J. L. (2006). The multitalented microbial sensory rhodopsins. Trends in Microbiology 14, 480–487.CrossRefGoogle ScholarPubMed
Buchan, A., Gonzalez, J. M. & Moran, M. A. (2005). Overview of the marine Roseobacter lineage. Applied and Environmental Microbiology 71, 5665–5677.CrossRefGoogle ScholarPubMed
Fleischman, D. & Kramerb, D. (1998). Photosynthetic rhizobia. Biochimica et Biophysica Acta – Bioenergetics 1364, 17–36.CrossRefGoogle ScholarPubMed
Gupta, R. S., Mukhtar, T. & Singh, B. (1999). Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis. Molecular Microbiology 32, 893–906.CrossRefGoogle ScholarPubMed
Hiraishi, A. & Shimada, K. (2001). Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. Journal of General and Applied Microbiology 47, 161–180.CrossRefGoogle ScholarPubMed
Imhoff, J. F. (2001). True marine and halophilic anoxygenic phototrophic bacteria. Archive of Microbiology 176, 243–254.CrossRefGoogle ScholarPubMed
Lehto, K. M., Lehto, H. J. & Kanervo, E. A. (2006). Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Research in Microbiology 157, 69–76.CrossRefGoogle ScholarPubMed
Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L. & Huner, N. P. A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews 70, 222–252.CrossRefGoogle ScholarPubMed
Yurkov, V. V. & Beatty, J. T. (1998). Aerobic anoxygenic phototrophic bacteria. Microbiology and Molecular Biology Reviews 62, 695–724.Google ScholarPubMed
Zhang, C. C., Laurent, S., Sakr, S., Peng, & Bedu, S. (2006). Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Molecular Microbiology 59, 367–375.CrossRefGoogle ScholarPubMed
Barber, J. (2002). Photosystem II: a multisubunit membrane protein that oxidises water. Current Opinion in Structural Biology 12, 523–530.CrossRefGoogle ScholarPubMed
Elsen, S., Swem, L. R., Swem, D. L. & Bauer, C. E. (2004). RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiology and Molecular Biology Reviews 68, 263–279.CrossRefGoogle ScholarPubMed
Elsen, S., Jaubert, M., Pignol, D. & Giraud, E. (2005). PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Molecular Microbiology 57, 17–26.CrossRefGoogle ScholarPubMed
Frigaard, N.-U. & Bryant, D. A. (2004). Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Archives of Microbiology 182, 265–276.CrossRefGoogle Scholar
Gregor, J. & Klug, G. (1999). Regulation of bacterial photosynthesis genes by oxygen and light. FEMS Microbiology Letters 179, 1–9.CrossRefGoogle ScholarPubMed
Jones, M. R., Fyfe, P. K., Roszak, A. W., Isaacs, N. W. & Cogdell, R. J. (2002). Protein-lipid interactions in the purple bacterial reaction centre. Microbiology and Molecular Biology Reviews 1565, 206–214.Google ScholarPubMed
Kovacs, A. T., Rakhely, G. & Kovacs, K. L. (2005). The PpsR regulator family. Research in Microbiology 156, 619–625.CrossRefGoogle ScholarPubMed
MacColl, R. (2004). Allophycocyanin and energy transfer. Biochimica et Biophysica Acta – Bioenergetics 1657, 73–81.CrossRefGoogle ScholarPubMed
Oh, J. I. & Kaplan, S. (2001). Generalized approach to the regulation and integration of gene expression. Molecular Microbiology 39, 1116–1123.CrossRefGoogle ScholarPubMed
Samsonoff, W. A. & MacColl, R. (2001). Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Archives of Microbiology 176, 400–405.CrossRefGoogle ScholarPubMed
Umeno, D., Tobias, A. V. & Arnold, F. H. (2005). Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiology and Molecular Biology Reviews 69, 51–78.CrossRefGoogle ScholarPubMed
Berry, S. & Rumberg, B. (2001). Kinetic modeling of the photosynthetic electron transport chain. Bioelectrochemistry 53, 35–53.CrossRefGoogle ScholarPubMed
Bryant, D. A. & Frigaard, N. U. (2006). Prokaryotic photosynthesis and phototrophy illuminated. Trends in Microbiology 14, 488–496.CrossRefGoogle ScholarPubMed
Iverson, T. M. (2006). Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Current Opinion in Chemical Biology 10, 91–100.CrossRefGoogle ScholarPubMed
Krauss, N. (2003). Mechanisms for photosystems I and II. Current Opinion in Chemical Biology 7, 540–550.CrossRefGoogle ScholarPubMed
Oprian, D. D. (2003). Phototaxis, chemotaxis and the missing link. Trends in Biochemical Sciences 28, 167–169.CrossRefGoogle ScholarPubMed
Roegner, M., Boekema, E. J. & Barber, J. (1996). How does photosystem 2 split water? The structural basis of efficient energy conversion. Trends in Biochemical Sciences 21, 44–49.CrossRefGoogle Scholar
Vredenberg, W. J. (1997). Electrogenesis in the photosynthetic membrane: fields, fact and features. Bioelectrochemistry and Bioenergetics 44, 1–11.CrossRefGoogle Scholar
Berg, I. A., Keppen, O. I., Krasil'nikova, E. N., Ugol'kova, N. V. & Ivanovsky, R. N. (2005). Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae. Microbiology-Moscow 74, 258–264.CrossRefGoogle ScholarPubMed
Garcia-Fernandez, J. M. & Diez, J. (2004). Adaptive mechanisms of nitrogen and carbon assimilatory pathways in the marine cyanobacteria Prochlorococcus. Research in Microbiology 155, 795–802.CrossRefGoogle ScholarPubMed
Hartman, F. C. & Harpel, M. R. (1994). Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annual Review of Biochemistry 63, 197–234.CrossRefGoogle ScholarPubMed
Neutze, R., Pebay-Peyroula, E., Edman, K., Royant, A., Navarro, J. & Landau, E. M. (2002). Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochimica et Biophysica Acta – Biomembranes 1565, 144–167.CrossRefGoogle ScholarPubMed
Schertler, G. F. (2005). Structure of rhodopsin and the metarhodopsin I photointermediate. Current Opinion in Structural Biology 15, 408–415.CrossRefGoogle ScholarPubMed
Spudich, J. L. (2006). The multitalented microbial sensory rhodopsins. Trends in Microbiology 14, 480–487.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Photosynthesis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Bacterial Physiology and Metabolism
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790461.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Photosynthesis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Bacterial Physiology and Metabolism
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790461.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Photosynthesis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Bacterial Physiology and Metabolism
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511790461.012
Available formats
×