Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T22:53:23.261Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 August 2009

Kevin Fox
Affiliation:
Cardiff University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Barrel Cortex , pp. 247 - 286
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, L. F., Regehr, W. G. (2004) Synaptic computation. Nature 431: 796–803.CrossRefGoogle Scholar
Abbott, L. F., Varela, J. A., Sen, K., Nelson, S. B. (1997) Synaptic depression and cortical gain control. Science 275: 220–224.CrossRefGoogle Scholar
Abdel-Majid, R. M., Leong, W. L., Schalkwyk, L. C., et al. (1998) Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nat Genet 19: 289–291.Google Scholar
Agmon, A., Connors, B. W. (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41: 365–379.CrossRefGoogle Scholar
Agmon, A., Connors, B. W. (1992) Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J Neurosci 12: 319–329.Google Scholar
Agmon, A., Hollrigel, G., O'Dowd, D. K. (1996) Functional GABAergic synaptic connection in neonatal mouse barrel cortex. J Neurosci 16: 4684–4695.Google Scholar
Ahissar, E., Kleinfeld, D. (2003) Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. Cereb Cortex 13: 53–62.CrossRefGoogle Scholar
Ahissar, E., Sosnik, R., Haidarliu, S. (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406: 302–306.CrossRefGoogle Scholar
Ahissar, E., Sosnik, R., Bagdasarian, K., Haidarliu, S. (2001) Temporal frequency of whisker movement. II. Laminar organization of cortical representations. J Neurophysiol 86: 354–367.Google Scholar
Airey, D. C., Wu, F., Guan, M., Collins, C. E. (2006) Geometric morphometrics defines shape differences in the cortical area map of C57BL/6J and DBA/2J inbred mice. BMC Neurosci 7: 63.Google Scholar
Alberini, C. M., Ghirardi, M., Metz, R., Kandel, E. R. (1994) C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76: 1099–1114.CrossRefGoogle Scholar
Allen, C. B., Celikel, T., Feldman, D. E. (2003) Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat Neurosci 6: 291–299.CrossRefGoogle Scholar
Alloway, K. D., Zhang, M., Chakrabarti, S. (2004) Septal columns in rodent barrel cortex: functional circuits for modulating whisking behavior. J Comp Neurol 480: 299–309.CrossRefGoogle Scholar
Amitai, Y., Gibson, J. R., Beierlein, M., et al. (2002) The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J Neurosci 22: 4142–4152.Google Scholar
Andermann, M. L., Moore, C. I. (2006) A somatotopic map of vibrissa motion direction within a barrel column. Nat Neurosci 9: 543–551.CrossRefGoogle Scholar
Anderson, P. A., Olavarria, J., Sluyters, R. C. (1988) The overall pattern of ocular dominance bands in cat visual cortex. J Neurosci 8: 2183–2200.Google Scholar
Antonini, A., Stryker, M. P. (1993) Rapid remodeling of axonal arbors in the visual cortex. Science 260: 1819–1821.CrossRefGoogle Scholar
Armstrong-James, M., Callahan, C. A. (1991) Thalamo-cortical processing of vibrissal information in the rat. II. Spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of S1 cortical “barrel” neurones. J Comp Neurol 303: 211–224.Google Scholar
Armstrong-James, M., Fox, K. (1987) Spatiotemporal convergence and divergence in the rat S1 “barrel” cortex. J Comp Neurol 263: 265–281.CrossRefGoogle Scholar
Armstrong-James, M., George, M. J. (1988) Influence of anesthesia on spontaneous activity and receptive field size of single units in rat Sm1 neocortex. Exp Neurol 99: 369–387.CrossRefGoogle Scholar
Armstrong-James, M., Callahan, C. A., Friedman, M. A. (1991) Thalamo-cortical processing of vibrissal information in the rat. I. Intracortical origins of surround but not centre-receptive fields of layer IV neurones in the rat S1 barrel field cortex. J Comp Neurol 303: 193–210.Google Scholar
Armstrong-James, M., Fox, K., Das-Gupta, A. (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol 68: 1345–1358.Google Scholar
Armstrong-James, M., Welker, E., Callahan, C. A. (1993) The contribution of NMDA and non-NMDA receptors to fast and slow transmission of sensory information in the rat SI barrel cortex. J Neurosci 13: 2149–2160.Google Scholar
Armstrong-James, M., Diamond, M. E., Ebner, F. F. (1994) An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons. J Neurosci 14: 6978–6991.Google Scholar
Arnold, P. B., Li, C. X., Waters, R. S. (2001) Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat. Exp Brain Res 136: 152–168.CrossRefGoogle Scholar
Aroniadou-Anderjaska, V., Keller, A. (1995) LTP in the barrel cortex of adult rats. Neuroreport 6: 2297–2300.CrossRefGoogle Scholar
Artola, A., Singer, W. (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330: 649–652.CrossRefGoogle Scholar
Artola, A., Brocher, S., Singer, W. (1990) Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347: 69–72.CrossRefGoogle Scholar
Arvidsson, J., Rice, F. L. (1991) Central projections of primary sensory neurons innervating different parts of the vibrissae follicles and intervibrissal skin on the mystacial pad of the rat. J Comp Neurol 309: 1–16.CrossRefGoogle Scholar
Ayata, C., Ma, J., Meng, W., Huang, P., Moskowitz, M. A. (1996) l-NA-sensitive rCBF augmentation during vibrissal stimulation in type III nitric oxide synthase mutant mice. J Cereb Blood Flow Metab 16: 539–541.CrossRefGoogle Scholar
Bailey, K. R., Mair, R. G. (2005) Lesions of specific and nonspecific thalamic nuclei affect prefrontal cortex-dependent aspects of spatial working memory. Behav Neurosci 119: 410–419.CrossRefGoogle Scholar
Baldi, A., Calia, E., Ciampini, A., et al. (2000) Deafferentation-induced apoptosis of neurons in thalamic somatosensory nuclei of the newborn rat: critical period and rescue from cell death by peripherally applied neurotrophins. Eur J Neurosci 12: 2281–2290.CrossRefGoogle Scholar
Banke, T. G., Bowie, D., Lee, H., et al. (2000) Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 20: 89–102.Google Scholar
Bannister, N. J., Benke, T. A., Mellor, J., et al. (2005) Developmental changes in AMPA and kainate receptor-mediated quantal transmission at thalamocortical synapses in the barrel cortex. J Neurosci 25: 5259–5271.CrossRefGoogle Scholar
Barria, A., Muller, D., Derkach, V., Griffith, L. C., Soderling, T. R. (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276: 2042–2045.CrossRefGoogle Scholar
Barrionuevo, G., Schottler, F., Lynch, G. (1980) The effects of repetitive low frequency stimulation on control and “potentiated” synaptic responses in the hippocampus. Life Sci 27: 2385–2391.CrossRefGoogle Scholar
Barth, A. L., McKenna, M., Glazewski, S., et al. (2000) Upregulation of cAMP response element-mediated gene expression during experience-dependent plasticity in adult neocortex. J Neurosci 20: 4206–4216.Google Scholar
Baumbach, G. L., Sigmund, C. D., Faraci, F. M. (2004) Structure of cerebral arterioles in mice deficient in expression of the gene for endothelial nitric oxide synthase. Circ Res 95: 822–829.CrossRefGoogle Scholar
Beierlein, M., Connors, B. W. (2002) Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. J Neurophysiol 88: 1924–1932.Google Scholar
Beierlein, M., Gibson, J. R., Connors, B. W. (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3: 904–910.Google Scholar
Beierlein, M., Gibson, J. R., Connors, B. W. (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90: 2987–3000.CrossRefGoogle Scholar
Belford, G. R., Killackey, H. P. (1979) The development of vibrissae representation in subcortical trigeminal centers of the neonatal rat. J Comp Neurol 188: 63–74.CrossRefGoogle Scholar
Bellocchio, E. E., Hu, H., Pohorille, A., et al. (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18: 8648–8659.Google Scholar
Bender, V. A., Bender, K. J., Brasier, D. J., Feldman, D. E. (2006) Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J Neurosci 26: 4166–4177.CrossRefGoogle Scholar
Bennett-Clarke, C. A., Leslie, M. J., Chiaia, N. L., Rhoades, R. W. (1993) Serotonin 1B receptors in the developing somatosensory and visual cortices are located on thalamocortical axons. Proc Natl Acad Sci USA 90: 153–157.CrossRefGoogle Scholar
Bennett-Clarke, C. A., Leslie, M. J., Lane, R. D., Rhoades, R. W. (1994) Effect of serotonin depletion on vibrissa-related patterns of thalamic afferents in the rat's somatosensory cortex. J Neurosci 14: 7594–7607.Google Scholar
Benshalom, G., White, E. L. (1986) Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex. J Comp Neurol 253: 303–314.CrossRefGoogle Scholar
Berendse, H. W., Groenewegen, H. J. (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42: 73–102.CrossRefGoogle Scholar
Bernardo, K. L., Woolsey, T. A. (1987) Axonal trajectories between mouse somatosensory thalamus and cortex. J Comp Neurol 258: 542–564.CrossRefGoogle Scholar
Bernardo, K. L., Ma, P. M., Woolsey, T. A. (1986) In vitro labeling of axonal projections in the mammalian central nervous system. J Neurosci Meth 16: 89–101.CrossRefGoogle Scholar
Bernardo, K. L., McCasland, J. S., Woolsey, T. A., Strominger, R. N. (1990a) Local intra- and interlaminar connections in mouse barrel cortex. J Comp Neurol 291: 231–255.Google Scholar
Bernardo, K. L., McCasland, J. S., Woolsey, T. A. (1990b) Local axonal trajectories in mouse barrel cortex. Exp Brain Res 82: 247–253.Google Scholar
Berwick, J., Martin, C., Martindale, J., et al. (2002) Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex. J Cereb Blood Flow Metab 22: 670–679.CrossRefGoogle Scholar
Bina, K. G., Guzman, P., Broide, R. S., et al. (1995) Localization of alpha 7 nicotinic receptor subunit mRNA and alpha-bungarotoxin binding sites in developing mouse somatosensory thalamocortical system. J Comp Neurol 363: 321–332.CrossRefGoogle Scholar
Bindman, L. J., Murphy, K. P., Pockett, S. (1988) Postsynaptic control of the induction of long-term changes in efficacy of transmission at neocortical synapses in slices of rat brain. J Neurophysiol 60: 1053–1065.Google Scholar
Binshtok, A. M., Fleidervish, I. A., Sprengel, R., Gutnick, M. J. (2006) NMDA receptors in layer 4 spiny stellate cells of the mouse barrel cortex contain the NR2 C subunit. J Neurosci 26: 708–715.CrossRefGoogle Scholar
Bisler, S., Schleicher, A., Gass, P., et al. (2002) Expression of c-Fos, ICER, Krox-24 and JunB in the whisker-to-barrel pathway of rats: time course of induction upon whisker stimulation by tactile exploration of an enriched environment. J Chem Neuroanat 23: 187–198.CrossRefGoogle Scholar
Bjaalie, J. G., Grillner, S. (2007) Global informatics: the International Neuroinformatics Coordinating Facility. J Neurosci 27: 3613–3615.CrossRefGoogle Scholar
Blackstone, C., Sheng, M. (1999) Protein targeting and calcium signaling microdomains in neuronal cells. Cell Calcium 26: 181–192.CrossRefGoogle Scholar
Bliss, T. V., Lomo, T. (1970) Plasticity in a monosynaptic cortical pathway. J Physiol 207: 61P.Google Scholar
Bliss, T. V., Lomo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356.CrossRefGoogle Scholar
Blue, M. E., Martin, L. J., Brennan, E. M., Johnston, M. V. (1997) Ontogeny of non-NMDA glutamate receptors in rat barrel field cortex: I. Metabotropic receptors. J Comp Neurol 386: 16–28.Google Scholar
Bodor, A. L., Katona, I., Nyiri, G., et al. (2005) Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J Neurosci 25: 6845–6856.CrossRefGoogle Scholar
Boehm, J., Kang, M. G., Johnson, R. C., et al. (2006) Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51: 213–225.CrossRefGoogle Scholar
Bourassa, J., Pinault, D., Deschenes, M. (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci 7: 19–30.CrossRefGoogle Scholar
Bourtchuladze, R., Frenguelli, B., Blendy, J., et al. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79: 59–68.CrossRefGoogle Scholar
Boylan, C. B., Bennett-Clarke, C. A., Crissman, R. S., Mooney, R. D., Rhoades, R. W. (2000) Clorgyline treatment elevates cortical serotonin and temporarily disrupts the vibrissae-related pattern in rat somatosensory cortex. J Comp Neurol 427: 139–149.3.0.CO;2-K>CrossRefGoogle Scholar
Bramham, C. R., Srebro, B. (1987) Induction of long-term depression and potentiation by low- and high-frequency stimulation in the dentate area of the anesthetized rat: magnitude, time course and EEG. Brain Res 405: 100–107.CrossRefGoogle Scholar
Brecht, M., Schneider, M., Sakmann, B., Margrie, T. W. (2004) Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427: 704–710.CrossRefGoogle Scholar
Bredt, D. S., Ferris, C. D., Snyder, S. H. (1992) Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem 267: 10976–10981.Google Scholar
Brodmann, K. (1909) Vergleichende Lokalisationlehre der Grosshirnrinde. Leipzig: Barth.
Broide, R. S., Robertson, R. T., Leslie, F. M. (1996) Regulation of alpha7 nicotinic acetylcholine receptors in the developing rat somatosensory cortex by thalamocortical afferents. J Neurosci 16: 2956–2971.Google Scholar
Brown, C. E., Dyck, R. H. (2003) Experience-dependent regulation of synaptic zinc is impaired in the cortex of aged mice. Neuroscience 119: 795–801.CrossRefGoogle Scholar
Brumberg, J. C., Pinto, D. J., Simons, D. J. (1996) Spatial gradients and inhibitory summation in the rat whisker barrel system. J Neurophysiol 76: 130–140.Google Scholar
Bruno, R. M., Sakmann, B. (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312: 1622–1627.CrossRefGoogle Scholar
Bruno, R. M., Simons, D. J. (2002) Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J Neurosci 22: 10966–10975.Google Scholar
Bruno, R. M., Khatri, V., Land, P. W., Simons, D. J. (2003) Thalamocortical angular tuning domains within individual barrels of rat somatosensory cortex. J Neurosci 23: 9565–9574.Google Scholar
Bugbee, N. M., Goldman-Rakic, P. S. (1983) Columnar organization of corticocortical projections in squirrel and rhesus monkeys: similarity of column width in species differing in cortical volume. J Comp Neurol 220: 355–364.CrossRefGoogle Scholar
Buhl, E. H., Tamas, G., Fisahn, A. (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513: 117–126.CrossRefGoogle Scholar
Bureau, I., Saint Paul, F., Svoboda, K. (2006) Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol 4: e382.CrossRefGoogle Scholar
Calford, M. B., Tweedale, R. (1991a) Immediate expansion of receptive fields of neurons in area 3b of macaque monkeys after digit denervation. Somatosens Mot Res 8: 249–260.Google Scholar
Calford, M. B., Tweedale, R. (1991b) Acute changes in cutaneous receptive fields in primary somatosensory cortex after digit denervation in adult flying fox. J Neurophysiol 65: 178–187.Google Scholar
Calford, M. B., Tweedale, R. (1991c) C-fibres provide a source of masking inhibition to primary somatosensory cortex. Proc Biol Sci 243: 269–275.Google Scholar
Calia, E., Persico, A. M., Baldi, A., Keller, F. (1998) BDNF and NT-3 applied in the whisker pad reverse cortical changes after peripheral deafferentation in neonatal rats. Eur J Neurosci 10: 3194–3200.CrossRefGoogle Scholar
Canolty, R. T., Edwards, E., Dalal, S. S., et al. (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313: 1626–1628.CrossRefGoogle Scholar
Cantallops, I., Haas, K., Cline, H. T. (2000) Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nat Neurosci 3: 1004–1011.Google Scholar
Carmichael, S. T., Wei, L., Rovainen, C. M., Woolsey, T. A. (2001) New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis 8: 910–922.CrossRefGoogle Scholar
Carpenter, G. A., Milenova, B. L. (2002) Redistribution of synaptic efficacy supports stable pattern learning in neural networks. Neural Comput 14: 873–888.CrossRefGoogle Scholar
Carroll, S. B., Gates, J., Keys, D. N., et al. (1994) Pattern formation and eyespot determination in butterfly wings. Science 265: 109–114.CrossRefGoogle Scholar
Carvell, G. E., Simons, D. J. (1995) Task- and subject-related differences in sensorimotor behavior during active touch. Somatosens Mot Res 12: 1–9.CrossRefGoogle Scholar
Carvell, G. E., Simons, D. J. (1996) Abnormal tactile experience early in life disrupts active touch. J Neurosci 16: 2750–2757.Google Scholar
Cases, O., Seif, I., Grimsby, J., et al. (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268: 1763–1766.CrossRefGoogle Scholar
Cases, O., Vitalis, T., Seif, I., et al. (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16: 297–307.CrossRefGoogle Scholar
Castro-Alamancos, M. A., Donoghue, J. P., Connors, B. W. (1995) Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci 15: 5324–5333.Google Scholar
Catalano, S. M., Robertson, R. T., Killackey, H. P. (1996) Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J Comp Neurol 367: 36–53.3.0.CO;2-K>CrossRefGoogle Scholar
Catania, K. C., Kaas, J. H. (1997) Organization of somatosensory cortex and distribution of corticospinal neurons in the eastern mole (Scalopus aquaticus). J Comp Neurol 378: 337–353.3.0.CO;2-4>CrossRefGoogle Scholar
Celikel, T., Szostak, V. A., Feldman, D. E. (2004) Modulation of spike timing by sensory deprivation during induction of cortical map plasticity. Nat Neurosci 7: 534–541.CrossRefGoogle Scholar
Chagnac-Amitai, Y., Connors, B. W. (1989) Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol 62: 1149–1162.Google Scholar
Chagnac-Amitai, Y., Luhmann, H. J., Prince, D. A. (1990) Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features. J Comp Neurol 296: 598–613.CrossRefGoogle Scholar
Chakrabarti, S., Alloway, K. D. (2006) Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI. J Comp Neurol 498: 624–636.CrossRefGoogle Scholar
Chapman, P. F., White, G. L., Jones, M. W., et al. (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2: 271–276.Google Scholar
Chen, B. E., Lendvai, B., Nimchinsky, E. A., et al. (2000) Imaging high-resolution structure of GFP-expressing neurons in neocortex in vivo. Learn Mem 7: 433–441.CrossRefGoogle Scholar
Chesler, E. J., Lu, L., Shou, S., et al. (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37: 233–242.CrossRefGoogle Scholar
Chiaia, N. L., Rhoades, R. W., Bennett-Clarke, C. A., Fish, S. E., Killackey, H. P. (1991) Thalamic processing of vibrissal information in the rat. I. Afferent input to the medial ventral posterior and posterior nuclei. J Comp Neurol 314: 201–216.Google Scholar
Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A., Rhoades, R. W. (1992) Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat's somatosensory cortex. Brain Res Dev Brain Res 66: 244–250.CrossRefGoogle Scholar
Chiaia, N. L., Zhang, S., Crissman, R. S., Rhoades, R. W. (2000) Effects of neonatal axoplasmic transport attenuation on the response properties of vibrissae-sensitive neurons in the trigeminal principal sensory nucleus of the rat. Somatosens Mot Res 17: 273–283.Google Scholar
Cho, K., Aggleton, J. P., Brown, M. W., Bashir, Z. I. (2001) An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol 532: 459–466.CrossRefGoogle Scholar
Clark, S. A., Allard, T., Jenkins, W. M., Merzenich, M. M. (1988) Receptive fields in the body-surface map in adult cortex defined by temporally correlated inputs. Nature 332: 444–445.CrossRefGoogle Scholar
Clem, R. L., Barth, A. (2006) Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron 49: 663–670.CrossRefGoogle Scholar
Clements, T. N., Rahn, C. D. (2006) Three-dimensional contact imaging with an actuated whisker. IEEE Trans Robotics 22: 844–848.CrossRefGoogle Scholar
Cline, H. T., Debski, E. A., Constantine-Paton, M. (1987) N-Methyl-d-aspartate receptor antagonist desegregates eye-specific stripes. Proc Natl Acad Sci USA 84: 4342–4345.CrossRefGoogle Scholar
Cohen-Tannoudji, M., Morello, D., Babinet, C. (1992) Unexpected position-dependent expression of H-2 and beta 2-microglobulin/lacZ transgenes. Mol Reprod Dev 33: 149–159.CrossRefGoogle Scholar
Cohen-Tannoudji, M., Babinet, C., Wassef, M. (1994) Early determination of a mouse somatosensory cortex marker. Nature 368: 460–463.CrossRefGoogle Scholar
Conn, P. J., Pin, J. P. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37: 205–237.CrossRefGoogle Scholar
Connors, B. W., Kriegstein, A. R. (1986) Cellular physiology of the turtle visual cortex: distinctive properties of pyramidal and stellate neurons. J Neurosci 6: 164–177.Google Scholar
Connors, B. W., Benardo, L. S., Prince, D. A. (1983) Coupling between neurons of the developing rat neocortex. J Neurosci 3: 773–782.Google Scholar
Constantine-Paton, M., Law, M. I. (1978) Eye-specific termination bands in tecta of three-eyed frogs. Science 202: 639–641.CrossRefGoogle Scholar
Cooper, N. G., Steindler, D. A. (1986) Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse. J Comp Neurol 249: 157–169.CrossRefGoogle Scholar
Couve, A., Moss, S. J., Pangalos, M. N. (2000) GABAB receptors: a new paradigm in G protein signaling. Mol Cell Neurosci 16: 296–312.CrossRefGoogle Scholar
Cowan, A. I., Stricker, C. (2004) Functional connectivity in layer IV local excitatory circuits of rat somatosensory cortex. J Neurophysiol 92: 2137–2150.CrossRefGoogle Scholar
Cox, S. B., Woolsey, T. A., Rovainen, C. M. (1993) Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab 13: 899–913.CrossRefGoogle Scholar
Crabtree, J. W., Collingridge, G. L., Isaac, J. T. (1998) A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus. Nat Neurosci 1: 389–394.CrossRefGoogle Scholar
Crair, M. C., Malenka, R. C. (1995) A critical period for long-term potentiation at thalamocortical synapses. Nature 375: 325–328.CrossRefGoogle Scholar
Crochet, S., Petersen, C. C. (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9: 608–610.CrossRefGoogle Scholar
Cruikshank, S., Lewis, T., Connors, B. W. (2007) Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10: 462–468.CrossRefGoogle Scholar
Cunningham, M. O., Whittington, M. A., Bibbig, A., et al. (2004) A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proc Natl Acad Sci USA 101: 7152–7157.CrossRefGoogle Scholar
Cybulska-Klosowicz, A., Zakrzewska, R., Pyza, E., Kossut, M., Schachner, M. (2004) Reduced plasticity of cortical whisker representation in adult tenascin-C-deficient mice after vibrissectomy. Eur J Neurosci 20: 1538–1544.CrossRefGoogle Scholar
D'Alcantara, P., Schiffmann, S. N., Swillens, S. (2003) Bidirectional synaptic plasticity as a consequence of interdependent Ca2 + -controlled phosphorylation and dephosphorylation pathways. Eur J Neurosci 17: 2521–2528.CrossRefGoogle Scholar
Dagnew, E., Latchamsetty, K., Erinjeri, J. P., et al. (2003) Glutamate receptor blockade alters the development of intracortical connections in rat barrel cortex. Somatosens Mot Res 20: 77–84.CrossRefGoogle Scholar
Dale, A., Fortin, D. A., Levine, E. S. (2007) Differential effects of endocannabinoids on glutamatergic and GABAergic inputs to layer 5 pyramidal neurons. Cereb Cortex 17: 163–174.Google Scholar
Datwani, A., Iwasato, T., Itohara, S., Erzurumlu, R. S. (2002) Lesion-induced thalamocortical axonal plasticity in the S1 cortex is independent of NMDA receptor function in excitatory cortical neurons. J Neurosci 22: 9171–9175.Google Scholar
Davis, B. M., Fundin, B. T., Albers, K. M., et al. (1997) Overexpression of nerve growth factor in skin causes preferential increases among innervation to specific sensory targets. J Comp Neurol 387: 489–506.3.0.CO;2-Z>CrossRefGoogle Scholar
Davis, H. P., Squire, L. R. (1984) Protein synthesis and memory: a review. Psychol Bull 96: 518–559.CrossRefGoogle Scholar
Davis, T. L., Kwong, K. K., Weisskoff, R. M., Rosen, B. R. (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95: 1834–1839.CrossRefGoogle Scholar
Daw, M. I., Bannister, N. V., Isaac, J. T. (2006) Rapid, activity-dependent plasticity in timing precision in neonatal barrel cortex. J Neurosci 26: 4178–4187.CrossRefGoogle Scholar
Daw, N. W., Gordon, B., Fox, K. D., et al. (1999) Injection of MK-801 affects ocular dominance shifts more than visual activity. J Neurophysiol 81: 204–215.Google Scholar
Felipe, J., Marco, P., Fairen, A., Jones, E. G. (1997) Inhibitory synaptogenesis in mouse somatosensory cortex. Cereb Cortex 7: 619–634.CrossRefGoogle Scholar
Paola, V., Holtmaat, A., Knott, G., et al. (2006) Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49: 861–875.CrossRefGoogle Scholar
Deans, M. R., Gibson, J. R., Sellitto, C., Connors, B. W., Paul, D. L. (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31: 477–485.CrossRefGoogle Scholar
Dempsey, E., Morison, R. (1943) Electrical activity of the thalamocortical relay system. Am J Physiol 138: 283–296.Google Scholar
Derdikman, D., Yu, C., Haidarliu, S., et al. (2006) Layer-specific touch-dependent facilitation and depression in the somatosensory cortex during active whisking. J Neurosci 26: 9538–9547.CrossRefGoogle Scholar
Derkach, V., Barria, A., Soderling, T. R. (1999) Ca2 + /calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA 96: 3269–3274.CrossRefGoogle Scholar
Descarries, L., Lemay, B., Doucet, G., Berger, B. (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21: 807–824.CrossRefGoogle Scholar
Deschenes, M., Bourassa, J., Parent, A. (1995) Two different types of thalamic fibers innervate the rat striatum. Brain Res 701: 288–292.CrossRefGoogle Scholar
Deschenes, M., Veinante, P., Zhang, Z. W. (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev 28: 286–308.CrossRefGoogle Scholar
Diamond, M. E. (1995) Somatosensory Thalamus of the Rat. London: Plenum.
Diamond, M. E., Armstrong-James, M., Ebner, F. F. (1992a) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318: 462–476.Google Scholar
Diamond, M. E., Armstrong-James, M., Budway, M. J., Ebner, F. F. (1992b) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: dependence on the barrel field cortex. J Comp Neurol 319: 66–84.Google Scholar
Diamond, M. E., Armstrong-James, M., Ebner, F. F. (1993) Experience-dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci USA 90: 2082–2086.CrossRefGoogle Scholar
Dirnagl, U., Niwa, K., Lindauer, U., Villringer, A. (1994) Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide. Am J Physiol 267: H296–301.Google Scholar
Dodt, H. U., Schierloh, A., Eder, M., Zieglgansberger, W. (2003) Circuitry of rat barrel cortex investigated by infrared-guided laser stimulation. Neuroreport 14: 623–627.CrossRefGoogle Scholar
Dorfl, J. (1985) The innervation of the mystacial region of the white mouse: A topographical study. J Anat 142: 173–184.Google Scholar
Dudek, S. M., Bear, M. F. (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proc Natl Acad Sci USA 89: 4363–4367.CrossRefGoogle Scholar
Dunn-Meynell, A. A., Levin, B. E. (1993) Alpha 1-adrenoceptors in the adult rat barrel field: effects of deafferentation and norepinephrine removal. Brain Res 623: 25–32.CrossRefGoogle Scholar
Durham, D., Woolsey, T. A. (1984) Effects of neonatal whisker lesions on mouse central trigeminal pathways. J Comp Neurol 223: 424–447.CrossRefGoogle Scholar
Eckersley, P., Egan, G. F., Amari, S., et al. (2003) Neuroscience data and tool sharing: a legal and policy framework for neuroinformatics. Neuroinformatics 1: 149–165.CrossRefGoogle Scholar
Ehrlich, I., Malinow, R. (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 24: 916–927.CrossRefGoogle Scholar
Ekerot, C. F., Kano, M. (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res 342: 357–360.CrossRefGoogle Scholar
Eliceiri, B. P., Cheresh, D. A. (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13: 563–568.CrossRefGoogle Scholar
Engert, F., Bonhoeffer, T. (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399: 66–70.Google Scholar
Ericson, J., Muhr, J., Placzek, M., et al. (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81: 747–756.CrossRefGoogle Scholar
Ericson, J., Morton, S., Kawakami, A., Roelink, H., Jessell, T. M. (1996) Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87: 661–673.CrossRefGoogle Scholar
Erzurumlu, R. S., Jhaveri, S. (1990) Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex. Brain Res Dev Brain Res 56: 229–234.CrossRefGoogle Scholar
Erzurumlu, R. S., Killackey, H. P. (1983) Development of order in the rat trigeminal system. J Comp Neurol 213: 365–380.CrossRefGoogle Scholar
Fabri, M., Burton, H. (1991) Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 311: 405–424.CrossRefGoogle Scholar
Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L., Maffei, L. (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34: 709–720.CrossRefGoogle Scholar
Fairen, A., DeFelipe, J., Regidor, J. (1984) Cellular Components of the Cerebral Cortex. New York: Plenum.
Favorov, O. V., Diamond, M. E., Whitsel, B. L. (1987) Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of cat. Proc Natl Acad Sci USA 84: 6606–6610.CrossRefGoogle Scholar
Fee, M. S., Mitra, P. P., Kleinfeld, D. (1997) Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J Neurophysiol 78: 1144–1149.Google Scholar
Feldman, D. E. (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27: 45–56.CrossRefGoogle Scholar
Feldman, D. E., Brecht, M. (2005) Map plasticity in somatosensory cortex. Science 310: 810–815.CrossRefGoogle Scholar
Feldman, D. E., Nicoll, R. A., Malenka, R. C., Isaac, J. T. (1998) Long-term depression at thalamocortical synapses in developing rat somatosensory cortex. Neuron 21: 347–357.CrossRefGoogle Scholar
Feldman, M. L. (1984) Morphology of the Neocortical Pyramidal Neuron. New York: Plenum.
Feldmeyer, D., Sakmann, B. (2000) Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. J Physiol 525: 31–39.CrossRefGoogle Scholar
Feldmeyer, D., Egger, V., Lubke, J., Sakmann, B. (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single “barrel” of developing rat somatosensory cortex. J Physiol 521: 169–190.CrossRefGoogle Scholar
Feldmeyer, D., Lubke, J., Silver, R. A., Sakmann, B. (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 538: 803–822.CrossRefGoogle Scholar
Feldmeyer, D., Roth, A., Sakmann, B. (2005) Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5 A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J Neurosci 25: 3423–3431.CrossRefGoogle Scholar
Feldmeyer, D., Lubke, J., Sakmann, B. (2006) Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol 575: 583–602.CrossRefGoogle Scholar
Ferezou, I., Bolea, S., Petersen, C. C. (2006) Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50: 617–629.CrossRefGoogle Scholar
Ferster, D. (1986) Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. J Neurosci 6: 1284–1301.Google Scholar
Finnerty, G. T., Roberts, L. S., Connors, B. W. (1999) Sensory experience modifies the short-term dynamics of neocortical synapses. Nature 400: 367–371.Google Scholar
Fischer, M., Kaech, S., Knutti, D., Matus, A. (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20: 847–854.CrossRefGoogle Scholar
Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H., Matus, A. (2000) Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat Neurosci 3: 887–894.Google Scholar
Fischer, Q. S., Beaver, C. J., Yang, Y., et al. (2004) Requirement for the RIIbeta isoform of PKA, but not calcium-stimulated adenylyl cyclase, in visual cortical plasticity. J Neurosci 24: 9049–9058.CrossRefGoogle Scholar
Flint, J., Valdar, W., Shifman, S., Mott, R. (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6: 271–286.CrossRefGoogle Scholar
Foehring, R. C., Brederode, J. F., Kinney, G. A., Spain, W. J. (2002) Serotonergic modulation of supragranular neurons in rat sensorimotor cortex. J Neurosci 22: 8238–8250.Google Scholar
Fox, K. (1992) A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J Neurosci 12: 1826–1838.Google Scholar
Fox, K. (1994) The cortical component of experience-dependent synaptic plasticity in the rat barrel cortex. J Neurosci 14: 7665–7679.Google Scholar
Fox, K. (1995) The critical period for long-term potentiation in primary sensory cortex. Neuron 15: 485–488.CrossRefGoogle Scholar
Fox, K. (1996) The role of excitatory amino acid transmission in development and plasticity of SI barrel cortex. Prog Brain Res 108: 219–234.CrossRefGoogle Scholar
Fox, K. (2002) Pathways and mechanisms for plasticity in the barrel cortex. Neuroscience 111: 799–84.CrossRefGoogle Scholar
Fox, K., Armstrong-James, M. (1986) The role of the anterior intralaminar nuclei and N-methyl-d-aspartate receptors in the generation of spontaneous bursts in rat neocortical neurones. Exp Brain Res 63: 505–518.CrossRefGoogle Scholar
Fox, K., Sato, H., Daw, N. (1989) The location and function of NMDA receptors in cat and kitten visual cortex. J Neurosci 9: 2443–2454.Google Scholar
Fox, K., Schlaggar, B. L., Glazewski, S., O'Leary, D. D. (1996a) Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. Proc Natl Acad Sci USA 93: 5584–5589.Google Scholar
Fox, K., Glazewski, S., Chen, C. M., Silva, A., Li, X. (1996b) Mechanisms underlying experience-dependent potentiation and depression of vibrissae responses in barrel cortex. J Physiol (Paris) 90: 263–269.Google Scholar
Fox, K., Wallace, H., Glazewski, S. (2002) Is there a thalamic component to experience-dependent cortical plasticity?Philos Trans R Soc Lond B Biol Sci 357: 1709–1715.Google Scholar
Fox, K., Wright, N., Wallace, H., Glazewski, S. (2003) The origin of cortical surround receptive fields studied in the barrel cortex. J Neurosci 23: 8380–8391.Google Scholar
Frankland, P. W., Bontempi, B., Talton, L. E., Kaczmarek, L., Silva, A. J. (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304: 881–883.CrossRefGoogle Scholar
Fremeau, R. T. Jr., Troyer, M. D., Pahner, I., et al. (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31: 247–260.CrossRefGoogle Scholar
Friedberg, M. H., Lee, S. M., Ebner, F. F. (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81: 2243–2252.Google Scholar
Friedberg, M. H., Lee, S. M., Ebner, F. F. (2004) The contribution of the principal and spinal trigeminal nuclei to the receptive field properties of thalamic VPM neurons in the rat. J Neurocytol 33: 75–85.CrossRefGoogle Scholar
Froc, D. J., Racine, R. J. (2005) Interactions between LTP- and LTD-inducing stimulation in the sensorimotor cortex of the awake freely moving rat. J Neurophysiol 93: 548–556.Google Scholar
Fukuchi-Shimogori, T., Grove, E. A. (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294: 1071–1074.CrossRefGoogle Scholar
Fundin, B. T., Pfaller, K., Rice, F. L. (1997) Different distributions of the sensory and autonomic innervation among the microvasculature of the rat mystacial pad. J Comp Neurol 389: 545–568.3.0.CO;2-0>CrossRefGoogle Scholar
Gabernet, L., Jadhav, S. P., Feldman, D. E., Carandini, M., Scanziani, M. (2005) Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48: 315–327.CrossRefGoogle Scholar
Galarreta, M., Hestrin, S. (2001) Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2: 425–433.CrossRefGoogle Scholar
Garabedian, C. E., Jones, S. R., Merzenich, M. M., Dale, A., Moore, C. I. (2003) Band-pass response properties of rat SI neurons. J Neurophysiol 90: 1379–1391.CrossRefGoogle Scholar
Gehring, W. J. (1987) Homeo boxes in the study of development. Science 236: 1245–1252.CrossRefGoogle Scholar
Gehring, W. J. (1993) Exploring the homeobox. Gene 135: 215–221.CrossRefGoogle Scholar
Gerrits, R. J., Stein, E. A., Greene, A. S. (1998) Laser-Doppler flowmetry utilizing a thinned skull cranial window preparation and automated stimulation. Brain Res Brain Res Protoc 3: 14–21.CrossRefGoogle Scholar
Gerrits, R. J., Stein, E. A., Greene, A. S. (2001) Anesthesia alters NO-mediated functional hyperemia. Brain Res 907: 20–26.CrossRefGoogle Scholar
Ghazanfar, A. A., Krupa, D. J., Nicolelis, M. A. (2001) Role of cortical feedback in the receptive field structure and nonlinear response properties of somatosensory thalamic neurons. Exp Brain Res 141: 88–100.CrossRefGoogle Scholar
Ghosh, A., Shatz, C. J. (1992) Involvement of subplate neurons in the formation of ocular dominance columns. Science 255: 1441–1443.CrossRefGoogle Scholar
Gibson, J. M., Welker, W. I. (1983a) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens Res 1: 95–117.Google Scholar
Gibson, J. M., Welker, W. I. (1983b) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 1. Receptive field properties and threshold distributions. Somatosens Res 1: 51–67.Google Scholar
Gibson, J. R., Beierlein, M., Connors, B. W. (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402: 75–79.Google Scholar
Giese, K. P., Fedorov, N. B., Filipkowski, R. K., Silva, A. J. (1998) Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279: 870–873.CrossRefGoogle Scholar
Gil, Z., Amitai, Y. (1996) Properties of convergent thalamocortical and intracortical synaptic potentials in single neurons of neocortex. J Neurosci 16: 6567–6578.Google Scholar
Gil, Z., Connors, B. W., Amitai, Y. (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19: 679–686.CrossRefGoogle Scholar
Gilbert, C. D., Kelly, J. P. (1975) The projections of cells in different layers of the cat's visual cortex. J Comp Neurol 163: 81–105.CrossRefGoogle Scholar
Ginsberg, M. D., Castella, Y., Dietrich, W. D., Watson, B. D., Busto, R. (1989) Acute thrombotic infarction suppresses metabolic activation of ipsilateral somatosensory cortex: evidence for functional diaschisis. J Cereb Blood Flow Metab 9: 329–341.CrossRefGoogle Scholar
Gioanni, Y., Rougeot, C., Clarke, P. B., et al. (1999) Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo-cortical transmission. Eur J Neurosci 11: 18–30.CrossRefGoogle Scholar
Girod, R., Barazangi, N., McGehee, D., Role, L. W. (2000) Facilitation of glutamatergic neurotransmission by presynaptic nicotinic acetylcholine receptors. Neuropharmacology 39: 2715–2725.CrossRefGoogle Scholar
Gitton, Y., Cohen-Tannoudji, M., Wassef, M. (1999) Specification of somatosensory area identity in cortical explants. J Neurosci 19: 4889–4898.Google Scholar
Glade, N., Demongeot, J., Tabony, J. (2002) Comparison of reaction–diffusion simulations with experiment in self-organised microtubule solutions. C R Biol 325: 283–294.CrossRefGoogle Scholar
Glazewski, S., Fox, K. (1996) Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats. J Neurophysiol 75: 1714–1729.Google Scholar
Glazewski, S., Chen, C. M., Silva, A., Fox, K. (1996) Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex. Science 272: 421–423.CrossRefGoogle Scholar
Glazewski, S., Herman, C., McKenna, M., Chapman, P. F., Fox, K. (1998a) Long-term potentiation in vivo in layers II/III of rat barrel cortex. Neuropharmacology 37: 581–592.Google Scholar
Glazewski, S., McKenna, M., Jacquin, M., Fox, K, (1998b) Experience-dependent depression of vibrissae responses in adolescent rat barrel cortex. Eur J Neurosci 10: 2107–2116.Google Scholar
Glazewski, S., Barth, A. L., Wallace, H., et al. (1999) Impaired experience-dependent plasticity in barrel cortex of mice lacking the alpha and delta isoforms of CREB. Cereb Cortex 9: 249–256.CrossRefGoogle Scholar
Glazewski, S., Giese, K. P., Silva, A., Fox, K. (2000) The role of alpha-CaMKII autophosphorylation in neocortical experience-dependent plasticity. Nat Neurosci 3: 911–918.Google Scholar
Goldreich, D., Kyriazi, H. T., Simons, D. J. (1999) Functional independence of layer IV barrels in rodent somatosensory cortex. J Neurophysiol 82: 1311–1316.Google Scholar
Gottlieb, J. P., Keller, A. (1997) Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp Brain Res 115: 47–60.CrossRefGoogle Scholar
Gottschaldt, K. M., Iggo, A., Young, D. W. (1973) Functional characteristics of mechanoreceptors in sinus hair follicles of the cat. J Physiol 235: 287–315.CrossRefGoogle Scholar
Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., Wiesel, T. N. (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324: 361–364.CrossRefGoogle Scholar
Gross, J., Schnitzler, A., Timmermann, L., Ploner, M. (2007) Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol 5: e133.CrossRefGoogle Scholar
Grosshans, D. R., Clayton, D. A., Coultrap, S. J., Browning, M. D. (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 5: 27–33.CrossRefGoogle Scholar
Haidarliu, S., Ahissar, E. (2001) Size gradients of barreloids in the rat thalamus. J Comp Neurol 429: 372–387.3.0.CO;2-3>CrossRefGoogle Scholar
Haidarliu, S., Sosnik, R., Ahissar, E. (1999) Simultaneous multi-site recordings and iontophoretic drug and dye applications along the trigeminal system of anesthetized rats. J Neurosci Meth 94: 27–40.CrossRefGoogle Scholar
Hall, W. C., Ebner, F. F. (1970) Thalamotelencephalic projections in the turtle (Pseudemys scripta). J Comp Neurol 140: 101–122.CrossRefGoogle Scholar
Hallas, B. H., Jacquin, M. F. (1990) Structure–function relationships in rat brain stem subnucleus interpolaris. IX. Inputs from subnucleus caudalis. J Neurophysiol 64: 28–45.Google Scholar
Hamada, Y., Miyashita, E., Tanaka, H. (1999) Gamma-band oscillations in the “barrel cortex” precede rat's exploratory whisking. Neuroscience 88: 667–671.CrossRefGoogle Scholar
Hamasaki, T., Leingartner, A., Ringstedt, T., O'Leary, D. D. (2004) EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43: 359–372.CrossRefGoogle Scholar
Hamori, J., Savy, C., Madarasz, M., et al. (1986) Morphological alterations in subcortical vibrissal relays following vibrissal follicle destruction at birth in the mouse. J Comp Neurol 254: 166–183.CrossRefGoogle Scholar
Hand, P. J. (1982) Plasticity of the Rat Barrel System. New York: Academic Press.
Hannan, A. J., Blakemore, C., Katsnelson, A., et al. (2001) PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci 4: 282–288.CrossRefGoogle Scholar
Hardingham, N., Fox, K. (2006) The role of nitric oxide and GluR1 in presynaptic and postsynaptic components of neocortical potentiation. J Neurosci 26: 7395–7404.CrossRefGoogle Scholar
Hardingham, N. R., Fox, K. (2007). A role of PKA in the reversal of depression in layer II/III barrel cortex. Proceedings of the Annual Meeting of the Society for Neuroscience, San Diego, CA, abstract 146.12/L22.Google Scholar
Hardingham, N., Glazewski, S., Pakhotin, P., et al. (2003) Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation. J Neurosci 23: 4428–4436.Google Scholar
Hardingham, N. R., Bannister, N. J., Read, J. C., et al. (2006) Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors. J Neurosci 26: 6337–6345.CrossRefGoogle Scholar
Hardingham, N. R., Wright, N. F., Fox, K. (2006) The role of GluR1 and cannabinoid receptors in neocortical LTD and experience-dependent depression. Proceedings of the Annual Meeting of the Society for Neuroscience, Atlanta, GA, abstract 732.13/G12.Google Scholar
Harris, J. A., Miniussi, C., Harris, I. M., Diamond, M. E. (2002) Transient storage of a tactile memory trace in primary somatosensory cortex. J Neurosci 22: 8720–8725.Google Scholar
Harris, R. M., Woolsey, T. A. (1979) Morphology of Golgi-impregnated neurons in mouse cortical barrels following vibrissae damage at different post-natal ages. Brain Res 161: 143–149.CrossRefGoogle Scholar
Harris, R. M., Woolsey, T. A. (1981) Dendritic plasticity in mouse barrel cortex following postnatal vibrissa follicle damage. J Comp Neurol 196: 357–376.CrossRefGoogle Scholar
Harris, R. M., Woolsey, T. A. (1983) Computer-assisted analyses of barrel neuron axons and their putative synaptic contacts. J Comp Neurol 220: 63–79.CrossRefGoogle Scholar
Hartings, J. A., Temereanca, S., Simons, D. J. (2000) High responsiveness and direction sensitivity of neurons in the rat thalamic reticular nucleus to vibrissa deflections. J Neurophysiol 83: 2791–2801.Google Scholar
Hartmann, M. J., Johnson, N. J., Towal, R. B., Assad, C. (2003) Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci 23: 6510–6519.Google Scholar
Harvey, M. A., Sachdev, R. N., Zeigler, H. P. (2001) Cortical barrel field ablation and unconditioned whisking kinematics. Somatosens Mot Res 18: 223–227.Google Scholar
Harwell, C., Burbach, B., Svoboda, K., Nedivi, E. (2005) Regulation of cpg15 expression during single whisker experience in the barrel cortex of adult mice. J Neurobiol 65: 85–96.CrossRefGoogle Scholar
Hayashi, Y., Shi, S. H., Esteban, J. A., et al. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287: 2262–2267.CrossRefGoogle Scholar
He, J., Devonshire, I. M., Mayhew, J. E., Papadakis, N. G. (2007) Simultaneous laser Doppler flowmetry and arterial spin labeling MRI for measurement of functional perfusion changes in the cortex. Neuroimage 34: 1391–1404.CrossRefGoogle Scholar
Henderson, T. A., Woolsey, T. A., Jacquin, M. F. (1992) Infraorbital nerve blockade from birth does not disrupt central trigeminal pattern formation in the rat. Brain Res Dev Brain Res 66: 146–152.CrossRefGoogle Scholar
Henderson, T. A., Rhoades, R. W., Bennett-Clarke, C. A., et al. (1993) NGF augmentation rescues trigeminal ganglion and principalis neurons, but not brainstem or cortical whisker patterns, after infraorbital nerve injury at birth. J Comp Neurol 336: 243–260.CrossRefGoogle Scholar
Henderson, T. A., Johnson, E. M. Jr., Osborne, P. A., Jacquin, M. F. (1994) Fetal NGF augmentation preserves excess trigeminal ganglion cells and interrupts whisker-related pattern formation. J Neurosci 14: 3389–3403.Google Scholar
Hensch, T. K., Fagiolini, M., Mataga, N., et al. (1998a) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282: 1504–1508.Google Scholar
Hensch, T. K., Gordon, J. A., Brandon, E. P., et al. (1998b) Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice. J Neurosci 18: 2108–2117.Google Scholar
Herkenham, M. (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J Comp Neurol 183: 487–517.CrossRefGoogle Scholar
Herkenham, M. (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207: 532–535.CrossRefGoogle Scholar
Heynen, A. J., Yoon, B. J., Liu, C. H., et al. (2003) Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci 6: 854–862.CrossRefGoogle Scholar
Hickmott, P. W., Steen, P. A. (2005) Large-scale changes in dendritic structure during reorganization of adult somatosensory cortex. Nat Neurosci 8: 140–142.CrossRefGoogle Scholar
Higley, M. J., Contreras, D. (2003) Nonlinear integration of sensory responses in the rat barrel cortex: an intracellular study in vivo. J Neurosci 23: 10190–10200.Google Scholar
Hipp, J., Arabzadeh, E., Zorzin, E., et al. (2006) Texture signals in whisker vibrations. J Neurophysiol 95: 1792–1799.CrossRefGoogle Scholar
Hoeflinger, B. F., Bennett-Clarke, C. A., Chiaia, N. L., Killackey, H. P., Rhoades, R. W. (1995) Patterning of local intracortical projections within the vibrissae representation of rat primary somatosensory cortex. J Comp Neurol 354: 551–563.CrossRefGoogle Scholar
Hoffer, Z. S., Hoover, J. E., Alloway, K. D. (2003) Sensorimotor corticocortical projections from rat barrel cortex have an anisotropic organization that facilitates integration of inputs from whiskers in the same row. J Comp Neurol 466: 525–544.CrossRefGoogle Scholar
Hoffman, D. A., Sprengel, R., Sakmann, B. (2002) Molecular dissection of hippocampal theta-burst pairing potentiation. Proc Natl Acad Sci USA 99: 7740–7745.CrossRefGoogle Scholar
Hollmann, M., Heinemann, S. (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 31–108.CrossRefGoogle Scholar
Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., et al. (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45: 279–291.CrossRefGoogle Scholar
Hoogland, P. V., Welker, E., Loos, H. (1987) Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris–leucoagglutinin and HRP. Exp Brain Res 68: 73–87.CrossRefGoogle Scholar
Hoogland, P. V., Wouterlood, F. G., Welker, E., Loos, H. (1991) Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L). Exp Brain Res 87: 159–172.CrossRefGoogle Scholar
Hubel, D. H., Wiesel, T. N. (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198: 1–59.Google Scholar
Hubel, D. H., Wiesel, T. N., Stryker, M. P. (1978) Anatomical demonstration of orientation columns in macaque monkey. J Comp Neurol 177: 361–380.CrossRefGoogle Scholar
Huber, K. M., Roder, J. C., Bear, M. F. (2001) Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J Neurophysiol 86: 321–325.Google Scholar
Hurwitz, B. E., Dietrich, W. D., McCabe, P. M., et al. (1990) Sensory–motor deficit and recovery from thrombotic infarction of the vibrissal barrel-field cortex. Brain Res 512: 210–220.CrossRefGoogle Scholar
Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P., Grant, S. G. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3: 661–669.Google Scholar
Inan, M., Lu, H. C., Albright, M. J., She, W. C., Crair, M. C. (2006) Barrel map development relies on protein kinase A regulatory subunit II beta-mediated cAMP signaling. J Neurosci 26: 4338–4349.CrossRefGoogle Scholar
Ince-Dunn, G., Hall, B. J., Hu, S. C., et al. (2006) Regulation of thalamocortical patterning and synaptic maturation by NeuroD2. Neuron 49: 683–695.CrossRefGoogle Scholar
Irikura, K., Maynard, K. I., Moskowitz, M. A. (1994) Importance of nitric oxide synthase inhibition to the attenuated vascular responses induced by topical L-nitroarginine during vibrissal stimulation. J Cereb Blood Flow Metab 14: 45–48.CrossRefGoogle Scholar
Isaac, J. T., Crair, M. C., Nicoll, R. A., Malenka, R. C. (1997) Silent synapses during development of thalamocortical inputs. Neuron 18: 269–280.CrossRefGoogle Scholar
Ismailov, I., Kalikulov, D., Inoue, T., Friedlander, M. J. (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24: 9847–9861.CrossRefGoogle Scholar
Itami, C., Kimura, F., Kohno, T., et al. (2003) Brain-derived neurotrophic factor-dependent unmasking of “silent” synapses in the developing mouse barrel cortex. Proc Natl Acad Sci USA 100: 13069–13074.CrossRefGoogle Scholar
Ito, M. (1985) Processing of vibrissa sensory information within the rat neocortex. J Neurophysiol 54: 479–490.Google Scholar
Ito, M., Kano, M. (1982) Long-lasting depression of parallel fiber–Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33: 253–258.CrossRefGoogle Scholar
Ito, M., Kato, M. (2002) Analysis of variance study of the rat cortical layer 4 barrel and layer 5b neurones. J Physiol 539: 511–522.CrossRefGoogle Scholar
Iwasato, T., Datwani, A., Wolf, A. M., et al. (2000) Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406: 726–731.Google Scholar
Jaarsma, D., Sebens, J. B., Korf, J. (1991) Localization of NMDA and AMPA receptors in rat barrel field. Neurosci Lett 133: 233–236.CrossRefGoogle Scholar
Jablonka, J., Kossut, M. (2006) Focal stroke in the barrel cortex of rats enhances ipsilateral response to vibrissal input. Acta Neurobiol Exp (Wars) 66: 261–266.Google Scholar
Jablonka, J. A., Witte, O. W., Kossut, M. (2007) Photothrombotic infarct impairs experience-dependent plasticity in neighboring cortex. Neuroreport 18: 165–169.CrossRefGoogle Scholar
Jablonska, B., Smith, A. L., Kossut, M., Skangiel-Kramska, J. (1998) Development of laminar distributions of kainate receptors in the somatosensory cortex of mice. Brain Res 791: 325–329.CrossRefGoogle Scholar
Jacob, V., Cam, J., Shulz, D. E. (2006) Spatiotemporally complex tactile stimuli delivered through a multi-actuator whisker stimulator. In Proceedings of the Annual Meeting of the Society for Neuroscience, pp. 145.120. Atlanta, GA: Society for Neuroscience.
Jacquin, M. F., Woerner, D., Szczepanik, A. M., et al. (1986) Structure–function relationships in rat brainstem subnucleus interpolaris. I. Vibrissa primary afferents. J Comp Neurol 243: 266–279.Google Scholar
Jacquin, M. F., Stennett, R. A., Renehan, W. E., Rhoades, R. W. (1988a) Structure–function relationships in the rat brainstem subnucleus interpolaris: II. Low and high threshold trigeminal primary afferents. J Comp Neurol 267: 107–130.Google Scholar
Jacquin, M. F., Golden, J., Panneton, W. M. (1988b) Structure and function of barrel “precursor” cells in trigeminal nucleus principalis. Brain Res 471: 309–314.Google Scholar
Jacquin, M. F., Barcia, M., Rhoades, R. W. (1989) Structure–function relationships in rat brainstem subnucleus interpolaris: IV. Projection neurons. J Comp Neurol 282: 45–62.CrossRefGoogle Scholar
Jacquin, M. F., Wiegand, M. R., Renehan, W. E. (1990) Structure–function relationships in rat brain stem subnucleus interpolaris. VIII. Cortical inputs. J Neurophysiol 64: 3–27.Google Scholar
Jacquin, M. F., Renehan, W. E., Rhoades, R. W., Panneton, W. M. (1993a) Morphology and topography of identified primary afferents in trigeminal subnuclei principalis and oralis. J Neurophysiol 70: 1911–1936.Google Scholar
Jacquin, M. F., McCasland, J. S., Henderson, T. A., Rhoades, R. W., Woolsey, T. A. (1993b) 2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system. J Comp Neurol 332: 38–58.Google Scholar
Jacquin, M. F., Rhoades, R. W., Klein, B. G. (1995) Structure–function relationships in rat brainstem subnucleus interpolaris. XI. Effects of chronic whisker trimming from birth. J Comp Neurol 356: 200–224.Google Scholar
Jeanmonod, D., Rice, F. L., Loos, H. (1981) Mouse somatosensory cortex: alterations in the barrelfield following receptor injury at different early postnatal ages. Neuroscience 6: 1503–1535.Google Scholar
Jensen, K. F., Killackey, H. P. (1987) Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents. J Neurosci 7: 3529–3543.Google Scholar
Jones, E. G. (1985) The Thalamus. New York: Plenum Press.
Kamal, A., Ramakers, G. M., Urban, I. J., Graan, P. N., Gispen, W. H. (1999) Chemical LTD in the CA1 field of the hippocampus from young and mature rats. Eur J Neurosci 11: 3512–3516.CrossRefGoogle Scholar
Kaneko, M., Kanayama, N., Tsuji, T. (1998) Active antenna for contact sensing. IEEE Trans Robotics Automation 14: 278–291.CrossRefGoogle Scholar
Katz, D. B., Simon, S. A., Moody, A., Nicolelis, M. A. (1999) Simultaneous reorganization in thalamocortical ensembles evolves over several hours after perioral capsaicin injections. J Neurophysiol 82: 963–977.Google Scholar
Kawaguchi, Y. (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci 15: 2638–2655.Google Scholar
Kawaguchi, Y., Kubota, Y. (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7: 476–486.CrossRefGoogle Scholar
Keller, A., Carlson, G. C. (1999) Neonatal whisker clipping alters intracortical, but not thalamocortical projections, in rat barrel cortex. J Comp Neurol 412: 83–94.3.0.CO;2-7>CrossRefGoogle Scholar
Keller, A., White, E. L. (1987) Synaptic organization of GABAergic neurons in the mouse SmI cortex. J Comp Neurol 262: 1–12.CrossRefGoogle Scholar
Kelly, M. K., Carvell, G. E., Kodger, J. M., Simons, D. J. (1999) Sensory loss by selected whisker removal produces immediate disinhibition in the somatosensory cortex of behaving rats. J Neurosci 19: 9117–9125.Google Scholar
Kennedy, M. B. (2000) Signal-processing machines at the postsynaptic density. Science 290: 750–754.CrossRefGoogle Scholar
Kennerley, A. J., Berwick, J., Martindale, J., et al. (2005) Concurrent fMRI and optical measures for the investigation of the hemodynamic response function. Magn Reson Med 54: 354–365.CrossRefGoogle Scholar
Kharazia, V. N., Weinberg, R. J. (1994) Glutamate in thalamic fibers terminating in layer IV of primary sensory cortex. J Neurosci 14: 6021–6032.Google Scholar
Kidd, F. L., Isaac, J. T. (1999) Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 400: 569–573.Google Scholar
Kidd, F. L., Coumis, U., Collingridge, G. L., Crabtree, J. W., Isaac, J. T. (2002) A presynaptic kainate receptor is involved in regulating the dynamic properties of thalamocortical synapses during development. Neuron 34: 635–646.CrossRefGoogle Scholar
Killackey, H. P. (1973) Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res 51: 326–331.CrossRefGoogle Scholar
Killackey, H. P., Belford, G. R. (1979) The formation of afferent patterns in the somatosensory cortex of the neonatal rat. J Comp Neurol 183: 285–303.CrossRefGoogle Scholar
Killackey, H. P., Belford, G. R. (1980) Central correlates of peripheral pattern alterations in the trigeminal system of the rat. Brain Res 183: 205–210.CrossRefGoogle Scholar
Killackey, H. P., Ebner, F. (1973) Convergent projection of three separate thalamic nuclei on to a single cortical area. Science 179: 283–285.CrossRefGoogle Scholar
Killackey, H. P., Belford, G., Ryugo, R., Ryugo, D. K. (1976) Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse. Brain Res 104: 309–315.CrossRefGoogle Scholar
Kim, C. H., Chung, H. J., Lee, H. K., Huganir, R. L. (2001) Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc Natl Acad Sci USA 98: 11725–11730.CrossRefGoogle Scholar
Kim, H. G., Fox, K., Connors, B. W. (1995) Properties of excitatory synaptic events in neurons of primary somatosensory cortex of neonatal rats. Cereb Cortex 5: 148–157.CrossRefGoogle Scholar
Kim, U., Ebner, F. F. (1999) Barrels and septa: separate circuits in rat barrels field cortex. J Comp Neurol 408: 489–505.3.0.CO;2-E>CrossRefGoogle Scholar
Kirkwood, A., Silva, A., Bear, M. F. (1997) Age-dependent decrease of synaptic plasticity in the neocortex of alphaCaMKII mutant mice. Proc Natl Acad Sci USA 94: 3380–3383.CrossRefGoogle Scholar
Kleinfeld, D., Berg, R. W., O'Connor, S. M. (1999) Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens Mot Res 16: 69–88.CrossRefGoogle Scholar
Kleinfeld, D., Ahissar, E., Diamond, M. E. (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16: 434–444.CrossRefGoogle Scholar
Knott, G. W., Quairiaux, C., Genoud, C., Welker, E. (2002) Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34: 265–273.CrossRefGoogle Scholar
Knott, G. W., Holtmaat, A., Wilbrecht, L., Welker, E., Svoboda, K. (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 9: 1117–1124.CrossRefGoogle Scholar
Knutsen, P. M., Pietr, M., Ahissar, E. (2006) Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 26: 8451–8464.CrossRefGoogle Scholar
Koralek, K. A., Jensen, K. F., Killackey, H. P. (1988) Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res 463: 346–351.Google Scholar
Koralek, K. A., Olavarria, J., Killackey, H. P. (1990) Areal and laminar organization of corticocortical projections in the rat somatosensory cortex. J Comp Neurol 299: 133–150.CrossRefGoogle Scholar
Kossut, M., Hand, P. (1984) Early development of changes in cortical representation of C3 vibrissa following neonatal denervation of surrounding vibrissa receptors: a 2-deoxyglucose study in the rat. Neurosci Lett 46: 7–12.CrossRefGoogle Scholar
Kossut, M., Juliano, S. L. (1999) Anatomical correlates of representational map reorganization induced by partial vibrissectomy in the barrel cortex of adult mice. Neuroscience 92: 807–817.CrossRefGoogle Scholar
Kossut, M., Hand, P. J., Greenberg, J., Hand, C. L. (1988) Single vibrissal cortical column in SI cortex of rat and its alterations in neonatal and adult vibrissa-deafferented animals: a quantitative 2DG study. J Neurophysiol 60: 829–852.Google Scholar
Kriegstein, A. R., Connors, B. W. (1986) Cellular physiology of the turtle visual cortex: synaptic properties and intrinsic circuitry. J Neurosci 6: 178–191.Google Scholar
Kristt, D. A., Waldman, J. V. (1982) Developmental reorganization of acetylcholinesterase-rich inputs to somatosensory cortex of the mouse. Anat Embryol (Berl) 164: 331–342.CrossRefGoogle Scholar
Krupa, D. J., Ghazanfar, A. A., Nicolelis, M. A. (1999) Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proc Natl Acad Sci USA 96: 8200–8205.CrossRefGoogle Scholar
Krupa, D. J., Brisben, A. J., Nicolelis, M. A. (2001) A multi-channel whisker stimulator for producing spatiotemporally complex tactile stimuli. J Neurosci Meth 104: 199–208.CrossRefGoogle Scholar
Krupa, D. J., Wiest, M. C., Shuler, M. G., Laubach, M., Nicolelis, M. A. (2004) Layer-specific somatosensory cortical activation during active tactile discrimination. Science 304: 1989–1992.CrossRefGoogle Scholar
Kurokawa, J., Motoike, H. K., Rao, J., Kass, R. S. (2004) Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci USA 101: 16374–16378.CrossRefGoogle Scholar
Kyriazi, H. T., Simons, D. J. (1993) Thalamocortical response transformations in simulated whisker barrels. J Neurosci 13: 1601–1615.Google Scholar
Kyriazi, H. T., Carvell, G. E., Brumberg, J. C., Simons, D. J. (1996a) Effects of baclofen and phaclofen on receptive field properties of rat whisker barrel neurons. Brain Res 712: 325–328.Google Scholar
Kyriazi, H. T., Carvell, G. E., Brumberg, J. C., Simons, D. J. (1996b) Quantitative effects of GABA and bicuculline methiodide on receptive field properties of neurons in real and simulated whisker barrels. J Neurophysiol 75: 547–560.Google Scholar
Laaris, N., Keller, A. (2002) Functional independence of layer IV barrels. J Neurophysiol 87: 1028–1034.CrossRefGoogle Scholar
Land, P. W., Simons, D. J. (1985) Cytochrome oxidase staining in the rat SmI barrel cortex. J Comp Neurol 238: 225–235.CrossRefGoogle Scholar
Land, P. W., Buffer, S. A. Jr., Yaskosky, J. D. (1995) Barreloids in adult rat thalamus: three-dimensional architecture and relationship to somatosensory cortical barrels. J Comp Neurol 355: 573–588.CrossRefGoogle Scholar
Lanuza, E., Novejarque, A., Moncho-Bogani, J., Hernandez, A., Martinez-Garcia, F. (2002) Understanding the basic circuitry of the cerebral hemispheres: the case of lizards and its implications in the evolution of the telencephalon. Brain Res Bull 57: 471–473.CrossRefGoogle Scholar
Lavallee, P., Deschenes, M. (2004) Dendroarchitecture and lateral inhibition in thalamic barreloids. J Neurosci 24: 6098–6105.CrossRefGoogle Scholar
Lavdas, A. A., Grigoriou, M., Pachnis, V., Parnavelas, J. G. (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19: 7881–7888.Google Scholar
Lavenex, P., Amaral, D. G. (2000) Hippocampal–neocortical interaction: a hierarchy of associativity. Hippocampus 10: 420–430.3.0.CO;2-5>CrossRefGoogle Scholar
Lazutkin, A. A., Meyer, B. I., Anokhin, K. V. (2007) [Transgene 6A-99 is a molecular marker of developing somatosensory cortex in mice.]Ontogenez 38: 21–32.CrossRefGoogle Scholar
Lebrand, C., Cases, O., Wehrle, R., et al. (1998) Transient developmental expression of monoamine transporters in the rodent forebrain. J Comp Neurol 401: 506–524.3.0.CO;2-#>CrossRefGoogle Scholar
Lee, H. K., Kameyama, K., Huganir, R. L., Bear, M. F. (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21: 1151–1162.CrossRefGoogle Scholar
Lee, K. J., Woolsey, T. A. (1975) A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse. Brain Res 99: 349–353.CrossRefGoogle Scholar
Lee, L. J., Erzurumlu, R. S. (2005) Altered parcellation of neocortical somatosensory maps in N-methyl-d-aspartate receptor-deficient mice. J Comp Neurol 485: 57–63.CrossRefGoogle Scholar
Lee, L. J., Iwasato, T., Itohara, S., Erzurumlu, R. S. (2005) Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J Comp Neurol 485: 280–292.CrossRefGoogle Scholar
Lee, S. H., Simons, D. J. (2004) Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex. J Neurophysiol 91: 223–229.Google Scholar
Lee, S. M., Weisskopf, M. G., Ebner, F. F. (1991) Horizontal long-term potentiation of responses in rat somatosensory cortex. Brain Res 544: 303–310.CrossRefGoogle Scholar
Leergaard, T. B., Alloway, K. D., Mutic, J. J., Bjaalie, J. G. (2000) Three-dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization. J Neurosci 20: 8474–8484.Google Scholar
Lendvai, B., Stern, E. A., Chen, B., Svoboda, K. (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404: 876–881.CrossRefGoogle Scholar
LeVay, S., Wiesel, T. N., Hubel, D. H. (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191: 1–51.Google Scholar
Li, C. X., Wei, X., Lu, L., Peirce, J. L., Williams, R. W., Waters, R. S. (2005) Genetic analysis of barrel field size in the first somatosensory area (SI) in inbred and recombinant inbred strains of mice. Somatosens Mot Res 22: 141–150.CrossRefGoogle Scholar
Li, X., Glazewski, S., Lin, X., Elde, R., Fox, K. (1995) Effect of vibrissae deprivation on follicle innervation, neuropeptide synthesis in the trigeminal ganglion, and S1 barrel cortex plasticity. J Comp Neurol 357: 465–481.CrossRefGoogle Scholar
Lichtenstein, S. H., Carvell, G. E., Simons, D. J. (1990) Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosens Mot Res 7: 47–65.CrossRefGoogle Scholar
Lidov, H. G., Grzanna, R., Molliver, M. E. (1980) The serotonin innervation of the cerebral cortex in the rat: an immunohistochemical analysis. Neuroscience 5: 207–227.CrossRefGoogle Scholar
Lindvall, O., Bjorklund, A., Moore, R. Y., Stenevi, U. (1974) Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81: 325–331.CrossRefGoogle Scholar
Lisman, J. E. (1985) A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci USA 82: 3055–3057.CrossRefGoogle Scholar
Lisman, J. E., Goldring, M. A. (1988) Feasibility of long-term storage of graded information by the Ca2 + /calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci USA 85: 5320–5324.CrossRefGoogle Scholar
Liu, X. B., Jones, E. G. (1996) Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc Natl Acad Sci USA 93: 7332–7336.CrossRefGoogle Scholar
Liu, X. B., Jones, E. G. (2003) Fine structural localization of connexin-36 immunoreactivity in mouse cerebral cortex and thalamus. J Comp Neurol 466: 457–467.CrossRefGoogle Scholar
Lopez-Bendito, G., Cautinat, A., Sanchez, J. A., et al. (2006) Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125: 127–142.CrossRefGoogle Scholar
, Lorento R. (1922) La corteza cerebral del ratón. Trab Lab Invest Boil (Madrid) 20: 41–78.Google Scholar
, Lorente R. (1992) The cerebral cortex of the mouse (a first contribution – the “acoustic” cortex). Somatosens Mot Res 9: 3–36.Google Scholar
Lotto, B., Upton, L., Price, D. J., Gaspar, P. (1999) Serotonin receptor activation enhances neurite outgrowth of thalamic neurones in rodents. Neurosci Lett 269: 87–90.CrossRefGoogle Scholar
LoTurco, J. J., Blanton, M. G., Kriegstein, A. R. (1991) Initial expression and endogenous activation of NMDA channels in early neocortical development. J Neurosci 11: 792–799.Google Scholar
Louderback, K. M., Glass, C. S., Shamalla-Hannah, L., Erickson, S. L., Land, P. W. (2006) Subbarrel patterns of thalamocortical innervation in rat somatosensory cortical barrels: organization and postnatal development. J Comp Neurol 497: 32–41.CrossRefGoogle Scholar
Lu, H. C., She, W. C., Plas, D. T., et al. (2003) Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical “barrel” map development. Nat Neurosci 6: 939–947.CrossRefGoogle Scholar
Lu, S. M., Lin, R. C. (1993) Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10: 1–16.CrossRefGoogle Scholar
Lubke, J., Egger, V., Sakmann, B., Feldmeyer, D. (2000) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J Neurosci 20: 5300–5311.Google Scholar
Lubke, J., Roth, A., Feldmeyer, D., Sakmann, B. (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13: 1051–1063.CrossRefGoogle Scholar
Iglesia, Luis J. A., Lopez-Garcia, C. (1997) A Golgi study of the principal projection neurons of the medial cortex of the lizard Podarcis hispanica. J Comp Neurol 385: 528–564.3.0.CO;2-5>CrossRefGoogle Scholar
Luo, L. (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18: 601–635.CrossRefGoogle Scholar
Luskin, M. B., Shatz, C. J. (1985) Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5: 1062–1075.Google Scholar
Luskin, M. B., Pearlman, A. L., Sanes, J. R. (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1: 635–647.CrossRefGoogle Scholar
Ma, J., Ayata, C., Huang, P. L., Fishman, M. C., Moskowitz, M. A. (1996) Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Physiol 270: H1085–H1090.Google Scholar
Ma, P. M. (1991) The barrelettes: architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. I. Normal structural organization. J Comp Neurol 309: 161–199.Google Scholar
Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H., Agmon, A. (2006) Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci 26: 5069–5082.CrossRefGoogle Scholar
Maalouf, M., Miasnikov, A. A., Dykes, R. W. (1998) Blockade of cholinergic receptors in rat barrel cortex prevents long-term changes in the evoked potential during sensory preconditioning. J Neurophysiol 80: 529–545.Google Scholar
Maass, W., Natschlager, T., Markram, H. (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14: 2531–2560.CrossRefGoogle Scholar
Maass, W., Natschlager, T., Markram, H. (2004) Fading memory and kernel properties of generic cortical microcircuit models. J Physiol Paris 98: 315–330.CrossRefGoogle Scholar
Malenka, R. C., Bear, M. F. (2004) LTP and LTD: an embarrassment of riches. Neuron 44: 5–21.CrossRefGoogle Scholar
Maletic-Savatic, M., Malinow, R., Svoboda, K. (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283: 1923–1927.CrossRefGoogle Scholar
Malinow, R. (2003) AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358: 707–714.CrossRefGoogle Scholar
Malinow, R., Malenka, R. C. (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25: 103–126.CrossRefGoogle Scholar
Mansour-Robaey, S., Mechawar, N., Radja, F., Beaulieu, C., Descarries, L. (1998) Quantified distribution of serotonin transporter and receptors during the postnatal development of the rat barrel field cortex. Brain Res Dev Brain Res 107: 159–163.CrossRefGoogle Scholar
Maravall, M., Koh, I. Y., Lindquist, W. B., Svoboda, K. (2004) Experience-dependent changes in basal dendritic branching of layer 2/3 pyramidal neurons during a critical period for developmental plasticity in rat barrel cortex. Cereb Cortex 14: 655–664.CrossRefGoogle Scholar
Marin-Padilla, M. (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol (Berl) 152: 109–126.CrossRefGoogle Scholar
Marin-Padilla, M., Marin-Padilla, T. M. (1982) Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. A Golgi study. Anat Embryol (Berl) 164: 161–206.CrossRefGoogle Scholar
Markram, H. (2006) The blue brain project. Nat Rev Neurosci 7: 153–160.CrossRefGoogle Scholar
Markram, H., Tsodyks, M. (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382: 807–810.CrossRefGoogle Scholar
Markram, H., Lubke, J., Frotscher, M., Sakmann, B. (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215.CrossRefGoogle Scholar
Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C. (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5: 793–807.CrossRefGoogle Scholar
Marsicano, G., Lutz, B. (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11: 4213–4225.CrossRefGoogle Scholar
Martin, C., Martindale, J., Berwick, J., Mayhew, J. (2006) Investigating neural–hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 32: 33–48.CrossRefGoogle Scholar
Martinotti, C. (1889) Contributo allo studio della corteccia cerebrale, ed all'origine central dei nervi. Ann Freniatr Sci Affini 1: 314–381.Google Scholar
Martinotti, C. (1890) Beitrag zum Studium der Hirnrinde und dem Centralursprung der Nerven. Int Monatschr Anat Physiol 7: 69–90.Google Scholar
Masino, S. A., Kwon, M. C., Dory, Y., Frostig, R. D. (1993) Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc Natl Acad Sci USA 90: 9998–10002.CrossRefGoogle Scholar
Maunsell, J. H., Essen, D. C. (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3: 2563–2586.Google Scholar
Mayer, M. L., Westbrook, G. L., Guthrie, P. B. (1984) Voltage-dependent block by Mg2 + of NMDA responses in spinal cord neurones. Nature 309: 261–263.CrossRefGoogle Scholar
McCasland, J. S., Hibbard, L. S. (1997) GABAergic neurons in barrel cortex show strong, whisker-dependent metabolic activation during normal behavior. J Neurosci 17: 5509–5527.Google Scholar
McCasland, J. S., Bernardo, K. L., Probst, K. L., Woolsey, T. A. (1992) Cortical local circuit axons do not mature after early deafferentation. Proc Natl Acad Sci USA 89: 1832–1836.CrossRefGoogle Scholar
McCasland, J. S., Hibbard, L. S., Rhoades, R. W., Woolsey, T. A. (1997) Activation of a wide-spread network of inhibitory neurons in barrel cortex. Somatosens Mot Res 14: 138–147.Google Scholar
McCormick, D. A., Bal, T. (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20: 185–215.CrossRefGoogle Scholar
McKinney, R. A., Capogna, M., Durr, R., Gahwiler, B. H., Thompson, S. M. (1999) Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 2: 44–49.CrossRefGoogle Scholar
Melzer, P., Smith, C. B. (1998) Plasticity of cerebral metabolic whisker maps in adult mice after whisker follicle removal: I. Modifications in barrel cortex coincide with reorganization of follicular innervation. Neuroscience 83: 27–41.Google Scholar
Mercier, B. E., Legg, C. R., Glickstein, M. (1990) Basal ganglia and cerebellum receive different somatosensory information in rats. Proc Natl Acad Sci USA 87: 4388–4392.CrossRefGoogle Scholar
Merzenich, M. M., Kaas, J. H., Wall, J. T., et al. (1983a) Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience 10: 639–665.Google Scholar
Merzenich, M. M., Kaas, J. H., Wall, J., et al. (1983b) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 8: 33–55.Google Scholar
Mesulam, M. M., Mufson, E. J., Levey, A. I., Wainer, B. H. (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214: 170–197.CrossRefGoogle Scholar
Metin, C., Frost, D. O. (1989) Visual responses of neurons in somatosensory cortex of hamsters with experimentally induced retinal projections to somatosensory thalamus. Proc Natl Acad Sci USA 86: 357–361.CrossRefGoogle Scholar
Micheva, K. D., Beaulieu, C. (1995a) An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex. Proc Natl Acad Sci USA 92: 11834–11838.Google Scholar
Micheva, K. D., Beaulieu, C. (1995b) Postnatal development of GABA neurons in the rat somatosensory barrel cortex: a quantitative study. Eur J Neurosci 7: 419–430.Google Scholar
Micheva, K. D., Beaulieu, C. (1995c) Neonatal sensory deprivation induces selective changes in the quantitative distribution of GABA-immunoreactive neurons in the rat barrel field cortex. J Comp Neurol 361: 574–584.Google Scholar
Micheva, K. D., Beaulieu, C. (1996) Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 373: 340–354.3.0.CO;2-2>CrossRefGoogle Scholar
Miller, B., Blake, N. M., Erinjeri, J. P., et al. (2001) Postnatal growth of intrinsic connections in mouse barrel cortex. J Comp Neurol 436: 17–31.CrossRefGoogle Scholar
Miller, M. W. (1985) Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex. Brain Res 355: 187–192.CrossRefGoogle Scholar
Miller, M. W. (1995) Relationship of the time of origin and death of neurons in rat somatosensory cortex: barrel versus septal cortex and projection versus local circuit neurons. J Comp Neurol 355: 6–14.CrossRefGoogle Scholar
Miller, S. G., Kennedy, M. B. (1985) Distinct forebrain and cerebellar isozymes of type II Ca2 +/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction. J Biol Chem 260: 9039–9046.Google Scholar
Miller, S. G., Kennedy, M. B. (1986) Regulation of brain type II Ca2 +/calmodulin-dependent protein kinase by autophosphorylation: a Ca2 +-triggered molecular switch. Cell 44: 861–870.CrossRefGoogle Scholar
Minnery, B. S., Simons, D. J. (2003) Response properties of whisker-associated trigeminothalamic neurons in rat nucleus principalis. J Neurophysiol 89: 40–56.Google Scholar
Minnery, B. S., Bruno, R. M., Simons, D. J. (2003) Response transformation and receptive field synthesis in the lemniscal trigeminothalamic circuit. J Neurophysiol 90: 1379–1391.CrossRefGoogle Scholar
Mitchinson, B., Gurney, K. N., Redgrave, P., et al. (2004) Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proc Biol Sci 271: 2509–2516.CrossRefGoogle Scholar
Molnar, Z., Adams, R., Blakemore, C. (1998) Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci 18: 5723–5745.Google Scholar
Monaghan, D. T., Cotman, C. W. (1985) Distribution of N-methyl-d-aspartate-sensitive l-[3H]glutamate-binding sites in rat brain. J Neurosci 5: 2909–2919.Google Scholar
Monaghan, D. T., Olverman, H. J., Nguyen, L., et al. (1988) Two classes of N-methyl-d-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc Natl Acad Sci USA 85: 9836–9840.CrossRefGoogle Scholar
Monconduit, L., Bourgeais, L., Bernard, J. F., Bars, D., Villanueva, L. (1999) Ventromedial thalamic neurons convey nociceptive signals from the whole body surface to the dorsolateral neocortex. J Neurosci 19: 9063–9072.Google Scholar
Monteiro, A., French, V., Smit, G., Brakefield, P. M., Metz, J. A. (2001) Butterfly eyespot patterns: evidence for specification by a morphogen diffusion gradient. Acta Biotheor 49: 77–88.CrossRefGoogle Scholar
Mosconi, T. M., Rice, F. L. (1991) Sensory innervation of the mystacial pad fur of the ferret. Neurosci Lett 121: 199–202.CrossRefGoogle Scholar
Mountcastle, V. B. (1957) Modality and topographic properties of single neurons of cat's somatic sensory cortex. J Neurophysiol 20: 408–434.Google Scholar
Mountcastle, V. B., Powell, T. P. (1959) Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. Bull Johns Hopkins Hosp 105: 201–232.Google Scholar
Mountcastle, V. B., Davies, P. W., Berman, A. L. (1957) Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. J Neurophysiol 20: 374–407.Google Scholar
Muly, E. C., Maddox, M., Smith, Y. (2003) Distribution of mGluR1alpha and mGluR5 immunolabeling in primate prefrontal cortex. J Comp Neurol 467: 521–535.CrossRefGoogle Scholar
Munoz, A., Liu, X. B., Jones, E. G. (1999) Development of metabotropic glutamate receptors from trigeminal nuclei to barrel cortex in postnatal mouse. J Comp Neurol 409: 549–566.3.0.CO;2-I>CrossRefGoogle Scholar
Nadarajah, B., Parnavelas, J. G. (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3: 423–432.CrossRefGoogle Scholar
Nagerl, U. V., Eberhorn, N., Cambridge, S. B., Bonhoeffer, T. (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44: 759–767.CrossRefGoogle Scholar
Nakao, Y., Itoh, Y., Kuang, T. Y., et al. (2001) Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Proc Natl Acad Sci USA 98: 7593–7598.CrossRefGoogle Scholar
Nedivi, E., Wu, G. Y., Cline, H. T. (1998) Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281: 1863–1866.CrossRefGoogle Scholar
Neimark, M. A., Andermann, M. L., Hopfield, J. J., Moore, C. I. (2003) Vibrissa resonance as a transduction mechanism for tactile encoding. J Neurosci 23: 6499–6509.Google Scholar
Nicolelis, M. A., Chapin, J. K. (1994) Spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus. J Neurosci 14: 3511–3532.Google Scholar
Nicolelis, M. A., Chapin, J. K., Lin, R. C. (1991) Thalamic plasticity induced by early whisker removal in rats. Brain Res 561: 344–349.CrossRefGoogle Scholar
Nicolelis, M. A., Baccala, L. A., Lin, R. C., Chapin, J. K. (1995) Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268: 1353–1358.CrossRefGoogle Scholar
Nicolelis, M. A., Lin, R. C., Chapin, J. K. (1997) Neonatal whisker removal reduces the discrimination of tactile stimuli by thalamic ensembles in adult rats. J Neurophysiol 78: 1691–1706.Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., Kriegstein, A. R. (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7: 136–144.CrossRefGoogle Scholar
Nomura, S., Itoh, K., Sugimoto, T., et al. (1986) Mystacial vibrissae representation within the trigeminal sensory nuclei of the cat. J Comp Neurol 253:121–133.CrossRefGoogle Scholar
North, S., Moenner, M., Bikfalvi, A. (2005) Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett 218: 1–14.CrossRefGoogle Scholar
Olausson, B., Shyu, B. C., Rydenhag, B. (1989) Projection from the thalamic intralaminar nuclei on the isocortex of the rat: a surface potential study. Exp Brain Res 75: 543–554.CrossRefGoogle Scholar
Olavarria, J., Sluyters, R. C., Killackey, H. P. (1984) Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex. Brain Res 291: 364–368.CrossRefGoogle Scholar
Oliva, A. A. Jr., Jiang, M., Lam, T., Smith, K. L., Swann, J. W. (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20: 3354–3368.Google Scholar
Orr-Urtreger, A., Goldner, F. M., Saeki, M., et al. (1997) Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha-bungarotoxin binding sites and hippocampal fast nicotinic currents. J Neurosci 17: 9165–9171.Google Scholar
Oury, F., Murakami, Y., Renaud, J. S., et al. (2006) Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map. Science 313: 1408–1413.CrossRefGoogle Scholar
Pasternak, J. R., Woolsey, T. A. (1975) The number, size and spatial distribution of neurons in lamina IV of the mouse SmI neocortex. J Comp Neurol 160: 291–306.CrossRefGoogle Scholar
Paxinos, G., Watson, C. (1986) The Rat Brain in Sterotaxic Coordinates, 2nd edn. San Diego, CA: Academic Press.
Perez-Garci, E., Gassmann, M., Bettler, B., Larkum, M. E. (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2 + spikes in layer 5 somatosensory pyramidal neurons. Neuron 50: 603–616.CrossRefGoogle Scholar
Persico, A. M., Mengual, E., Moessner, R., et al. (2001) Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci 21: 6862–6873.Google Scholar
Peters, A., Harriman, K. M. (1988) Enigmatic bipolar cell of rat visual cortex. J Comp Neurol 267: 409–432.CrossRefGoogle Scholar
Peters, A., Jones, E. G. (1984) Cellular Components of the Cerebral Cortex. New York: Plenum.
Peters, A., Kimerer, L. M. (1981) Bipolar neurons in rat visual cortex: a combined Golgi–electron microscope study. J Neurocytol 10: 921–946.CrossRefGoogle Scholar
Petersen, C. C. (2002) Short-term dynamics of synaptic transmission within the excitatory neuronal network of rat layer 4 barrel cortex. J Neurophysiol 87: 2904–2914.Google Scholar
Petersen, C. C., Grinvald, A., Sakmann, B. (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23: 1298–1309.Google Scholar
Petersen, R. S., Diamond, M. E. (2000) Spatial-temporal distribution of whisker-evoked activity in rat somatosensory cortex and the coding of stimulus location. J Neurosci 20: 6135–6143.Google Scholar
Petralia, R. S., Wang, Y. X., Singh, S., et al. (1997) A monoclonal antibody shows discrete cellular and subcellular localizations of mGluR1 alpha metabotropic glutamate receptors. J Chem Neuroanat 13: 77–93.CrossRefGoogle Scholar
Petreanu, L. T., Shepherd, G. M. G., Svoboda, K. (2005) Laser-scanning photostimulation reveals that two classes of layer 5B neurons mediate distinct aspects of experience-dependent plasticity. Proceedings of the Annual Meeting of the Society for Neuroscience, Washington, DC, abstract 985.2.
Pierret, T., Lavallee, P., Deschenes, M. (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20: 7455–7462.Google Scholar
Pinto, D. J., Brumberg, J. C., Simons, D. J., Ermentrout, G. B. (1996) A quantitative population model of whisker barrels: re-examining the Wilson–Cowan equations. J Comput Neurosci 3: 247–264.CrossRefGoogle Scholar
Pinto, D. J., Brumberg, J. C., Simons, D. J. (2000) Circuit dynamics and coding strategies in rodent somatosensory cortex. J Neurophysiol 83: 1158–1166.Google Scholar
Pinto, D. J., Hartings, J. A., Brumberg, J. C., Simons, D. J. (2003) Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. Cereb Cortex 13: 33–44.CrossRefGoogle Scholar
Porter, J. T., Johnson, C. K., Agmon, A. (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21: 2699–2710.Google Scholar
Priest, C. A., Thompson, A. J., Keller, A. (2001) Gap junction proteins in inhibitory neurons of the adult barrel neocortex. Somatosens Mot Res 18: 245–252.Google Scholar
Rabow, L. E., Russek, S. J., Farb, D. H. (1995) From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 21: 189–274.CrossRefGoogle Scholar
Radnikow, G., Feldmeyer, D., Lubke, J. (2002) Axonal projection, input and output synapses, and synaptic physiology of Cajal–Retzius cells in the developing rat neocortex. J Neurosci 22: 6908–6919.Google Scholar
Rakic, P. (1971) Guidance of neurones migrating to the fetal monkey neocortex. Brain Research 33: 471–476.CrossRefGoogle Scholar
, Ramon yCajal, S. (1911) Histologie due Systeme Nerveux de l'Homme et des Vertebres. Paris: Maloine.
, Ramon yCajal, S. (1922) Studien uber die Sehrinde der Katze. J Psychol Neurol 29: 161–181.Google Scholar
Rao, Y., Fischer, Q. S., Yang, Y., et al. (2004) Reduced ocular dominance plasticity and long-term potentiation in the developing visual cortex of protein kinase A RII alpha mutant mice. Eur J Neurosci 20: 837–842.CrossRefGoogle Scholar
Rebsam, A., Seif, I., Gaspar, P. (2002) Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J Neurosci 22: 8541–8552.Google Scholar
Rema, V., Armstrong-James, M., Ebner, F. F. (1998) Experience-dependent plasticity of adult rat S1 cortex requires local NMDA receptor activation. J Neurosci 18: 10196–10206.Google Scholar
Rema, V., Armstrong-James, M., Jenkinson, N., Ebner, F. F. (2006) Short exposure to an enriched environment accelerates plasticity in the barrel cortex of adult rats. Neuroscience 140: 659–672.CrossRefGoogle Scholar
Ren, J. Q. (1991) [Stereological analysis of GABAergic neurons and calcium binding protein parvalbumin-containing neurons in the rat somatosensory cortex.]Fukuoka Igaku Zasshi 82: 659–670.Google Scholar
Ren, J. Q., Aika, Y., Heizmann, C. W., Kosaka, T. (1992) Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp Brain Res 92: 1–14.CrossRefGoogle Scholar
Reyes, A., Sakmann, B. (1999) Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. J Neurosci 19: 3827–3835.Google Scholar
Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P., Sakmann, B. (1998) Target-cell-specific facilitation and depression in neocortical circuits. Nat Neurosci 1: 279–285.Google Scholar
Rhoades, R. W., Strang, V., Bennett-Clarke, C. A., Killackey, H. P., Chiaia, N. L. (1997) Sensitive period for lesion-induced reorganization of intracortical projections within the vibrissae representation of rat's primary somatosensory cortex. J Comp Neurol 389: 185–192.3.0.CO;2-K>CrossRefGoogle Scholar
Rice, D. S., Curran, T. (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24: 1005–1039.CrossRefGoogle Scholar
Rice, F. L., Loos, H. (1977) Development of the barrels and barrel field in the somatosensory cortex of the mouse. J Comp Neurol 171: 545–560.CrossRefGoogle Scholar
Rice, F. L., Gomez, C., Barstow, C., Burnet, A., Sands, P. (1985) A comparative analysis of the development of the primary somatosensory cortex: interspecies similarities during barrel and laminar development. J Comp Neurol 236: 477–495.CrossRefGoogle Scholar
Rice, F. L., Mance, A., Munger, B. L. (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol 252: 154–174.Google Scholar
Rice, F. L., Kinnman, E., Aldskogius, H., Johansson, O., Arvidsson, J. (1993) The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence. J Comp Neurol 337: 366–385.CrossRefGoogle Scholar
Riddle, D. R., Purves, D. (1995) Individual variation and lateral asymmetry of the rat primary somatosensory cortex. J Neurosci 15: 4184–4195.Google Scholar
Riva, C., Ross, B., Benedek, G. B. (1972) Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol 11: 936–944.Google Scholar
Rocamora, N., Welker, E., Pascual, M., Soriano, E. (1996) Upregulation of BDNF mRNA expression in the barrel cortex of adult mice after sensory stimulation. J Neurosci 16: 4411–4419.Google Scholar
Rodgers, K. M., Benison, A. M., Barth, D. S. (2006) Two-dimensional coincidence detection in the vibrissa/barrel field. J Neurophysiol 96: 1981–1990.CrossRefGoogle Scholar
Roger, M., Cadusseau, J. (1984) Afferent connections of the nucleus posterior thalami in the rat, with some evolutionary and functional considerations. J Hirnforsch 25: 473–485.Google Scholar
Rovainen, C. M., Woolsey, T. A., Blocher, N. C., Wang, D. B., Robinson, O. F. (1993) Blood flow in single surface arterioles and venules on the mouse somatosensory cortex measured with videomicroscopy, fluorescent dextrans, nonoccluding fluorescent beads, and computer-assisted image analysis. J Cereb Blood Flow Metab 13: 359–371.CrossRefGoogle Scholar
Rozas, C., Frank, H., Heynen, A. J., et al. (2001) Developmental inhibitory gate controls the relay of activity to the superficial layers of the visual cortex. J Neurosci 21: 6791–6801.Google Scholar
Rumpel, S., Kattenstroth, G., Gottmann, K. (2004) Silent synapses in the immature visual cortex: layer-specific developmental regulation. J Neurophysiol 91: 1097–1101.Google Scholar
Sakurada, O., Sokoloff, L., Jacquet, Y. F. (1978) Local cerebral glucose utilization following injection of beta-endorphin into periaqueductal gray matter in the rat. Brain Res 153: 403–407.CrossRefGoogle Scholar
Salin, P. A., Prince, D. A. (1996) Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex. J Neurophysiol 75: 1589–1600.Google Scholar
Salminen, M., Meyer, B. I., Gruss, P. (1998) Efficient poly A trap approach allows the capture of genes specifically active in differentiated embryonic stem cells and in mouse embryos. Dev Dyn 212: 326–333.3.0.CO;2-1>CrossRefGoogle Scholar
Sawtell, N. B., Frenkel, M. Y., Philpot, B. D., et al. (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38: 977–985.CrossRefGoogle Scholar
Scheibel, M. E., Scheibel, A. B. (1967) Structural organization of nonspecific thalamic nuclei and their projection toward cortex. Brain Res 6: 60–94.CrossRefGoogle Scholar
Schlaggar, B. L., O'Leary, D. D. (1991) Potential of visual cortex to develop an array of functional units unique to somatosensory cortex. Science 252: 1556–1560.CrossRefGoogle Scholar
Schlaggar, B. L., O'Leary, D. D. (1994) Early development of the somatotopic map and barrel patterning in rat somatosensory cortex. J Comp Neurol 346: 80–96.CrossRefGoogle Scholar
Schlaggar, B. L., Fox, K., O'Leary, D. D. (1993) Postsynaptic control of plasticity in developing somatosensory cortex. Nature 364: 623–626.CrossRefGoogle Scholar
Schliebs, R., Walch, C., Stewart, M. G. (1989) Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography. J Hirnforsch 30: 303–311.Google Scholar
Schubert, D., Staiger, J. F., Cho, N., et al. (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21: 3580–3592.Google Scholar
Schubert, D., Kotter, R., Zilles, K., Luhmann, H. J., Staiger, J. F. (2003) Cell type-specific circuits of cortical layer IV spiny neurons. J Neurosci 23: 2961–2970.Google Scholar
Schubert, D., Kotter, R., Luhmann, H. J., Staiger, J. F. (2006b) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex 16: 223–236.Google Scholar
Schubert, V., Da Silva, J. S., Dotti, C. G. (2006a) Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner. J Cell Biol 172: 453–467.Google Scholar
Scott, B. B., Zaratin, P. F., Gilmartin, A. G., et al. (2005) TNF-alpha modulates angiopoietin-1 expression in rheumatoid synovial fibroblasts via the NF-kappa B signalling pathway. Biochem Biophys Res Commun 328: 409–414.CrossRefGoogle Scholar
Scott, H. L., Braud, S., Bannister, N. J., Isaac, J. T. (2007) Synaptic strength at the thalamocortical input to layer IV neonatal barrel cortex is regulated by protein kinase C. Neuropharmacology 52: 185–192.CrossRefGoogle Scholar
Seidenman, K. J., Steinberg, J. P., Huganir, R., Malinow, R. (2003) Glutamate receptor subunit 2 serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23: 9220–9228.Google Scholar
Senft, S. L., Woolsey, T. A. (1991) Growth of thalamic afferents into mouse barrel cortex. Cereb Cortex 1: 308–335.CrossRefGoogle Scholar
Shatz, C. J., Stryker, M. P. (1978) Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J Physiol 281: 267–283.CrossRefGoogle Scholar
Shepherd, G. M., Pologruto, T. A., Svoboda, K. (2003) Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38: 277–289.CrossRefGoogle Scholar
Shepherd, G. M., Stepanyants, A., Bureau, I., Chklovskii, D., Svoboda, K. (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8: 782–790.CrossRefGoogle Scholar
Sherman, S. M., Guillery, R. W. (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 357: 1695–1708.CrossRefGoogle Scholar
Sheth, S. A., Nemoto, M., Guiou, M., et al. (2004) Columnar specificity of microvascular oxygenation and volume responses: implications for functional brain mapping. J Neurosci 24: 634–641.CrossRefGoogle Scholar
Shi, Y., Ethell, I. M. (2006) Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2 +/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci 26: 1813–1822.CrossRefGoogle Scholar
Shimegi, S., Ichikawa, T., Akasaki, T., Sato, H. (1999) Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J Neurosci 19: 10164–10175.Google Scholar
Shimegi, S., Akasaki, T., Ichikawa, T., Sato, H. (2000) Physiological and anatomical organization of multiwhisker response interactions in the barrel cortex of rats. J Neurosci 20: 6241–6248.Google Scholar
Shimogori, T., Grove, E. A. (2005) Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J Neurosci 25: 6550–6560.CrossRefGoogle Scholar
Shipley, M. T. (1974) Response characteristics of single units in the rat's trigeminal nuclei to vibrissa displacements. J Neurophysiol 37: 73–90.Google Scholar
Shoykhet, M., Doherty, D., Simons, D. J. (2000) Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing. Somatosens Mot Res 17: 171–180.CrossRefGoogle Scholar
Sieghart, W. (2000) Unraveling the function of GABA(A) receptor subtypes. Trends Pharmacol Sci 21: 411–413.CrossRefGoogle Scholar
Sik, A., Penttonen, M., Ylinen, A., Buzsaki, G. (1995) Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 15: 6651–6665.Google Scholar
Silva, A. C., Zhang, W., Williams, D. S., Koretsky, A. P. (1995) Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling. Magn Reson Med 33: 209–214.CrossRefGoogle Scholar
Silva, A. J., Stevens, C. F., Tonegawa, S., Wang, Y. (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257: 201–206.CrossRefGoogle Scholar
Silver, R. A., Lubke, J., Sakmann, B., Feldmeyer, D. (2003) High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302: 1981–1984.CrossRefGoogle Scholar
Simons, D. J. (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41: 798–820.Google Scholar
Simons, D. J. (1985) Temporal and spatial integration in the rat SI vibrissa cortex. J Neurophysiol 54: 615–635.Google Scholar
Simons, D. J., Carvell, G. E. (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol 61: 311–330.Google Scholar
Simons, D. J., Land, P. W. (1987) Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature 326: 694–697.CrossRefGoogle Scholar
Simons, D. J., Land, P. W. (1994) Neonatal whisker trimming produces greater effects in nondeprived than deprived thalamic barreloids. J Neurophysiol 72: 1434–1437.Google Scholar
Simons, D. J., Woolsey, T. A. (1984) Morphology of Golgi–Cox-impregnated barrel neurons in rat SmI cortex. J Comp Neurol 230: 119–132.CrossRefGoogle Scholar
Simpson, K. L., Waterhouse, B. D., Lin, R. C. (2006) Characterization of neurochemically specific projections from the locus coeruleus with respect to somatosensory-related barrels. Anat Rec A Discov Mol Cell Evol Biol 288: 166–173.CrossRefGoogle Scholar
Sinclair, R. J., Burton, H. (1991) Tactile discrimination of gratings: psychophysical and neural correlates in human and monkey. Somatosens Mot Res 8: 241–248.CrossRefGoogle Scholar
Siucinska, E., Kossut, M. (2006) Short-term sensory learning does not alter parvalbumin neurons in the barrel cortex of adult mice: a double-labeling study. Neuroscience 138: 715–724.CrossRefGoogle Scholar
Sjostrom, P. J., Turrigiano, G. G., Nelson, S. B. (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39: 641–654.CrossRefGoogle Scholar
Sjostrom, P. J., Turrigiano, G. G., Nelson, S. B. (2004) Endocannabinoid-dependent neocortical layer-5 LTD in the absence of postsynaptic spiking. J Neurophysiol 92: 3338–3343.CrossRefGoogle Scholar
Skangiel-Kramska, J., Rajkowska, G., Kosmal, A., Kossut, M. (1992) The distribution of cholinergic muscarinic receptors in the dog frontal lobe. J Chem Neuroanat 5: 391–398.CrossRefGoogle Scholar
Sloper, J. J. (1972) Gap junctions between dendrites in the primate neocortex. Brain Res 44: 641–646.CrossRefGoogle Scholar
Solomon, J. H., Hartmann, M. J. (2006) Biomechanics: robotic whiskers used to sense features. Nature 443: 525.CrossRefGoogle Scholar
Somogyi, P., Tamas, G., Lujan, R., Buhl, E. H. (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26: 113–135.CrossRefGoogle Scholar
Son, H., Hawkins, R. D., Martin, K., et al. (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87: 1015–1023.CrossRefGoogle Scholar
Staiger, J. F., Zilles, K., Freund, T. F. (1996) Distribution of GABAergic elements postsynaptic to ventroposteromedial thalamic projections in layer IV of rat barrel cortex. Eur J Neurosci 8: 2273–2285.CrossRefGoogle Scholar
Staiger, J. F., Kotter, R., Zilles, K., Luhmann, H. J. (2000) Laminar characteristics of functional connectivity in rat barrel cortex revealed by stimulation with caged-glutamate. Neurosci Res 37: 49–58.CrossRefGoogle Scholar
Staiger, J. F., Flagmeyer, I., Schubert, D., et al. (2004) Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cereb Cortex 14: 690–701.CrossRefGoogle Scholar
Stanton, P. K., Sejnowski, T. J. (1989) Associative long-term depression in the hippocampus induced by hebbian covariance. Nature 339: 215–218.CrossRefGoogle Scholar
Steriade, M., Ropert, N., Kitsikis, A., Oaksen, G. (1981) Ascending Activating Neuronal Networks in Midbrain Reticular Core and Related Rostral Systems. New York: Raven Press.
Steriade, M., Deschenes, M., Domich, L., Mulle, C. (1985) Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54: 1473–1497.Google Scholar
Stern, E. A., Maravall, M., Svoboda, K. (2001) Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron 31: 305–315.CrossRefGoogle Scholar
Stern, M. D., Lappe, D. L., Bowen, P. D., et al. (1977) Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol 232: H441–H448.Google Scholar
Stettler, D. D., Yamahachi, H., Li, W., Denk, W., Gilbert, C. D. (2006) Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49: 877–887.CrossRefGoogle Scholar
Storm-Mathisen, J., Leknes, A. K., Bore, A. T., et al. (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301: 517–520.CrossRefGoogle Scholar
Stryker, M. P., Harris, W. A. (1986) Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J Neurosci 6: 2117–2133.Google Scholar
Sugino, K., Hempel, C. M., Miller, M. N., et al. (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9: 99–107.CrossRefGoogle Scholar
Swadlow, H. A. (2003) Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cereb Cortex 13: 25–32.CrossRefGoogle Scholar
Swadlow, H. A., Gusev, A. G. (2002) Receptive-field construction in cortical inhibitory interneurons. Nat Neurosci 5: 403–404.CrossRefGoogle Scholar
Szwed, M., Bagdasarian, K., Ahissar, E. (2003) Encoding of vibrissal active touch. Neuron 40: 621–630.CrossRefGoogle Scholar
Tabony, J. (1994) Morphological bifurcations involving reaction–diffusion processes during microtubule formation. Science 264: 245–248.CrossRefGoogle Scholar
Tailby, C., Wright, L. L., Metha, A. B., Calford, M. B. (2005) Activity-dependent maintenance and growth of dendrites in adult cortex. Proc Natl Acad Sci USA 102: 4631–4636.CrossRefGoogle Scholar
Takahashi, T., Svoboda, K., Malinow, R. (2003) Experience strengthening transmission by driving AMPA receptors into synapses. Science 299: 1585–1588.CrossRefGoogle Scholar
Tamas, G., Buhl, E. H., Lorincz, A., Somogyi, P. (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3: 366–371.CrossRefGoogle Scholar
Thomson, A. M., Bannister, A. P. (1999) Release-independent depression at pyramidal inputs onto specific cell targets: dual recordings in slices of rat cortex. J Physiol 519(Pt 1): 57–70.CrossRefGoogle Scholar
Thomson, A. M., Deuchars, J., West, D. C. (1993) Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. J Neurophysiol 70: 2354–2369.Google Scholar
Timofeeva, E., Merette, C., Emond, C., Lavallee, P., Deschenes, M. (2003) A map of angular tuning preference in thalamic barreloids. J Neurosci 23: 10717–10723.Google Scholar
Timofeeva, E., Lavallee, P., Arsenault, D., Deschenes, M. (2004) Synthesis of multiwhisker-receptive fields in subcortical stations of the vibrissa system. J Neurophysiol 91: 1510–1515.CrossRefGoogle Scholar
Toledo-Rodriguez, M., Goodman, P., Illic, M., Wu, C., Markram, H. (2005) Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J Physiol 567: 401–413.CrossRefGoogle Scholar
Trachtenberg, J. T., Chen, B. E., Knott, G. W., et al. (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420: 788–794.CrossRefGoogle Scholar
Trageser, J. C., Keller, A. (2004) Reducing the uncertainty: gating of peripheral inputs by zona incerta. J Neurosci 24: 8911–8915.CrossRefGoogle Scholar
Traub, R. D., Contreras, D., Cunningham, M. O., et al. (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93: 2194–2232.Google Scholar
Trettel, J., Levine, E. S. (2002) Cannabinoids depress inhibitory synaptic inputs received by layer 2/3 pyramidal neurons of the neocortex. J Neurophysiol 88: 534–539.Google Scholar
Trettel, J., Fortin, D. A., Levine, E. S. (2004) Endocannabinoid signalling selectively targets perisomatic inhibitory inputs to pyramidal neurones in juvenile mouse neocortex. J Physiol 556: 95–107.CrossRefGoogle Scholar
Tsodyks, M. V., Markram, H. (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94: 719–723.CrossRefGoogle Scholar
Turing, A. M. (1990) The chemical basis of morphogenesis, 1953. Bull Math Biol 52: 153–197; discussion 119–152. [Republication of the 1953 paper.]Google Scholar
Tyszkiewicz, J. P., Gu, Z., Wang, X., Cai, X., Yan, Z. (2004) Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex. J Physiol 554: 765–777.CrossRefGoogle Scholar
Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367: 1–48.CrossRefGoogle Scholar
Urban, J., Kossut, M., Hess, G. (2002) Long-term depression and long-term potentiation in horizontal connections of the barrel cortex. Eur J Neurosci 16: 1772–1776.CrossRefGoogle Scholar
Valcanis, H., Tan, S. S. (2003) Layer specification of transplanted interneurons in developing mouse neocortex. J Neurosci 23: 5113–5122.Google Scholar
Valverde, F. (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3: 337–352.CrossRefGoogle Scholar
Valverde, F. (1971) Rate and extent of recovery from dark rearing in the visual cortex of the mouse. Brain Res 33: 1–11.CrossRefGoogle Scholar
Loos, H. (1976) Neuronal circuitry and its development. Prog Brain Res 45: 259–278.CrossRefGoogle Scholar
Loos, H., Woolsey, T. A. (1973) Somatosensory cortex: structural alterations following early injury to sense organs. Science 179: 395–398.CrossRefGoogle Scholar
Loos, H., Welker, E., Dorfl, J., Rumo, G. (1986) Selective breeding for variations in patterns of mystacial vibrissae of mice. Bilaterally symmetrical strains derived from ICR stock. J Hered 77: 66–82.Google Scholar
Veinante, P., Deschenes, M. (1999) Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J Neurosci 19: 5085–5095.Google Scholar
Veinante, P., Jacquin, M. F., Deschenes, M. (2000) Thalamic projections from the whisker-sensitive regions of the spinal trigeminal complex in the rat. J Comp Neurol 420: 233–243.3.0.CO;2-T>CrossRefGoogle Scholar
Venance, L., Rozov, A., Blatow, M., et al. (2000) Connexin expression in electrically coupled postnatal rat brain neurons. Proc Natl Acad Sci USA 97: 10260–10265.CrossRefGoogle Scholar
Waite, P. M., Cragg, B. G. (1979) The effect of destroying the whisker follicles in mice on the sensory nerve, the thalamocortical radiation and cortical barrel development. Proc R Soc Lond B Biol Sci 204: 41–55.CrossRefGoogle Scholar
Waite, P. M., Cragg, B. G. (1982) The peripheral and central changes resulting from cutting or crushing the afferent nerve supply to the whiskers. Proc R Soc Lond B Biol Sci 214: 191–211.CrossRefGoogle Scholar
Waite, P. M., Jacquin, M. F. (1992) Dual innervation of the rat vibrissa: responses of trigeminal ganglion cells projecting through deep or superficial nerves. J Comp Neurol 322: 233–245.CrossRefGoogle Scholar
Waite, P. M., Taylor, P. K. (1978) Removal of whiskers in young rats causes functional changes in cerebral cortex. Nature 274: 600–602.CrossRefGoogle Scholar
Waite, P. M., Marotte, L. R., Mark, R. F. (1991) Development of whisker representation in the cortex of the tammar wallaby Macropus eugenii. Brain Res Dev Brain Res 58: 35–41.CrossRefGoogle Scholar
Waite, P. M., Li, L., Ashwell, K. W. (1992) Developmental and lesion induced cell death in the rat ventrobasal complex. Neuroreport 3: 485–488.CrossRefGoogle Scholar
Wall, P. D., Fitzgerald, M., Nussbaumer, J. C., Loos, H., Devor, M. (1982) Somatotopic maps are disorganized in adult rodents treated neonatally with capsaicin. Nature 295: 691–693.CrossRefGoogle Scholar
Wallace, H., Fox, K. (1999a) The effect of vibrissa deprivation pattern on the form of plasticity induced in rat barrel cortex. Somatosens Mot Res 16: 122–138.Google Scholar
Wallace, H., Fox, K. (1999b) Local cortical interactions determine the form of cortical plasticity. J Neurobiol 41: 58–63.Google Scholar
Wallace, H., Glazewski, S., Liming, K., Fox, K. (2001) The role of cortical activity in experience-dependent potentiation and depression of sensory responses in rat barrel cortex. J Neurosci 21: 3881–3894.Google Scholar
Walsh, C., Cepko, C. L. (1988) Clonally related cortical cells show several migration patterns. Science 241: 1342–1345.CrossRefGoogle Scholar
Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., Markram, H. (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12: 395–410.CrossRefGoogle Scholar
Wang, Y., Toledo-Rodriguez, M., Gupta, A., et al. (2004) Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol 561: 65–90.CrossRefGoogle Scholar
Watanabe, Y., Song, T., Sugimoto, K., et al. (2003) Post-synaptic density-95 promotes calcium/calmodulin-dependent protein kinase II-mediated Ser847 phosphorylation of neuronal nitric oxide synthase. Biochem J 372: 465–471.CrossRefGoogle Scholar
Watson, R. F., Abdel-Majid, R. M., Barnett, M. W., et al. (2006) Involvement of protein kinase A in patterning of the mouse somatosensory cortex. J Neurosci 26: 5393–5401.CrossRefGoogle Scholar
Wei, L., Rovainen, C. M., Woolsey, T. A. (1995) Ministrokes in rat barrel cortex. Stroke 26: 1459–1462.CrossRefGoogle Scholar
Wei, L., Erinjeri, J. P., Rovainen, C. M., Woolsey, T. A. (2001) Collateral growth and angiogenesis around cortical stroke. Stroke 32: 2179–2184.CrossRefGoogle Scholar
Welker, C. (1976) Receptive fields of barrels in the somatosensory neocortex of the rat. J Comp Neurol 166: 173–189.CrossRefGoogle Scholar
Welker, C., Woolsey, T. A. (1974) Structure of layer IV in the somatosensory neocortex of the rat: description and comparison with the mouse. J Comp Neurol 158: 437–453.CrossRefGoogle Scholar
Welker, E., Loos, H. (1986) Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae. J Neurosci 6: 3355–3373.Google Scholar
Welker, E., Hoogland, P. V., Loos, H. (1988) Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse. Exp Brain Res 73: 411–435.CrossRefGoogle Scholar
Welker, E., Armstrong-James, M., Bronchti, G., et al. (1996) Altered sensory processing in the somatosensory cortex of the mouse mutant barrelless. Science 271: 1864–1867.CrossRefGoogle Scholar
Welker, W. I. (1964) Analysis of sniffing of the the albino rat. Behaviour 12: 223–244.CrossRefGoogle Scholar
Weller, W. L. (1972) Barrels in somatic sensory neocortex of the marsupial Trichosurus vulpecula (brush-tailed possum). Brain Res 43: 11–24.CrossRefGoogle Scholar
Whitaker, V. R., Cui, L., Miller, S., Yu, S. P., Wei, L. (2007) Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice. J Cereb Blood Flow Metab 27: 57–68.CrossRefGoogle Scholar
White, E. L. (1978) Identified neurons in mouse Sml cortex which are postsynaptic to thalamocortical axon terminals: a combined Golgi–electron microscopic and degeneration study. J Comp Neurol 181: 627–661.CrossRefGoogle Scholar
White, E. L., DeAmicis, R. A. (1977) Afferent and efferent projections of the region in mouse SmL cortex which contains the posteromedial barrel subfield. J Comp Neurol 175: 455–482.CrossRefGoogle Scholar
White, E. L., Hersch, S. M. (1982) A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex. J Neurocytol 11: 137–157.CrossRefGoogle Scholar
White, E. L., Keller, A. (1987) Intrinsic circuitry involving the local axon collaterals of corticothalamic projection cells in mouse SmI cortex. J Comp Neurol 262: 13–26.CrossRefGoogle Scholar
White, E. L., Weinfeld, L., Lev, D. L. (1997) A survey of morphogenesis during the early postnatal period in PMBSF barrels of mouse SmI cortex with emphasis on barrel D4. Somatosens Mot Res 14: 34–55.CrossRefGoogle Scholar
Whitford, K. L., Dijkhuizen, P., Polleux, F., Ghosh, A. (2002) Molecular control of cortical dendrite development. Annu Rev Neurosci 25: 127–149.CrossRefGoogle Scholar
Wiesel, T. N., Hubel, D. H. (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28: 1029–1040.Google Scholar
Wilent, W. B., Contreras, D. (2004) Synaptic responses to whisker deflections in rat barrel cortex as a function of cortical layer and stimulus intensity. J Neurosci 24: 3985–3998.CrossRefGoogle Scholar
Wilent, W. B., Contreras, D. (2005) Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nat Neurosci 8: 1364–1370.CrossRefGoogle Scholar
Wilson, R. I., Nicoll, R. A. (2002) Endocannabinoid signaling in the brain. Science 296: 678–682.CrossRefGoogle Scholar
Woolsey, T. A. (1990) Peripheral Alteration and Somatosensory Development. New York: John Wiley.
Woolsey, T. A., Loos, H. (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17: 205–242.Google Scholar
Woolsey, T. A., Wann, J. R. (1976) Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages. J Comp Neurol 170: 53–66.CrossRefGoogle Scholar
Woolsey, T. A., Welker, C., Schwartz, R. H. (1975a) Comparative anatomical studies of the SmL face cortex with special reference to the occurrence of “barrels” in layer IV. J Comp Neurol 164: 79–94.Google Scholar
Woolsey, T. A., Dierker, M. L., Wann, D. F. (1975b) Mouse SmI cortex: qualitative and quantitative classification of Golgi-impregnated barrel neurons. Proc Natl Acad Sci USA 72: 2165–2169.Google Scholar
Woolsey, T. A., Rovainen, C. M., Cox, S. B., et al. (1996) Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. Cereb Cortex 6: 647–660.CrossRefGoogle Scholar
Woolston, D. C., Londe, J. R., Gibson, J. M. (1982) Comparison of response properties of cerebellar- and thalamic-projecting interpolaris neurons. J Neurophysiol 48: 160–173.Google Scholar
Wright, A. K., Norrie, L., Ingham, C. A., Hutton, E. A., Arbuthnott, G. W. (1999) Double anterograde tracing of outputs from adjacent “barrel columns” of rat somatosensory cortex. Neostriatal projection patterns and terminal ultrastructure. Neuroscience 88: 119–133.Google Scholar
Wright, A. K., Norrie, L., Arbuthnott, G. W. (2000) Corticofugal axons from adjacent “barrel” columns of rat somatosensory cortex: cortical and thalamic terminal patterns. J Anat 196 (Pt 3): 379–390.CrossRefGoogle Scholar
Xiang, Z., Huguenard, J. R., Prince, D. A. (1998) Cholinergic switching within neocortical inhibitory networks. Science 281: 985–988.CrossRefGoogle Scholar
Yamada, J., Furukawa, T., Ueno, S., Yamamoto, S., Fukuda, A. (2006) Molecular basis for the GABAA receptor-mediated tonic inhibition in rat somatosensory cortex. Cereb Cortex bhl087 (e-publication).
Yamakado, M. (1995) Remodelling in the array of cell aggregates in somatotopic representation of the facial vibrissae through the trigeminal sensory system of the mouse. Neurosci Res 23: 399–413.CrossRefGoogle Scholar
Yang, Y., Fischer, Q. S., Zhang, Y., et al. (2005) Reversible blockade of experience-dependent plasticity by calcineurin in mouse visual cortex. Nat Neurosci 8: 791–796.CrossRefGoogle Scholar
Yasuda, H., Barth, A. L., Stellwagen, D., Malenka, R. C. (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6: 15–16.Google Scholar
Yin, J. C., Wallach, J. S., Del Vecchio, M., et al. (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79: 49–58.CrossRefGoogle Scholar
Young-Davies, C. L., Bennett-Clarke, C. A., Lane, R. D., Rhoades, R. W. (2000) Selective facilitation of the serotonin(1B) receptor causes disorganization of thalamic afferents and barrels in somatosensory cortex of rat. J Comp Neurol 425: 130–138.3.0.CO;2-B>CrossRefGoogle Scholar
Yuste, R., Peinado, A., Katz, L. C. (1992) Neuronal domains in developing neocortex. Science 257: 665–669.CrossRefGoogle Scholar
Zhang, Z., Chopp, M. (2002) Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med 12: 62–66.CrossRefGoogle Scholar
Zhang, Z. W., Deschenes, M. (1997) Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 17: 6365–6379.Google Scholar
Zhu, J. J., Connors, B. W. (1999) Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J Neurophysiol 81: 1171–1183.Google Scholar
Zhu, Y., Stornetta, R. L., Zhu, J. J. (2004) Chandelier cells control excessive cortical excitation: characteristics of whisker-evoked synaptic responses of layer 2/3 nonpyramidal and pyramidal neurons. J Neurosci 24: 5101–5108.CrossRefGoogle Scholar
Zucker, E., Welker, W. I. (1969) Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion. Brain Res 12: 138–156.CrossRefGoogle Scholar
Zuo, Y., Yang, G., Kwon, E., Gan, W. B. (2005a) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436: 261–265.Google Scholar
Zuo, Y., Lin, A., Chang, P., Gan, W. B. (2005b) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46: 181–189.Google Scholar
Abbott, L. F., Regehr, W. G. (2004) Synaptic computation. Nature 431: 796–803.CrossRefGoogle Scholar
Abbott, L. F., Varela, J. A., Sen, K., Nelson, S. B. (1997) Synaptic depression and cortical gain control. Science 275: 220–224.CrossRefGoogle Scholar
Abdel-Majid, R. M., Leong, W. L., Schalkwyk, L. C., et al. (1998) Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nat Genet 19: 289–291.Google Scholar
Agmon, A., Connors, B. W. (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41: 365–379.CrossRefGoogle Scholar
Agmon, A., Connors, B. W. (1992) Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J Neurosci 12: 319–329.Google Scholar
Agmon, A., Hollrigel, G., O'Dowd, D. K. (1996) Functional GABAergic synaptic connection in neonatal mouse barrel cortex. J Neurosci 16: 4684–4695.Google Scholar
Ahissar, E., Kleinfeld, D. (2003) Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. Cereb Cortex 13: 53–62.CrossRefGoogle Scholar
Ahissar, E., Sosnik, R., Haidarliu, S. (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406: 302–306.CrossRefGoogle Scholar
Ahissar, E., Sosnik, R., Bagdasarian, K., Haidarliu, S. (2001) Temporal frequency of whisker movement. II. Laminar organization of cortical representations. J Neurophysiol 86: 354–367.Google Scholar
Airey, D. C., Wu, F., Guan, M., Collins, C. E. (2006) Geometric morphometrics defines shape differences in the cortical area map of C57BL/6J and DBA/2J inbred mice. BMC Neurosci 7: 63.Google Scholar
Alberini, C. M., Ghirardi, M., Metz, R., Kandel, E. R. (1994) C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76: 1099–1114.CrossRefGoogle Scholar
Allen, C. B., Celikel, T., Feldman, D. E. (2003) Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat Neurosci 6: 291–299.CrossRefGoogle Scholar
Alloway, K. D., Zhang, M., Chakrabarti, S. (2004) Septal columns in rodent barrel cortex: functional circuits for modulating whisking behavior. J Comp Neurol 480: 299–309.CrossRefGoogle Scholar
Amitai, Y., Gibson, J. R., Beierlein, M., et al. (2002) The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J Neurosci 22: 4142–4152.Google Scholar
Andermann, M. L., Moore, C. I. (2006) A somatotopic map of vibrissa motion direction within a barrel column. Nat Neurosci 9: 543–551.CrossRefGoogle Scholar
Anderson, P. A., Olavarria, J., Sluyters, R. C. (1988) The overall pattern of ocular dominance bands in cat visual cortex. J Neurosci 8: 2183–2200.Google Scholar
Antonini, A., Stryker, M. P. (1993) Rapid remodeling of axonal arbors in the visual cortex. Science 260: 1819–1821.CrossRefGoogle Scholar
Armstrong-James, M., Callahan, C. A. (1991) Thalamo-cortical processing of vibrissal information in the rat. II. Spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of S1 cortical “barrel” neurones. J Comp Neurol 303: 211–224.Google Scholar
Armstrong-James, M., Fox, K. (1987) Spatiotemporal convergence and divergence in the rat S1 “barrel” cortex. J Comp Neurol 263: 265–281.CrossRefGoogle Scholar
Armstrong-James, M., George, M. J. (1988) Influence of anesthesia on spontaneous activity and receptive field size of single units in rat Sm1 neocortex. Exp Neurol 99: 369–387.CrossRefGoogle Scholar
Armstrong-James, M., Callahan, C. A., Friedman, M. A. (1991) Thalamo-cortical processing of vibrissal information in the rat. I. Intracortical origins of surround but not centre-receptive fields of layer IV neurones in the rat S1 barrel field cortex. J Comp Neurol 303: 193–210.Google Scholar
Armstrong-James, M., Fox, K., Das-Gupta, A. (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol 68: 1345–1358.Google Scholar
Armstrong-James, M., Welker, E., Callahan, C. A. (1993) The contribution of NMDA and non-NMDA receptors to fast and slow transmission of sensory information in the rat SI barrel cortex. J Neurosci 13: 2149–2160.Google Scholar
Armstrong-James, M., Diamond, M. E., Ebner, F. F. (1994) An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons. J Neurosci 14: 6978–6991.Google Scholar
Arnold, P. B., Li, C. X., Waters, R. S. (2001) Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat. Exp Brain Res 136: 152–168.CrossRefGoogle Scholar
Aroniadou-Anderjaska, V., Keller, A. (1995) LTP in the barrel cortex of adult rats. Neuroreport 6: 2297–2300.CrossRefGoogle Scholar
Artola, A., Singer, W. (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330: 649–652.CrossRefGoogle Scholar
Artola, A., Brocher, S., Singer, W. (1990) Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347: 69–72.CrossRefGoogle Scholar
Arvidsson, J., Rice, F. L. (1991) Central projections of primary sensory neurons innervating different parts of the vibrissae follicles and intervibrissal skin on the mystacial pad of the rat. J Comp Neurol 309: 1–16.CrossRefGoogle Scholar
Ayata, C., Ma, J., Meng, W., Huang, P., Moskowitz, M. A. (1996) l-NA-sensitive rCBF augmentation during vibrissal stimulation in type III nitric oxide synthase mutant mice. J Cereb Blood Flow Metab 16: 539–541.CrossRefGoogle Scholar
Bailey, K. R., Mair, R. G. (2005) Lesions of specific and nonspecific thalamic nuclei affect prefrontal cortex-dependent aspects of spatial working memory. Behav Neurosci 119: 410–419.CrossRefGoogle Scholar
Baldi, A., Calia, E., Ciampini, A., et al. (2000) Deafferentation-induced apoptosis of neurons in thalamic somatosensory nuclei of the newborn rat: critical period and rescue from cell death by peripherally applied neurotrophins. Eur J Neurosci 12: 2281–2290.CrossRefGoogle Scholar
Banke, T. G., Bowie, D., Lee, H., et al. (2000) Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 20: 89–102.Google Scholar
Bannister, N. J., Benke, T. A., Mellor, J., et al. (2005) Developmental changes in AMPA and kainate receptor-mediated quantal transmission at thalamocortical synapses in the barrel cortex. J Neurosci 25: 5259–5271.CrossRefGoogle Scholar
Barria, A., Muller, D., Derkach, V., Griffith, L. C., Soderling, T. R. (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276: 2042–2045.CrossRefGoogle Scholar
Barrionuevo, G., Schottler, F., Lynch, G. (1980) The effects of repetitive low frequency stimulation on control and “potentiated” synaptic responses in the hippocampus. Life Sci 27: 2385–2391.CrossRefGoogle Scholar
Barth, A. L., McKenna, M., Glazewski, S., et al. (2000) Upregulation of cAMP response element-mediated gene expression during experience-dependent plasticity in adult neocortex. J Neurosci 20: 4206–4216.Google Scholar
Baumbach, G. L., Sigmund, C. D., Faraci, F. M. (2004) Structure of cerebral arterioles in mice deficient in expression of the gene for endothelial nitric oxide synthase. Circ Res 95: 822–829.CrossRefGoogle Scholar
Beierlein, M., Connors, B. W. (2002) Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex. J Neurophysiol 88: 1924–1932.Google Scholar
Beierlein, M., Gibson, J. R., Connors, B. W. (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3: 904–910.Google Scholar
Beierlein, M., Gibson, J. R., Connors, B. W. (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90: 2987–3000.CrossRefGoogle Scholar
Belford, G. R., Killackey, H. P. (1979) The development of vibrissae representation in subcortical trigeminal centers of the neonatal rat. J Comp Neurol 188: 63–74.CrossRefGoogle Scholar
Bellocchio, E. E., Hu, H., Pohorille, A., et al. (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18: 8648–8659.Google Scholar
Bender, V. A., Bender, K. J., Brasier, D. J., Feldman, D. E. (2006) Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J Neurosci 26: 4166–4177.CrossRefGoogle Scholar
Bennett-Clarke, C. A., Leslie, M. J., Chiaia, N. L., Rhoades, R. W. (1993) Serotonin 1B receptors in the developing somatosensory and visual cortices are located on thalamocortical axons. Proc Natl Acad Sci USA 90: 153–157.CrossRefGoogle Scholar
Bennett-Clarke, C. A., Leslie, M. J., Lane, R. D., Rhoades, R. W. (1994) Effect of serotonin depletion on vibrissa-related patterns of thalamic afferents in the rat's somatosensory cortex. J Neurosci 14: 7594–7607.Google Scholar
Benshalom, G., White, E. L. (1986) Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex. J Comp Neurol 253: 303–314.CrossRefGoogle Scholar
Berendse, H. W., Groenewegen, H. J. (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42: 73–102.CrossRefGoogle Scholar
Bernardo, K. L., Woolsey, T. A. (1987) Axonal trajectories between mouse somatosensory thalamus and cortex. J Comp Neurol 258: 542–564.CrossRefGoogle Scholar
Bernardo, K. L., Ma, P. M., Woolsey, T. A. (1986) In vitro labeling of axonal projections in the mammalian central nervous system. J Neurosci Meth 16: 89–101.CrossRefGoogle Scholar
Bernardo, K. L., McCasland, J. S., Woolsey, T. A., Strominger, R. N. (1990a) Local intra- and interlaminar connections in mouse barrel cortex. J Comp Neurol 291: 231–255.Google Scholar
Bernardo, K. L., McCasland, J. S., Woolsey, T. A. (1990b) Local axonal trajectories in mouse barrel cortex. Exp Brain Res 82: 247–253.Google Scholar
Berwick, J., Martin, C., Martindale, J., et al. (2002) Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex. J Cereb Blood Flow Metab 22: 670–679.CrossRefGoogle Scholar
Bina, K. G., Guzman, P., Broide, R. S., et al. (1995) Localization of alpha 7 nicotinic receptor subunit mRNA and alpha-bungarotoxin binding sites in developing mouse somatosensory thalamocortical system. J Comp Neurol 363: 321–332.CrossRefGoogle Scholar
Bindman, L. J., Murphy, K. P., Pockett, S. (1988) Postsynaptic control of the induction of long-term changes in efficacy of transmission at neocortical synapses in slices of rat brain. J Neurophysiol 60: 1053–1065.Google Scholar
Binshtok, A. M., Fleidervish, I. A., Sprengel, R., Gutnick, M. J. (2006) NMDA receptors in layer 4 spiny stellate cells of the mouse barrel cortex contain the NR2 C subunit. J Neurosci 26: 708–715.CrossRefGoogle Scholar
Bisler, S., Schleicher, A., Gass, P., et al. (2002) Expression of c-Fos, ICER, Krox-24 and JunB in the whisker-to-barrel pathway of rats: time course of induction upon whisker stimulation by tactile exploration of an enriched environment. J Chem Neuroanat 23: 187–198.CrossRefGoogle Scholar
Bjaalie, J. G., Grillner, S. (2007) Global informatics: the International Neuroinformatics Coordinating Facility. J Neurosci 27: 3613–3615.CrossRefGoogle Scholar
Blackstone, C., Sheng, M. (1999) Protein targeting and calcium signaling microdomains in neuronal cells. Cell Calcium 26: 181–192.CrossRefGoogle Scholar
Bliss, T. V., Lomo, T. (1970) Plasticity in a monosynaptic cortical pathway. J Physiol 207: 61P.Google Scholar
Bliss, T. V., Lomo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356.CrossRefGoogle Scholar
Blue, M. E., Martin, L. J., Brennan, E. M., Johnston, M. V. (1997) Ontogeny of non-NMDA glutamate receptors in rat barrel field cortex: I. Metabotropic receptors. J Comp Neurol 386: 16–28.Google Scholar
Bodor, A. L., Katona, I., Nyiri, G., et al. (2005) Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J Neurosci 25: 6845–6856.CrossRefGoogle Scholar
Boehm, J., Kang, M. G., Johnson, R. C., et al. (2006) Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51: 213–225.CrossRefGoogle Scholar
Bourassa, J., Pinault, D., Deschenes, M. (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci 7: 19–30.CrossRefGoogle Scholar
Bourtchuladze, R., Frenguelli, B., Blendy, J., et al. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79: 59–68.CrossRefGoogle Scholar
Boylan, C. B., Bennett-Clarke, C. A., Crissman, R. S., Mooney, R. D., Rhoades, R. W. (2000) Clorgyline treatment elevates cortical serotonin and temporarily disrupts the vibrissae-related pattern in rat somatosensory cortex. J Comp Neurol 427: 139–149.3.0.CO;2-K>CrossRefGoogle Scholar
Bramham, C. R., Srebro, B. (1987) Induction of long-term depression and potentiation by low- and high-frequency stimulation in the dentate area of the anesthetized rat: magnitude, time course and EEG. Brain Res 405: 100–107.CrossRefGoogle Scholar
Brecht, M., Schneider, M., Sakmann, B., Margrie, T. W. (2004) Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427: 704–710.CrossRefGoogle Scholar
Bredt, D. S., Ferris, C. D., Snyder, S. H. (1992) Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem 267: 10976–10981.Google Scholar
Brodmann, K. (1909) Vergleichende Lokalisationlehre der Grosshirnrinde. Leipzig: Barth.
Broide, R. S., Robertson, R. T., Leslie, F. M. (1996) Regulation of alpha7 nicotinic acetylcholine receptors in the developing rat somatosensory cortex by thalamocortical afferents. J Neurosci 16: 2956–2971.Google Scholar
Brown, C. E., Dyck, R. H. (2003) Experience-dependent regulation of synaptic zinc is impaired in the cortex of aged mice. Neuroscience 119: 795–801.CrossRefGoogle Scholar
Brumberg, J. C., Pinto, D. J., Simons, D. J. (1996) Spatial gradients and inhibitory summation in the rat whisker barrel system. J Neurophysiol 76: 130–140.Google Scholar
Bruno, R. M., Sakmann, B. (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312: 1622–1627.CrossRefGoogle Scholar
Bruno, R. M., Simons, D. J. (2002) Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J Neurosci 22: 10966–10975.Google Scholar
Bruno, R. M., Khatri, V., Land, P. W., Simons, D. J. (2003) Thalamocortical angular tuning domains within individual barrels of rat somatosensory cortex. J Neurosci 23: 9565–9574.Google Scholar
Bugbee, N. M., Goldman-Rakic, P. S. (1983) Columnar organization of corticocortical projections in squirrel and rhesus monkeys: similarity of column width in species differing in cortical volume. J Comp Neurol 220: 355–364.CrossRefGoogle Scholar
Buhl, E. H., Tamas, G., Fisahn, A. (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513: 117–126.CrossRefGoogle Scholar
Bureau, I., Saint Paul, F., Svoboda, K. (2006) Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol 4: e382.CrossRefGoogle Scholar
Calford, M. B., Tweedale, R. (1991a) Immediate expansion of receptive fields of neurons in area 3b of macaque monkeys after digit denervation. Somatosens Mot Res 8: 249–260.Google Scholar
Calford, M. B., Tweedale, R. (1991b) Acute changes in cutaneous receptive fields in primary somatosensory cortex after digit denervation in adult flying fox. J Neurophysiol 65: 178–187.Google Scholar
Calford, M. B., Tweedale, R. (1991c) C-fibres provide a source of masking inhibition to primary somatosensory cortex. Proc Biol Sci 243: 269–275.Google Scholar
Calia, E., Persico, A. M., Baldi, A., Keller, F. (1998) BDNF and NT-3 applied in the whisker pad reverse cortical changes after peripheral deafferentation in neonatal rats. Eur J Neurosci 10: 3194–3200.CrossRefGoogle Scholar
Canolty, R. T., Edwards, E., Dalal, S. S., et al. (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313: 1626–1628.CrossRefGoogle Scholar
Cantallops, I., Haas, K., Cline, H. T. (2000) Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nat Neurosci 3: 1004–1011.Google Scholar
Carmichael, S. T., Wei, L., Rovainen, C. M., Woolsey, T. A. (2001) New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis 8: 910–922.CrossRefGoogle Scholar
Carpenter, G. A., Milenova, B. L. (2002) Redistribution of synaptic efficacy supports stable pattern learning in neural networks. Neural Comput 14: 873–888.CrossRefGoogle Scholar
Carroll, S. B., Gates, J., Keys, D. N., et al. (1994) Pattern formation and eyespot determination in butterfly wings. Science 265: 109–114.CrossRefGoogle Scholar
Carvell, G. E., Simons, D. J. (1995) Task- and subject-related differences in sensorimotor behavior during active touch. Somatosens Mot Res 12: 1–9.CrossRefGoogle Scholar
Carvell, G. E., Simons, D. J. (1996) Abnormal tactile experience early in life disrupts active touch. J Neurosci 16: 2750–2757.Google Scholar
Cases, O., Seif, I., Grimsby, J., et al. (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268: 1763–1766.CrossRefGoogle Scholar
Cases, O., Vitalis, T., Seif, I., et al. (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16: 297–307.CrossRefGoogle Scholar
Castro-Alamancos, M. A., Donoghue, J. P., Connors, B. W. (1995) Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci 15: 5324–5333.Google Scholar
Catalano, S. M., Robertson, R. T., Killackey, H. P. (1996) Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J Comp Neurol 367: 36–53.3.0.CO;2-K>CrossRefGoogle Scholar
Catania, K. C., Kaas, J. H. (1997) Organization of somatosensory cortex and distribution of corticospinal neurons in the eastern mole (Scalopus aquaticus). J Comp Neurol 378: 337–353.3.0.CO;2-4>CrossRefGoogle Scholar
Celikel, T., Szostak, V. A., Feldman, D. E. (2004) Modulation of spike timing by sensory deprivation during induction of cortical map plasticity. Nat Neurosci 7: 534–541.CrossRefGoogle Scholar
Chagnac-Amitai, Y., Connors, B. W. (1989) Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol 62: 1149–1162.Google Scholar
Chagnac-Amitai, Y., Luhmann, H. J., Prince, D. A. (1990) Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features. J Comp Neurol 296: 598–613.CrossRefGoogle Scholar
Chakrabarti, S., Alloway, K. D. (2006) Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI. J Comp Neurol 498: 624–636.CrossRefGoogle Scholar
Chapman, P. F., White, G. L., Jones, M. W., et al. (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2: 271–276.Google Scholar
Chen, B. E., Lendvai, B., Nimchinsky, E. A., et al. (2000) Imaging high-resolution structure of GFP-expressing neurons in neocortex in vivo. Learn Mem 7: 433–441.CrossRefGoogle Scholar
Chesler, E. J., Lu, L., Shou, S., et al. (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37: 233–242.CrossRefGoogle Scholar
Chiaia, N. L., Rhoades, R. W., Bennett-Clarke, C. A., Fish, S. E., Killackey, H. P. (1991) Thalamic processing of vibrissal information in the rat. I. Afferent input to the medial ventral posterior and posterior nuclei. J Comp Neurol 314: 201–216.Google Scholar
Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A., Rhoades, R. W. (1992) Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat's somatosensory cortex. Brain Res Dev Brain Res 66: 244–250.CrossRefGoogle Scholar
Chiaia, N. L., Zhang, S., Crissman, R. S., Rhoades, R. W. (2000) Effects of neonatal axoplasmic transport attenuation on the response properties of vibrissae-sensitive neurons in the trigeminal principal sensory nucleus of the rat. Somatosens Mot Res 17: 273–283.Google Scholar
Cho, K., Aggleton, J. P., Brown, M. W., Bashir, Z. I. (2001) An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol 532: 459–466.CrossRefGoogle Scholar
Clark, S. A., Allard, T., Jenkins, W. M., Merzenich, M. M. (1988) Receptive fields in the body-surface map in adult cortex defined by temporally correlated inputs. Nature 332: 444–445.CrossRefGoogle Scholar
Clem, R. L., Barth, A. (2006) Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron 49: 663–670.CrossRefGoogle Scholar
Clements, T. N., Rahn, C. D. (2006) Three-dimensional contact imaging with an actuated whisker. IEEE Trans Robotics 22: 844–848.CrossRefGoogle Scholar
Cline, H. T., Debski, E. A., Constantine-Paton, M. (1987) N-Methyl-d-aspartate receptor antagonist desegregates eye-specific stripes. Proc Natl Acad Sci USA 84: 4342–4345.CrossRefGoogle Scholar
Cohen-Tannoudji, M., Morello, D., Babinet, C. (1992) Unexpected position-dependent expression of H-2 and beta 2-microglobulin/lacZ transgenes. Mol Reprod Dev 33: 149–159.CrossRefGoogle Scholar
Cohen-Tannoudji, M., Babinet, C., Wassef, M. (1994) Early determination of a mouse somatosensory cortex marker. Nature 368: 460–463.CrossRefGoogle Scholar
Conn, P. J., Pin, J. P. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37: 205–237.CrossRefGoogle Scholar
Connors, B. W., Kriegstein, A. R. (1986) Cellular physiology of the turtle visual cortex: distinctive properties of pyramidal and stellate neurons. J Neurosci 6: 164–177.Google Scholar
Connors, B. W., Benardo, L. S., Prince, D. A. (1983) Coupling between neurons of the developing rat neocortex. J Neurosci 3: 773–782.Google Scholar
Constantine-Paton, M., Law, M. I. (1978) Eye-specific termination bands in tecta of three-eyed frogs. Science 202: 639–641.CrossRefGoogle Scholar
Cooper, N. G., Steindler, D. A. (1986) Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse. J Comp Neurol 249: 157–169.CrossRefGoogle Scholar
Couve, A., Moss, S. J., Pangalos, M. N. (2000) GABAB receptors: a new paradigm in G protein signaling. Mol Cell Neurosci 16: 296–312.CrossRefGoogle Scholar
Cowan, A. I., Stricker, C. (2004) Functional connectivity in layer IV local excitatory circuits of rat somatosensory cortex. J Neurophysiol 92: 2137–2150.CrossRefGoogle Scholar
Cox, S. B., Woolsey, T. A., Rovainen, C. M. (1993) Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab 13: 899–913.CrossRefGoogle Scholar
Crabtree, J. W., Collingridge, G. L., Isaac, J. T. (1998) A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus. Nat Neurosci 1: 389–394.CrossRefGoogle Scholar
Crair, M. C., Malenka, R. C. (1995) A critical period for long-term potentiation at thalamocortical synapses. Nature 375: 325–328.CrossRefGoogle Scholar
Crochet, S., Petersen, C. C. (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9: 608–610.CrossRefGoogle Scholar
Cruikshank, S., Lewis, T., Connors, B. W. (2007) Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10: 462–468.CrossRefGoogle Scholar
Cunningham, M. O., Whittington, M. A., Bibbig, A., et al. (2004) A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proc Natl Acad Sci USA 101: 7152–7157.CrossRefGoogle Scholar
Cybulska-Klosowicz, A., Zakrzewska, R., Pyza, E., Kossut, M., Schachner, M. (2004) Reduced plasticity of cortical whisker representation in adult tenascin-C-deficient mice after vibrissectomy. Eur J Neurosci 20: 1538–1544.CrossRefGoogle Scholar
D'Alcantara, P., Schiffmann, S. N., Swillens, S. (2003) Bidirectional synaptic plasticity as a consequence of interdependent Ca2 + -controlled phosphorylation and dephosphorylation pathways. Eur J Neurosci 17: 2521–2528.CrossRefGoogle Scholar
Dagnew, E., Latchamsetty, K., Erinjeri, J. P., et al. (2003) Glutamate receptor blockade alters the development of intracortical connections in rat barrel cortex. Somatosens Mot Res 20: 77–84.CrossRefGoogle Scholar
Dale, A., Fortin, D. A., Levine, E. S. (2007) Differential effects of endocannabinoids on glutamatergic and GABAergic inputs to layer 5 pyramidal neurons. Cereb Cortex 17: 163–174.Google Scholar
Datwani, A., Iwasato, T., Itohara, S., Erzurumlu, R. S. (2002) Lesion-induced thalamocortical axonal plasticity in the S1 cortex is independent of NMDA receptor function in excitatory cortical neurons. J Neurosci 22: 9171–9175.Google Scholar
Davis, B. M., Fundin, B. T., Albers, K. M., et al. (1997) Overexpression of nerve growth factor in skin causes preferential increases among innervation to specific sensory targets. J Comp Neurol 387: 489–506.3.0.CO;2-Z>CrossRefGoogle Scholar
Davis, H. P., Squire, L. R. (1984) Protein synthesis and memory: a review. Psychol Bull 96: 518–559.CrossRefGoogle Scholar
Davis, T. L., Kwong, K. K., Weisskoff, R. M., Rosen, B. R. (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95: 1834–1839.CrossRefGoogle Scholar
Daw, M. I., Bannister, N. V., Isaac, J. T. (2006) Rapid, activity-dependent plasticity in timing precision in neonatal barrel cortex. J Neurosci 26: 4178–4187.CrossRefGoogle Scholar
Daw, N. W., Gordon, B., Fox, K. D., et al. (1999) Injection of MK-801 affects ocular dominance shifts more than visual activity. J Neurophysiol 81: 204–215.Google Scholar
Felipe, J., Marco, P., Fairen, A., Jones, E. G. (1997) Inhibitory synaptogenesis in mouse somatosensory cortex. Cereb Cortex 7: 619–634.CrossRefGoogle Scholar
Paola, V., Holtmaat, A., Knott, G., et al. (2006) Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49: 861–875.CrossRefGoogle Scholar
Deans, M. R., Gibson, J. R., Sellitto, C., Connors, B. W., Paul, D. L. (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31: 477–485.CrossRefGoogle Scholar
Dempsey, E., Morison, R. (1943) Electrical activity of the thalamocortical relay system. Am J Physiol 138: 283–296.Google Scholar
Derdikman, D., Yu, C., Haidarliu, S., et al. (2006) Layer-specific touch-dependent facilitation and depression in the somatosensory cortex during active whisking. J Neurosci 26: 9538–9547.CrossRefGoogle Scholar
Derkach, V., Barria, A., Soderling, T. R. (1999) Ca2 + /calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA 96: 3269–3274.CrossRefGoogle Scholar
Descarries, L., Lemay, B., Doucet, G., Berger, B. (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21: 807–824.CrossRefGoogle Scholar
Deschenes, M., Bourassa, J., Parent, A. (1995) Two different types of thalamic fibers innervate the rat striatum. Brain Res 701: 288–292.CrossRefGoogle Scholar
Deschenes, M., Veinante, P., Zhang, Z. W. (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev 28: 286–308.CrossRefGoogle Scholar
Diamond, M. E. (1995) Somatosensory Thalamus of the Rat. London: Plenum.
Diamond, M. E., Armstrong-James, M., Ebner, F. F. (1992a) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318: 462–476.Google Scholar
Diamond, M. E., Armstrong-James, M., Budway, M. J., Ebner, F. F. (1992b) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: dependence on the barrel field cortex. J Comp Neurol 319: 66–84.Google Scholar
Diamond, M. E., Armstrong-James, M., Ebner, F. F. (1993) Experience-dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci USA 90: 2082–2086.CrossRefGoogle Scholar
Dirnagl, U., Niwa, K., Lindauer, U., Villringer, A. (1994) Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide. Am J Physiol 267: H296–301.Google Scholar
Dodt, H. U., Schierloh, A., Eder, M., Zieglgansberger, W. (2003) Circuitry of rat barrel cortex investigated by infrared-guided laser stimulation. Neuroreport 14: 623–627.CrossRefGoogle Scholar
Dorfl, J. (1985) The innervation of the mystacial region of the white mouse: A topographical study. J Anat 142: 173–184.Google Scholar
Dudek, S. M., Bear, M. F. (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proc Natl Acad Sci USA 89: 4363–4367.CrossRefGoogle Scholar
Dunn-Meynell, A. A., Levin, B. E. (1993) Alpha 1-adrenoceptors in the adult rat barrel field: effects of deafferentation and norepinephrine removal. Brain Res 623: 25–32.CrossRefGoogle Scholar
Durham, D., Woolsey, T. A. (1984) Effects of neonatal whisker lesions on mouse central trigeminal pathways. J Comp Neurol 223: 424–447.CrossRefGoogle Scholar
Eckersley, P., Egan, G. F., Amari, S., et al. (2003) Neuroscience data and tool sharing: a legal and policy framework for neuroinformatics. Neuroinformatics 1: 149–165.CrossRefGoogle Scholar
Ehrlich, I., Malinow, R. (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 24: 916–927.CrossRefGoogle Scholar
Ekerot, C. F., Kano, M. (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res 342: 357–360.CrossRefGoogle Scholar
Eliceiri, B. P., Cheresh, D. A. (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13: 563–568.CrossRefGoogle Scholar
Engert, F., Bonhoeffer, T. (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399: 66–70.Google Scholar
Ericson, J., Muhr, J., Placzek, M., et al. (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81: 747–756.CrossRefGoogle Scholar
Ericson, J., Morton, S., Kawakami, A., Roelink, H., Jessell, T. M. (1996) Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87: 661–673.CrossRefGoogle Scholar
Erzurumlu, R. S., Jhaveri, S. (1990) Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex. Brain Res Dev Brain Res 56: 229–234.CrossRefGoogle Scholar
Erzurumlu, R. S., Killackey, H. P. (1983) Development of order in the rat trigeminal system. J Comp Neurol 213: 365–380.CrossRefGoogle Scholar
Fabri, M., Burton, H. (1991) Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 311: 405–424.CrossRefGoogle Scholar
Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L., Maffei, L. (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34: 709–720.CrossRefGoogle Scholar
Fairen, A., DeFelipe, J., Regidor, J. (1984) Cellular Components of the Cerebral Cortex. New York: Plenum.
Favorov, O. V., Diamond, M. E., Whitsel, B. L. (1987) Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of cat. Proc Natl Acad Sci USA 84: 6606–6610.CrossRefGoogle Scholar
Fee, M. S., Mitra, P. P., Kleinfeld, D. (1997) Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J Neurophysiol 78: 1144–1149.Google Scholar
Feldman, D. E. (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27: 45–56.CrossRefGoogle Scholar
Feldman, D. E., Brecht, M. (2005) Map plasticity in somatosensory cortex. Science 310: 810–815.CrossRefGoogle Scholar
Feldman, D. E., Nicoll, R. A., Malenka, R. C., Isaac, J. T. (1998) Long-term depression at thalamocortical synapses in developing rat somatosensory cortex. Neuron 21: 347–357.CrossRefGoogle Scholar
Feldman, M. L. (1984) Morphology of the Neocortical Pyramidal Neuron. New York: Plenum.
Feldmeyer, D., Sakmann, B. (2000) Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. J Physiol 525: 31–39.CrossRefGoogle Scholar
Feldmeyer, D., Egger, V., Lubke, J., Sakmann, B. (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single “barrel” of developing rat somatosensory cortex. J Physiol 521: 169–190.CrossRefGoogle Scholar
Feldmeyer, D., Lubke, J., Silver, R. A., Sakmann, B. (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 538: 803–822.CrossRefGoogle Scholar
Feldmeyer, D., Roth, A., Sakmann, B. (2005) Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5 A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J Neurosci 25: 3423–3431.CrossRefGoogle Scholar
Feldmeyer, D., Lubke, J., Sakmann, B. (2006) Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol 575: 583–602.CrossRefGoogle Scholar
Ferezou, I., Bolea, S., Petersen, C. C. (2006) Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50: 617–629.CrossRefGoogle Scholar
Ferster, D. (1986) Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. J Neurosci 6: 1284–1301.Google Scholar
Finnerty, G. T., Roberts, L. S., Connors, B. W. (1999) Sensory experience modifies the short-term dynamics of neocortical synapses. Nature 400: 367–371.Google Scholar
Fischer, M., Kaech, S., Knutti, D., Matus, A. (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20: 847–854.CrossRefGoogle Scholar
Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H., Matus, A. (2000) Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat Neurosci 3: 887–894.Google Scholar
Fischer, Q. S., Beaver, C. J., Yang, Y., et al. (2004) Requirement for the RIIbeta isoform of PKA, but not calcium-stimulated adenylyl cyclase, in visual cortical plasticity. J Neurosci 24: 9049–9058.CrossRefGoogle Scholar
Flint, J., Valdar, W., Shifman, S., Mott, R. (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6: 271–286.CrossRefGoogle Scholar
Foehring, R. C., Brederode, J. F., Kinney, G. A., Spain, W. J. (2002) Serotonergic modulation of supragranular neurons in rat sensorimotor cortex. J Neurosci 22: 8238–8250.Google Scholar
Fox, K. (1992) A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J Neurosci 12: 1826–1838.Google Scholar
Fox, K. (1994) The cortical component of experience-dependent synaptic plasticity in the rat barrel cortex. J Neurosci 14: 7665–7679.Google Scholar
Fox, K. (1995) The critical period for long-term potentiation in primary sensory cortex. Neuron 15: 485–488.CrossRefGoogle Scholar
Fox, K. (1996) The role of excitatory amino acid transmission in development and plasticity of SI barrel cortex. Prog Brain Res 108: 219–234.CrossRefGoogle Scholar
Fox, K. (2002) Pathways and mechanisms for plasticity in the barrel cortex. Neuroscience 111: 799–84.CrossRefGoogle Scholar
Fox, K., Armstrong-James, M. (1986) The role of the anterior intralaminar nuclei and N-methyl-d-aspartate receptors in the generation of spontaneous bursts in rat neocortical neurones. Exp Brain Res 63: 505–518.CrossRefGoogle Scholar
Fox, K., Sato, H., Daw, N. (1989) The location and function of NMDA receptors in cat and kitten visual cortex. J Neurosci 9: 2443–2454.Google Scholar
Fox, K., Schlaggar, B. L., Glazewski, S., O'Leary, D. D. (1996a) Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. Proc Natl Acad Sci USA 93: 5584–5589.Google Scholar
Fox, K., Glazewski, S., Chen, C. M., Silva, A., Li, X. (1996b) Mechanisms underlying experience-dependent potentiation and depression of vibrissae responses in barrel cortex. J Physiol (Paris) 90: 263–269.Google Scholar
Fox, K., Wallace, H., Glazewski, S. (2002) Is there a thalamic component to experience-dependent cortical plasticity?Philos Trans R Soc Lond B Biol Sci 357: 1709–1715.Google Scholar
Fox, K., Wright, N., Wallace, H., Glazewski, S. (2003) The origin of cortical surround receptive fields studied in the barrel cortex. J Neurosci 23: 8380–8391.Google Scholar
Frankland, P. W., Bontempi, B., Talton, L. E., Kaczmarek, L., Silva, A. J. (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304: 881–883.CrossRefGoogle Scholar
Fremeau, R. T. Jr., Troyer, M. D., Pahner, I., et al. (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31: 247–260.CrossRefGoogle Scholar
Friedberg, M. H., Lee, S. M., Ebner, F. F. (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81: 2243–2252.Google Scholar
Friedberg, M. H., Lee, S. M., Ebner, F. F. (2004) The contribution of the principal and spinal trigeminal nuclei to the receptive field properties of thalamic VPM neurons in the rat. J Neurocytol 33: 75–85.CrossRefGoogle Scholar
Froc, D. J., Racine, R. J. (2005) Interactions between LTP- and LTD-inducing stimulation in the sensorimotor cortex of the awake freely moving rat. J Neurophysiol 93: 548–556.Google Scholar
Fukuchi-Shimogori, T., Grove, E. A. (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294: 1071–1074.CrossRefGoogle Scholar
Fundin, B. T., Pfaller, K., Rice, F. L. (1997) Different distributions of the sensory and autonomic innervation among the microvasculature of the rat mystacial pad. J Comp Neurol 389: 545–568.3.0.CO;2-0>CrossRefGoogle Scholar
Gabernet, L., Jadhav, S. P., Feldman, D. E., Carandini, M., Scanziani, M. (2005) Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48: 315–327.CrossRefGoogle Scholar
Galarreta, M., Hestrin, S. (2001) Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci 2: 425–433.CrossRefGoogle Scholar
Garabedian, C. E., Jones, S. R., Merzenich, M. M., Dale, A., Moore, C. I. (2003) Band-pass response properties of rat SI neurons. J Neurophysiol 90: 1379–1391.CrossRefGoogle Scholar
Gehring, W. J. (1987) Homeo boxes in the study of development. Science 236: 1245–1252.CrossRefGoogle Scholar
Gehring, W. J. (1993) Exploring the homeobox. Gene 135: 215–221.CrossRefGoogle Scholar
Gerrits, R. J., Stein, E. A., Greene, A. S. (1998) Laser-Doppler flowmetry utilizing a thinned skull cranial window preparation and automated stimulation. Brain Res Brain Res Protoc 3: 14–21.CrossRefGoogle Scholar
Gerrits, R. J., Stein, E. A., Greene, A. S. (2001) Anesthesia alters NO-mediated functional hyperemia. Brain Res 907: 20–26.CrossRefGoogle Scholar
Ghazanfar, A. A., Krupa, D. J., Nicolelis, M. A. (2001) Role of cortical feedback in the receptive field structure and nonlinear response properties of somatosensory thalamic neurons. Exp Brain Res 141: 88–100.CrossRefGoogle Scholar
Ghosh, A., Shatz, C. J. (1992) Involvement of subplate neurons in the formation of ocular dominance columns. Science 255: 1441–1443.CrossRefGoogle Scholar
Gibson, J. M., Welker, W. I. (1983a) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens Res 1: 95–117.Google Scholar
Gibson, J. M., Welker, W. I. (1983b) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 1. Receptive field properties and threshold distributions. Somatosens Res 1: 51–67.Google Scholar
Gibson, J. R., Beierlein, M., Connors, B. W. (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402: 75–79.Google Scholar
Giese, K. P., Fedorov, N. B., Filipkowski, R. K., Silva, A. J. (1998) Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279: 870–873.CrossRefGoogle Scholar
Gil, Z., Amitai, Y. (1996) Properties of convergent thalamocortical and intracortical synaptic potentials in single neurons of neocortex. J Neurosci 16: 6567–6578.Google Scholar
Gil, Z., Connors, B. W., Amitai, Y. (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19: 679–686.CrossRefGoogle Scholar
Gilbert, C. D., Kelly, J. P. (1975) The projections of cells in different layers of the cat's visual cortex. J Comp Neurol 163: 81–105.CrossRefGoogle Scholar
Ginsberg, M. D., Castella, Y., Dietrich, W. D., Watson, B. D., Busto, R. (1989) Acute thrombotic infarction suppresses metabolic activation of ipsilateral somatosensory cortex: evidence for functional diaschisis. J Cereb Blood Flow Metab 9: 329–341.CrossRefGoogle Scholar
Gioanni, Y., Rougeot, C., Clarke, P. B., et al. (1999) Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo-cortical transmission. Eur J Neurosci 11: 18–30.CrossRefGoogle Scholar
Girod, R., Barazangi, N., McGehee, D., Role, L. W. (2000) Facilitation of glutamatergic neurotransmission by presynaptic nicotinic acetylcholine receptors. Neuropharmacology 39: 2715–2725.CrossRefGoogle Scholar
Gitton, Y., Cohen-Tannoudji, M., Wassef, M. (1999) Specification of somatosensory area identity in cortical explants. J Neurosci 19: 4889–4898.Google Scholar
Glade, N., Demongeot, J., Tabony, J. (2002) Comparison of reaction–diffusion simulations with experiment in self-organised microtubule solutions. C R Biol 325: 283–294.CrossRefGoogle Scholar
Glazewski, S., Fox, K. (1996) Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats. J Neurophysiol 75: 1714–1729.Google Scholar
Glazewski, S., Chen, C. M., Silva, A., Fox, K. (1996) Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex. Science 272: 421–423.CrossRefGoogle Scholar
Glazewski, S., Herman, C., McKenna, M., Chapman, P. F., Fox, K. (1998a) Long-term potentiation in vivo in layers II/III of rat barrel cortex. Neuropharmacology 37: 581–592.Google Scholar
Glazewski, S., McKenna, M., Jacquin, M., Fox, K, (1998b) Experience-dependent depression of vibrissae responses in adolescent rat barrel cortex. Eur J Neurosci 10: 2107–2116.Google Scholar
Glazewski, S., Barth, A. L., Wallace, H., et al. (1999) Impaired experience-dependent plasticity in barrel cortex of mice lacking the alpha and delta isoforms of CREB. Cereb Cortex 9: 249–256.CrossRefGoogle Scholar
Glazewski, S., Giese, K. P., Silva, A., Fox, K. (2000) The role of alpha-CaMKII autophosphorylation in neocortical experience-dependent plasticity. Nat Neurosci 3: 911–918.Google Scholar
Goldreich, D., Kyriazi, H. T., Simons, D. J. (1999) Functional independence of layer IV barrels in rodent somatosensory cortex. J Neurophysiol 82: 1311–1316.Google Scholar
Gottlieb, J. P., Keller, A. (1997) Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp Brain Res 115: 47–60.CrossRefGoogle Scholar
Gottschaldt, K. M., Iggo, A., Young, D. W. (1973) Functional characteristics of mechanoreceptors in sinus hair follicles of the cat. J Physiol 235: 287–315.CrossRefGoogle Scholar
Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., Wiesel, T. N. (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324: 361–364.CrossRefGoogle Scholar
Gross, J., Schnitzler, A., Timmermann, L., Ploner, M. (2007) Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol 5: e133.CrossRefGoogle Scholar
Grosshans, D. R., Clayton, D. A., Coultrap, S. J., Browning, M. D. (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 5: 27–33.CrossRefGoogle Scholar
Haidarliu, S., Ahissar, E. (2001) Size gradients of barreloids in the rat thalamus. J Comp Neurol 429: 372–387.3.0.CO;2-3>CrossRefGoogle Scholar
Haidarliu, S., Sosnik, R., Ahissar, E. (1999) Simultaneous multi-site recordings and iontophoretic drug and dye applications along the trigeminal system of anesthetized rats. J Neurosci Meth 94: 27–40.CrossRefGoogle Scholar
Hall, W. C., Ebner, F. F. (1970) Thalamotelencephalic projections in the turtle (Pseudemys scripta). J Comp Neurol 140: 101–122.CrossRefGoogle Scholar
Hallas, B. H., Jacquin, M. F. (1990) Structure–function relationships in rat brain stem subnucleus interpolaris. IX. Inputs from subnucleus caudalis. J Neurophysiol 64: 28–45.Google Scholar
Hamada, Y., Miyashita, E., Tanaka, H. (1999) Gamma-band oscillations in the “barrel cortex” precede rat's exploratory whisking. Neuroscience 88: 667–671.CrossRefGoogle Scholar
Hamasaki, T., Leingartner, A., Ringstedt, T., O'Leary, D. D. (2004) EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43: 359–372.CrossRefGoogle Scholar
Hamori, J., Savy, C., Madarasz, M., et al. (1986) Morphological alterations in subcortical vibrissal relays following vibrissal follicle destruction at birth in the mouse. J Comp Neurol 254: 166–183.CrossRefGoogle Scholar
Hand, P. J. (1982) Plasticity of the Rat Barrel System. New York: Academic Press.
Hannan, A. J., Blakemore, C., Katsnelson, A., et al. (2001) PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci 4: 282–288.CrossRefGoogle Scholar
Hardingham, N., Fox, K. (2006) The role of nitric oxide and GluR1 in presynaptic and postsynaptic components of neocortical potentiation. J Neurosci 26: 7395–7404.CrossRefGoogle Scholar
Hardingham, N. R., Fox, K. (2007). A role of PKA in the reversal of depression in layer II/III barrel cortex. Proceedings of the Annual Meeting of the Society for Neuroscience, San Diego, CA, abstract 146.12/L22.Google Scholar
Hardingham, N., Glazewski, S., Pakhotin, P., et al. (2003) Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation. J Neurosci 23: 4428–4436.Google Scholar
Hardingham, N. R., Bannister, N. J., Read, J. C., et al. (2006) Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors. J Neurosci 26: 6337–6345.CrossRefGoogle Scholar
Hardingham, N. R., Wright, N. F., Fox, K. (2006) The role of GluR1 and cannabinoid receptors in neocortical LTD and experience-dependent depression. Proceedings of the Annual Meeting of the Society for Neuroscience, Atlanta, GA, abstract 732.13/G12.Google Scholar
Harris, J. A., Miniussi, C., Harris, I. M., Diamond, M. E. (2002) Transient storage of a tactile memory trace in primary somatosensory cortex. J Neurosci 22: 8720–8725.Google Scholar
Harris, R. M., Woolsey, T. A. (1979) Morphology of Golgi-impregnated neurons in mouse cortical barrels following vibrissae damage at different post-natal ages. Brain Res 161: 143–149.CrossRefGoogle Scholar
Harris, R. M., Woolsey, T. A. (1981) Dendritic plasticity in mouse barrel cortex following postnatal vibrissa follicle damage. J Comp Neurol 196: 357–376.CrossRefGoogle Scholar
Harris, R. M., Woolsey, T. A. (1983) Computer-assisted analyses of barrel neuron axons and their putative synaptic contacts. J Comp Neurol 220: 63–79.CrossRefGoogle Scholar
Hartings, J. A., Temereanca, S., Simons, D. J. (2000) High responsiveness and direction sensitivity of neurons in the rat thalamic reticular nucleus to vibrissa deflections. J Neurophysiol 83: 2791–2801.Google Scholar
Hartmann, M. J., Johnson, N. J., Towal, R. B., Assad, C. (2003) Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci 23: 6510–6519.Google Scholar
Harvey, M. A., Sachdev, R. N., Zeigler, H. P. (2001) Cortical barrel field ablation and unconditioned whisking kinematics. Somatosens Mot Res 18: 223–227.Google Scholar
Harwell, C., Burbach, B., Svoboda, K., Nedivi, E. (2005) Regulation of cpg15 expression during single whisker experience in the barrel cortex of adult mice. J Neurobiol 65: 85–96.CrossRefGoogle Scholar
Hayashi, Y., Shi, S. H., Esteban, J. A., et al. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287: 2262–2267.CrossRefGoogle Scholar
He, J., Devonshire, I. M., Mayhew, J. E., Papadakis, N. G. (2007) Simultaneous laser Doppler flowmetry and arterial spin labeling MRI for measurement of functional perfusion changes in the cortex. Neuroimage 34: 1391–1404.CrossRefGoogle Scholar
Henderson, T. A., Woolsey, T. A., Jacquin, M. F. (1992) Infraorbital nerve blockade from birth does not disrupt central trigeminal pattern formation in the rat. Brain Res Dev Brain Res 66: 146–152.CrossRefGoogle Scholar
Henderson, T. A., Rhoades, R. W., Bennett-Clarke, C. A., et al. (1993) NGF augmentation rescues trigeminal ganglion and principalis neurons, but not brainstem or cortical whisker patterns, after infraorbital nerve injury at birth. J Comp Neurol 336: 243–260.CrossRefGoogle Scholar
Henderson, T. A., Johnson, E. M. Jr., Osborne, P. A., Jacquin, M. F. (1994) Fetal NGF augmentation preserves excess trigeminal ganglion cells and interrupts whisker-related pattern formation. J Neurosci 14: 3389–3403.Google Scholar
Hensch, T. K., Fagiolini, M., Mataga, N., et al. (1998a) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282: 1504–1508.Google Scholar
Hensch, T. K., Gordon, J. A., Brandon, E. P., et al. (1998b) Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice. J Neurosci 18: 2108–2117.Google Scholar
Herkenham, M. (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J Comp Neurol 183: 487–517.CrossRefGoogle Scholar
Herkenham, M. (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207: 532–535.CrossRefGoogle Scholar
Heynen, A. J., Yoon, B. J., Liu, C. H., et al. (2003) Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci 6: 854–862.CrossRefGoogle Scholar
Hickmott, P. W., Steen, P. A. (2005) Large-scale changes in dendritic structure during reorganization of adult somatosensory cortex. Nat Neurosci 8: 140–142.CrossRefGoogle Scholar
Higley, M. J., Contreras, D. (2003) Nonlinear integration of sensory responses in the rat barrel cortex: an intracellular study in vivo. J Neurosci 23: 10190–10200.Google Scholar
Hipp, J., Arabzadeh, E., Zorzin, E., et al. (2006) Texture signals in whisker vibrations. J Neurophysiol 95: 1792–1799.CrossRefGoogle Scholar
Hoeflinger, B. F., Bennett-Clarke, C. A., Chiaia, N. L., Killackey, H. P., Rhoades, R. W. (1995) Patterning of local intracortical projections within the vibrissae representation of rat primary somatosensory cortex. J Comp Neurol 354: 551–563.CrossRefGoogle Scholar
Hoffer, Z. S., Hoover, J. E., Alloway, K. D. (2003) Sensorimotor corticocortical projections from rat barrel cortex have an anisotropic organization that facilitates integration of inputs from whiskers in the same row. J Comp Neurol 466: 525–544.CrossRefGoogle Scholar
Hoffman, D. A., Sprengel, R., Sakmann, B. (2002) Molecular dissection of hippocampal theta-burst pairing potentiation. Proc Natl Acad Sci USA 99: 7740–7745.CrossRefGoogle Scholar
Hollmann, M., Heinemann, S. (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 31–108.CrossRefGoogle Scholar
Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., et al. (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45: 279–291.CrossRefGoogle Scholar
Hoogland, P. V., Welker, E., Loos, H. (1987) Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris–leucoagglutinin and HRP. Exp Brain Res 68: 73–87.CrossRefGoogle Scholar
Hoogland, P. V., Wouterlood, F. G., Welker, E., Loos, H. (1991) Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L). Exp Brain Res 87: 159–172.CrossRefGoogle Scholar
Hubel, D. H., Wiesel, T. N. (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198: 1–59.Google Scholar
Hubel, D. H., Wiesel, T. N., Stryker, M. P. (1978) Anatomical demonstration of orientation columns in macaque monkey. J Comp Neurol 177: 361–380.CrossRefGoogle Scholar
Huber, K. M., Roder, J. C., Bear, M. F. (2001) Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J Neurophysiol 86: 321–325.Google Scholar
Hurwitz, B. E., Dietrich, W. D., McCabe, P. M., et al. (1990) Sensory–motor deficit and recovery from thrombotic infarction of the vibrissal barrel-field cortex. Brain Res 512: 210–220.CrossRefGoogle Scholar
Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P., Grant, S. G. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3: 661–669.Google Scholar
Inan, M., Lu, H. C., Albright, M. J., She, W. C., Crair, M. C. (2006) Barrel map development relies on protein kinase A regulatory subunit II beta-mediated cAMP signaling. J Neurosci 26: 4338–4349.CrossRefGoogle Scholar
Ince-Dunn, G., Hall, B. J., Hu, S. C., et al. (2006) Regulation of thalamocortical patterning and synaptic maturation by NeuroD2. Neuron 49: 683–695.CrossRefGoogle Scholar
Irikura, K., Maynard, K. I., Moskowitz, M. A. (1994) Importance of nitric oxide synthase inhibition to the attenuated vascular responses induced by topical L-nitroarginine during vibrissal stimulation. J Cereb Blood Flow Metab 14: 45–48.CrossRefGoogle Scholar
Isaac, J. T., Crair, M. C., Nicoll, R. A., Malenka, R. C. (1997) Silent synapses during development of thalamocortical inputs. Neuron 18: 269–280.CrossRefGoogle Scholar
Ismailov, I., Kalikulov, D., Inoue, T., Friedlander, M. J. (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24: 9847–9861.CrossRefGoogle Scholar
Itami, C., Kimura, F., Kohno, T., et al. (2003) Brain-derived neurotrophic factor-dependent unmasking of “silent” synapses in the developing mouse barrel cortex. Proc Natl Acad Sci USA 100: 13069–13074.CrossRefGoogle Scholar
Ito, M. (1985) Processing of vibrissa sensory information within the rat neocortex. J Neurophysiol 54: 479–490.Google Scholar
Ito, M., Kano, M. (1982) Long-lasting depression of parallel fiber–Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33: 253–258.CrossRefGoogle Scholar
Ito, M., Kato, M. (2002) Analysis of variance study of the rat cortical layer 4 barrel and layer 5b neurones. J Physiol 539: 511–522.CrossRefGoogle Scholar
Iwasato, T., Datwani, A., Wolf, A. M., et al. (2000) Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406: 726–731.Google Scholar
Jaarsma, D., Sebens, J. B., Korf, J. (1991) Localization of NMDA and AMPA receptors in rat barrel field. Neurosci Lett 133: 233–236.CrossRefGoogle Scholar
Jablonka, J., Kossut, M. (2006) Focal stroke in the barrel cortex of rats enhances ipsilateral response to vibrissal input. Acta Neurobiol Exp (Wars) 66: 261–266.Google Scholar
Jablonka, J. A., Witte, O. W., Kossut, M. (2007) Photothrombotic infarct impairs experience-dependent plasticity in neighboring cortex. Neuroreport 18: 165–169.CrossRefGoogle Scholar
Jablonska, B., Smith, A. L., Kossut, M., Skangiel-Kramska, J. (1998) Development of laminar distributions of kainate receptors in the somatosensory cortex of mice. Brain Res 791: 325–329.CrossRefGoogle Scholar
Jacob, V., Cam, J., Shulz, D. E. (2006) Spatiotemporally complex tactile stimuli delivered through a multi-actuator whisker stimulator. In Proceedings of the Annual Meeting of the Society for Neuroscience, pp. 145.120. Atlanta, GA: Society for Neuroscience.
Jacquin, M. F., Woerner, D., Szczepanik, A. M., et al. (1986) Structure–function relationships in rat brainstem subnucleus interpolaris. I. Vibrissa primary afferents. J Comp Neurol 243: 266–279.Google Scholar
Jacquin, M. F., Stennett, R. A., Renehan, W. E., Rhoades, R. W. (1988a) Structure–function relationships in the rat brainstem subnucleus interpolaris: II. Low and high threshold trigeminal primary afferents. J Comp Neurol 267: 107–130.Google Scholar
Jacquin, M. F., Golden, J., Panneton, W. M. (1988b) Structure and function of barrel “precursor” cells in trigeminal nucleus principalis. Brain Res 471: 309–314.Google Scholar
Jacquin, M. F., Barcia, M., Rhoades, R. W. (1989) Structure–function relationships in rat brainstem subnucleus interpolaris: IV. Projection neurons. J Comp Neurol 282: 45–62.CrossRefGoogle Scholar
Jacquin, M. F., Wiegand, M. R., Renehan, W. E. (1990) Structure–function relationships in rat brain stem subnucleus interpolaris. VIII. Cortical inputs. J Neurophysiol 64: 3–27.Google Scholar
Jacquin, M. F., Renehan, W. E., Rhoades, R. W., Panneton, W. M. (1993a) Morphology and topography of identified primary afferents in trigeminal subnuclei principalis and oralis. J Neurophysiol 70: 1911–1936.Google Scholar
Jacquin, M. F., McCasland, J. S., Henderson, T. A., Rhoades, R. W., Woolsey, T. A. (1993b) 2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system. J Comp Neurol 332: 38–58.Google Scholar
Jacquin, M. F., Rhoades, R. W., Klein, B. G. (1995) Structure–function relationships in rat brainstem subnucleus interpolaris. XI. Effects of chronic whisker trimming from birth. J Comp Neurol 356: 200–224.Google Scholar
Jeanmonod, D., Rice, F. L., Loos, H. (1981) Mouse somatosensory cortex: alterations in the barrelfield following receptor injury at different early postnatal ages. Neuroscience 6: 1503–1535.Google Scholar
Jensen, K. F., Killackey, H. P. (1987) Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents. J Neurosci 7: 3529–3543.Google Scholar
Jones, E. G. (1985) The Thalamus. New York: Plenum Press.
Kamal, A., Ramakers, G. M., Urban, I. J., Graan, P. N., Gispen, W. H. (1999) Chemical LTD in the CA1 field of the hippocampus from young and mature rats. Eur J Neurosci 11: 3512–3516.CrossRefGoogle Scholar
Kaneko, M., Kanayama, N., Tsuji, T. (1998) Active antenna for contact sensing. IEEE Trans Robotics Automation 14: 278–291.CrossRefGoogle Scholar
Katz, D. B., Simon, S. A., Moody, A., Nicolelis, M. A. (1999) Simultaneous reorganization in thalamocortical ensembles evolves over several hours after perioral capsaicin injections. J Neurophysiol 82: 963–977.Google Scholar
Kawaguchi, Y. (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci 15: 2638–2655.Google Scholar
Kawaguchi, Y., Kubota, Y. (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7: 476–486.CrossRefGoogle Scholar
Keller, A., Carlson, G. C. (1999) Neonatal whisker clipping alters intracortical, but not thalamocortical projections, in rat barrel cortex. J Comp Neurol 412: 83–94.3.0.CO;2-7>CrossRefGoogle Scholar
Keller, A., White, E. L. (1987) Synaptic organization of GABAergic neurons in the mouse SmI cortex. J Comp Neurol 262: 1–12.CrossRefGoogle Scholar
Kelly, M. K., Carvell, G. E., Kodger, J. M., Simons, D. J. (1999) Sensory loss by selected whisker removal produces immediate disinhibition in the somatosensory cortex of behaving rats. J Neurosci 19: 9117–9125.Google Scholar
Kennedy, M. B. (2000) Signal-processing machines at the postsynaptic density. Science 290: 750–754.CrossRefGoogle Scholar
Kennerley, A. J., Berwick, J., Martindale, J., et al. (2005) Concurrent fMRI and optical measures for the investigation of the hemodynamic response function. Magn Reson Med 54: 354–365.CrossRefGoogle Scholar
Kharazia, V. N., Weinberg, R. J. (1994) Glutamate in thalamic fibers terminating in layer IV of primary sensory cortex. J Neurosci 14: 6021–6032.Google Scholar
Kidd, F. L., Isaac, J. T. (1999) Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 400: 569–573.Google Scholar
Kidd, F. L., Coumis, U., Collingridge, G. L., Crabtree, J. W., Isaac, J. T. (2002) A presynaptic kainate receptor is involved in regulating the dynamic properties of thalamocortical synapses during development. Neuron 34: 635–646.CrossRefGoogle Scholar
Killackey, H. P. (1973) Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res 51: 326–331.CrossRefGoogle Scholar
Killackey, H. P., Belford, G. R. (1979) The formation of afferent patterns in the somatosensory cortex of the neonatal rat. J Comp Neurol 183: 285–303.CrossRefGoogle Scholar
Killackey, H. P., Belford, G. R. (1980) Central correlates of peripheral pattern alterations in the trigeminal system of the rat. Brain Res 183: 205–210.CrossRefGoogle Scholar
Killackey, H. P., Ebner, F. (1973) Convergent projection of three separate thalamic nuclei on to a single cortical area. Science 179: 283–285.CrossRefGoogle Scholar
Killackey, H. P., Belford, G., Ryugo, R., Ryugo, D. K. (1976) Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse. Brain Res 104: 309–315.CrossRefGoogle Scholar
Kim, C. H., Chung, H. J., Lee, H. K., Huganir, R. L. (2001) Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc Natl Acad Sci USA 98: 11725–11730.CrossRefGoogle Scholar
Kim, H. G., Fox, K., Connors, B. W. (1995) Properties of excitatory synaptic events in neurons of primary somatosensory cortex of neonatal rats. Cereb Cortex 5: 148–157.CrossRefGoogle Scholar
Kim, U., Ebner, F. F. (1999) Barrels and septa: separate circuits in rat barrels field cortex. J Comp Neurol 408: 489–505.3.0.CO;2-E>CrossRefGoogle Scholar
Kirkwood, A., Silva, A., Bear, M. F. (1997) Age-dependent decrease of synaptic plasticity in the neocortex of alphaCaMKII mutant mice. Proc Natl Acad Sci USA 94: 3380–3383.CrossRefGoogle Scholar
Kleinfeld, D., Berg, R. W., O'Connor, S. M. (1999) Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens Mot Res 16: 69–88.CrossRefGoogle Scholar
Kleinfeld, D., Ahissar, E., Diamond, M. E. (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16: 434–444.CrossRefGoogle Scholar
Knott, G. W., Quairiaux, C., Genoud, C., Welker, E. (2002) Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34: 265–273.CrossRefGoogle Scholar
Knott, G. W., Holtmaat, A., Wilbrecht, L., Welker, E., Svoboda, K. (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 9: 1117–1124.CrossRefGoogle Scholar
Knutsen, P. M., Pietr, M., Ahissar, E. (2006) Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 26: 8451–8464.CrossRefGoogle Scholar
Koralek, K. A., Jensen, K. F., Killackey, H. P. (1988) Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res 463: 346–351.Google Scholar
Koralek, K. A., Olavarria, J., Killackey, H. P. (1990) Areal and laminar organization of corticocortical projections in the rat somatosensory cortex. J Comp Neurol 299: 133–150.CrossRefGoogle Scholar
Kossut, M., Hand, P. (1984) Early development of changes in cortical representation of C3 vibrissa following neonatal denervation of surrounding vibrissa receptors: a 2-deoxyglucose study in the rat. Neurosci Lett 46: 7–12.CrossRefGoogle Scholar
Kossut, M., Juliano, S. L. (1999) Anatomical correlates of representational map reorganization induced by partial vibrissectomy in the barrel cortex of adult mice. Neuroscience 92: 807–817.CrossRefGoogle Scholar
Kossut, M., Hand, P. J., Greenberg, J., Hand, C. L. (1988) Single vibrissal cortical column in SI cortex of rat and its alterations in neonatal and adult vibrissa-deafferented animals: a quantitative 2DG study. J Neurophysiol 60: 829–852.Google Scholar
Kriegstein, A. R., Connors, B. W. (1986) Cellular physiology of the turtle visual cortex: synaptic properties and intrinsic circuitry. J Neurosci 6: 178–191.Google Scholar
Kristt, D. A., Waldman, J. V. (1982) Developmental reorganization of acetylcholinesterase-rich inputs to somatosensory cortex of the mouse. Anat Embryol (Berl) 164: 331–342.CrossRefGoogle Scholar
Krupa, D. J., Ghazanfar, A. A., Nicolelis, M. A. (1999) Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proc Natl Acad Sci USA 96: 8200–8205.CrossRefGoogle Scholar
Krupa, D. J., Brisben, A. J., Nicolelis, M. A. (2001) A multi-channel whisker stimulator for producing spatiotemporally complex tactile stimuli. J Neurosci Meth 104: 199–208.CrossRefGoogle Scholar
Krupa, D. J., Wiest, M. C., Shuler, M. G., Laubach, M., Nicolelis, M. A. (2004) Layer-specific somatosensory cortical activation during active tactile discrimination. Science 304: 1989–1992.CrossRefGoogle Scholar
Kurokawa, J., Motoike, H. K., Rao, J., Kass, R. S. (2004) Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci USA 101: 16374–16378.CrossRefGoogle Scholar
Kyriazi, H. T., Simons, D. J. (1993) Thalamocortical response transformations in simulated whisker barrels. J Neurosci 13: 1601–1615.Google Scholar
Kyriazi, H. T., Carvell, G. E., Brumberg, J. C., Simons, D. J. (1996a) Effects of baclofen and phaclofen on receptive field properties of rat whisker barrel neurons. Brain Res 712: 325–328.Google Scholar
Kyriazi, H. T., Carvell, G. E., Brumberg, J. C., Simons, D. J. (1996b) Quantitative effects of GABA and bicuculline methiodide on receptive field properties of neurons in real and simulated whisker barrels. J Neurophysiol 75: 547–560.Google Scholar
Laaris, N., Keller, A. (2002) Functional independence of layer IV barrels. J Neurophysiol 87: 1028–1034.CrossRefGoogle Scholar
Land, P. W., Simons, D. J. (1985) Cytochrome oxidase staining in the rat SmI barrel cortex. J Comp Neurol 238: 225–235.CrossRefGoogle Scholar
Land, P. W., Buffer, S. A. Jr., Yaskosky, J. D. (1995) Barreloids in adult rat thalamus: three-dimensional architecture and relationship to somatosensory cortical barrels. J Comp Neurol 355: 573–588.CrossRefGoogle Scholar
Lanuza, E., Novejarque, A., Moncho-Bogani, J., Hernandez, A., Martinez-Garcia, F. (2002) Understanding the basic circuitry of the cerebral hemispheres: the case of lizards and its implications in the evolution of the telencephalon. Brain Res Bull 57: 471–473.CrossRefGoogle Scholar
Lavallee, P., Deschenes, M. (2004) Dendroarchitecture and lateral inhibition in thalamic barreloids. J Neurosci 24: 6098–6105.CrossRefGoogle Scholar
Lavdas, A. A., Grigoriou, M., Pachnis, V., Parnavelas, J. G. (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19: 7881–7888.Google Scholar
Lavenex, P., Amaral, D. G. (2000) Hippocampal–neocortical interaction: a hierarchy of associativity. Hippocampus 10: 420–430.3.0.CO;2-5>CrossRefGoogle Scholar
Lazutkin, A. A., Meyer, B. I., Anokhin, K. V. (2007) [Transgene 6A-99 is a molecular marker of developing somatosensory cortex in mice.]Ontogenez 38: 21–32.CrossRefGoogle Scholar
Lebrand, C., Cases, O., Wehrle, R., et al. (1998) Transient developmental expression of monoamine transporters in the rodent forebrain. J Comp Neurol 401: 506–524.3.0.CO;2-#>CrossRefGoogle Scholar
Lee, H. K., Kameyama, K., Huganir, R. L., Bear, M. F. (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21: 1151–1162.CrossRefGoogle Scholar
Lee, K. J., Woolsey, T. A. (1975) A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse. Brain Res 99: 349–353.CrossRefGoogle Scholar
Lee, L. J., Erzurumlu, R. S. (2005) Altered parcellation of neocortical somatosensory maps in N-methyl-d-aspartate receptor-deficient mice. J Comp Neurol 485: 57–63.CrossRefGoogle Scholar
Lee, L. J., Iwasato, T., Itohara, S., Erzurumlu, R. S. (2005) Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J Comp Neurol 485: 280–292.CrossRefGoogle Scholar
Lee, S. H., Simons, D. J. (2004) Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex. J Neurophysiol 91: 223–229.Google Scholar
Lee, S. M., Weisskopf, M. G., Ebner, F. F. (1991) Horizontal long-term potentiation of responses in rat somatosensory cortex. Brain Res 544: 303–310.CrossRefGoogle Scholar
Leergaard, T. B., Alloway, K. D., Mutic, J. J., Bjaalie, J. G. (2000) Three-dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization. J Neurosci 20: 8474–8484.Google Scholar
Lendvai, B., Stern, E. A., Chen, B., Svoboda, K. (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404: 876–881.CrossRefGoogle Scholar
LeVay, S., Wiesel, T. N., Hubel, D. H. (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191: 1–51.Google Scholar
Li, C. X., Wei, X., Lu, L., Peirce, J. L., Williams, R. W., Waters, R. S. (2005) Genetic analysis of barrel field size in the first somatosensory area (SI) in inbred and recombinant inbred strains of mice. Somatosens Mot Res 22: 141–150.CrossRefGoogle Scholar
Li, X., Glazewski, S., Lin, X., Elde, R., Fox, K. (1995) Effect of vibrissae deprivation on follicle innervation, neuropeptide synthesis in the trigeminal ganglion, and S1 barrel cortex plasticity. J Comp Neurol 357: 465–481.CrossRefGoogle Scholar
Lichtenstein, S. H., Carvell, G. E., Simons, D. J. (1990) Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosens Mot Res 7: 47–65.CrossRefGoogle Scholar
Lidov, H. G., Grzanna, R., Molliver, M. E. (1980) The serotonin innervation of the cerebral cortex in the rat: an immunohistochemical analysis. Neuroscience 5: 207–227.CrossRefGoogle Scholar
Lindvall, O., Bjorklund, A., Moore, R. Y., Stenevi, U. (1974) Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81: 325–331.CrossRefGoogle Scholar
Lisman, J. E. (1985) A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci USA 82: 3055–3057.CrossRefGoogle Scholar
Lisman, J. E., Goldring, M. A. (1988) Feasibility of long-term storage of graded information by the Ca2 + /calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci USA 85: 5320–5324.CrossRefGoogle Scholar
Liu, X. B., Jones, E. G. (1996) Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc Natl Acad Sci USA 93: 7332–7336.CrossRefGoogle Scholar
Liu, X. B., Jones, E. G. (2003) Fine structural localization of connexin-36 immunoreactivity in mouse cerebral cortex and thalamus. J Comp Neurol 466: 457–467.CrossRefGoogle Scholar
Lopez-Bendito, G., Cautinat, A., Sanchez, J. A., et al. (2006) Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125: 127–142.CrossRefGoogle Scholar
, Lorento R. (1922) La corteza cerebral del ratón. Trab Lab Invest Boil (Madrid) 20: 41–78.Google Scholar
, Lorente R. (1992) The cerebral cortex of the mouse (a first contribution – the “acoustic” cortex). Somatosens Mot Res 9: 3–36.Google Scholar
Lotto, B., Upton, L., Price, D. J., Gaspar, P. (1999) Serotonin receptor activation enhances neurite outgrowth of thalamic neurones in rodents. Neurosci Lett 269: 87–90.CrossRefGoogle Scholar
LoTurco, J. J., Blanton, M. G., Kriegstein, A. R. (1991) Initial expression and endogenous activation of NMDA channels in early neocortical development. J Neurosci 11: 792–799.Google Scholar
Louderback, K. M., Glass, C. S., Shamalla-Hannah, L., Erickson, S. L., Land, P. W. (2006) Subbarrel patterns of thalamocortical innervation in rat somatosensory cortical barrels: organization and postnatal development. J Comp Neurol 497: 32–41.CrossRefGoogle Scholar
Lu, H. C., She, W. C., Plas, D. T., et al. (2003) Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical “barrel” map development. Nat Neurosci 6: 939–947.CrossRefGoogle Scholar
Lu, S. M., Lin, R. C. (1993) Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10: 1–16.CrossRefGoogle Scholar
Lubke, J., Egger, V., Sakmann, B., Feldmeyer, D. (2000) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J Neurosci 20: 5300–5311.Google Scholar
Lubke, J., Roth, A., Feldmeyer, D., Sakmann, B. (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13: 1051–1063.CrossRefGoogle Scholar
Iglesia, Luis J. A., Lopez-Garcia, C. (1997) A Golgi study of the principal projection neurons of the medial cortex of the lizard Podarcis hispanica. J Comp Neurol 385: 528–564.3.0.CO;2-5>CrossRefGoogle Scholar
Luo, L. (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18: 601–635.CrossRefGoogle Scholar
Luskin, M. B., Shatz, C. J. (1985) Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5: 1062–1075.Google Scholar
Luskin, M. B., Pearlman, A. L., Sanes, J. R. (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1: 635–647.CrossRefGoogle Scholar
Ma, J., Ayata, C., Huang, P. L., Fishman, M. C., Moskowitz, M. A. (1996) Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Physiol 270: H1085–H1090.Google Scholar
Ma, P. M. (1991) The barrelettes: architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. I. Normal structural organization. J Comp Neurol 309: 161–199.Google Scholar
Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H., Agmon, A. (2006) Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci 26: 5069–5082.CrossRefGoogle Scholar
Maalouf, M., Miasnikov, A. A., Dykes, R. W. (1998) Blockade of cholinergic receptors in rat barrel cortex prevents long-term changes in the evoked potential during sensory preconditioning. J Neurophysiol 80: 529–545.Google Scholar
Maass, W., Natschlager, T., Markram, H. (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14: 2531–2560.CrossRefGoogle Scholar
Maass, W., Natschlager, T., Markram, H. (2004) Fading memory and kernel properties of generic cortical microcircuit models. J Physiol Paris 98: 315–330.CrossRefGoogle Scholar
Malenka, R. C., Bear, M. F. (2004) LTP and LTD: an embarrassment of riches. Neuron 44: 5–21.CrossRefGoogle Scholar
Maletic-Savatic, M., Malinow, R., Svoboda, K. (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283: 1923–1927.CrossRefGoogle Scholar
Malinow, R. (2003) AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358: 707–714.CrossRefGoogle Scholar
Malinow, R., Malenka, R. C. (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25: 103–126.CrossRefGoogle Scholar
Mansour-Robaey, S., Mechawar, N., Radja, F., Beaulieu, C., Descarries, L. (1998) Quantified distribution of serotonin transporter and receptors during the postnatal development of the rat barrel field cortex. Brain Res Dev Brain Res 107: 159–163.CrossRefGoogle Scholar
Maravall, M., Koh, I. Y., Lindquist, W. B., Svoboda, K. (2004) Experience-dependent changes in basal dendritic branching of layer 2/3 pyramidal neurons during a critical period for developmental plasticity in rat barrel cortex. Cereb Cortex 14: 655–664.CrossRefGoogle Scholar
Marin-Padilla, M. (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol (Berl) 152: 109–126.CrossRefGoogle Scholar
Marin-Padilla, M., Marin-Padilla, T. M. (1982) Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. A Golgi study. Anat Embryol (Berl) 164: 161–206.CrossRefGoogle Scholar
Markram, H. (2006) The blue brain project. Nat Rev Neurosci 7: 153–160.CrossRefGoogle Scholar
Markram, H., Tsodyks, M. (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382: 807–810.CrossRefGoogle Scholar
Markram, H., Lubke, J., Frotscher, M., Sakmann, B. (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215.CrossRefGoogle Scholar
Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C. (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5: 793–807.CrossRefGoogle Scholar
Marsicano, G., Lutz, B. (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11: 4213–4225.CrossRefGoogle Scholar
Martin, C., Martindale, J., Berwick, J., Mayhew, J. (2006) Investigating neural–hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 32: 33–48.CrossRefGoogle Scholar
Martinotti, C. (1889) Contributo allo studio della corteccia cerebrale, ed all'origine central dei nervi. Ann Freniatr Sci Affini 1: 314–381.Google Scholar
Martinotti, C. (1890) Beitrag zum Studium der Hirnrinde und dem Centralursprung der Nerven. Int Monatschr Anat Physiol 7: 69–90.Google Scholar
Masino, S. A., Kwon, M. C., Dory, Y., Frostig, R. D. (1993) Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc Natl Acad Sci USA 90: 9998–10002.CrossRefGoogle Scholar
Maunsell, J. H., Essen, D. C. (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3: 2563–2586.Google Scholar
Mayer, M. L., Westbrook, G. L., Guthrie, P. B. (1984) Voltage-dependent block by Mg2 + of NMDA responses in spinal cord neurones. Nature 309: 261–263.CrossRefGoogle Scholar
McCasland, J. S., Hibbard, L. S. (1997) GABAergic neurons in barrel cortex show strong, whisker-dependent metabolic activation during normal behavior. J Neurosci 17: 5509–5527.Google Scholar
McCasland, J. S., Bernardo, K. L., Probst, K. L., Woolsey, T. A. (1992) Cortical local circuit axons do not mature after early deafferentation. Proc Natl Acad Sci USA 89: 1832–1836.CrossRefGoogle Scholar
McCasland, J. S., Hibbard, L. S., Rhoades, R. W., Woolsey, T. A. (1997) Activation of a wide-spread network of inhibitory neurons in barrel cortex. Somatosens Mot Res 14: 138–147.Google Scholar
McCormick, D. A., Bal, T. (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20: 185–215.CrossRefGoogle Scholar
McKinney, R. A., Capogna, M., Durr, R., Gahwiler, B. H., Thompson, S. M. (1999) Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 2: 44–49.CrossRefGoogle Scholar
Melzer, P., Smith, C. B. (1998) Plasticity of cerebral metabolic whisker maps in adult mice after whisker follicle removal: I. Modifications in barrel cortex coincide with reorganization of follicular innervation. Neuroscience 83: 27–41.Google Scholar
Mercier, B. E., Legg, C. R., Glickstein, M. (1990) Basal ganglia and cerebellum receive different somatosensory information in rats. Proc Natl Acad Sci USA 87: 4388–4392.CrossRefGoogle Scholar
Merzenich, M. M., Kaas, J. H., Wall, J. T., et al. (1983a) Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience 10: 639–665.Google Scholar
Merzenich, M. M., Kaas, J. H., Wall, J., et al. (1983b) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 8: 33–55.Google Scholar
Mesulam, M. M., Mufson, E. J., Levey, A. I., Wainer, B. H. (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214: 170–197.CrossRefGoogle Scholar
Metin, C., Frost, D. O. (1989) Visual responses of neurons in somatosensory cortex of hamsters with experimentally induced retinal projections to somatosensory thalamus. Proc Natl Acad Sci USA 86: 357–361.CrossRefGoogle Scholar
Micheva, K. D., Beaulieu, C. (1995a) An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex. Proc Natl Acad Sci USA 92: 11834–11838.Google Scholar
Micheva, K. D., Beaulieu, C. (1995b) Postnatal development of GABA neurons in the rat somatosensory barrel cortex: a quantitative study. Eur J Neurosci 7: 419–430.Google Scholar
Micheva, K. D., Beaulieu, C. (1995c) Neonatal sensory deprivation induces selective changes in the quantitative distribution of GABA-immunoreactive neurons in the rat barrel field cortex. J Comp Neurol 361: 574–584.Google Scholar
Micheva, K. D., Beaulieu, C. (1996) Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 373: 340–354.3.0.CO;2-2>CrossRefGoogle Scholar
Miller, B., Blake, N. M., Erinjeri, J. P., et al. (2001) Postnatal growth of intrinsic connections in mouse barrel cortex. J Comp Neurol 436: 17–31.CrossRefGoogle Scholar
Miller, M. W. (1985) Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex. Brain Res 355: 187–192.CrossRefGoogle Scholar
Miller, M. W. (1995) Relationship of the time of origin and death of neurons in rat somatosensory cortex: barrel versus septal cortex and projection versus local circuit neurons. J Comp Neurol 355: 6–14.CrossRefGoogle Scholar
Miller, S. G., Kennedy, M. B. (1985) Distinct forebrain and cerebellar isozymes of type II Ca2 +/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction. J Biol Chem 260: 9039–9046.Google Scholar
Miller, S. G., Kennedy, M. B. (1986) Regulation of brain type II Ca2 +/calmodulin-dependent protein kinase by autophosphorylation: a Ca2 +-triggered molecular switch. Cell 44: 861–870.CrossRefGoogle Scholar
Minnery, B. S., Simons, D. J. (2003) Response properties of whisker-associated trigeminothalamic neurons in rat nucleus principalis. J Neurophysiol 89: 40–56.Google Scholar
Minnery, B. S., Bruno, R. M., Simons, D. J. (2003) Response transformation and receptive field synthesis in the lemniscal trigeminothalamic circuit. J Neurophysiol 90: 1379–1391.CrossRefGoogle Scholar
Mitchinson, B., Gurney, K. N., Redgrave, P., et al. (2004) Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proc Biol Sci 271: 2509–2516.CrossRefGoogle Scholar
Molnar, Z., Adams, R., Blakemore, C. (1998) Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci 18: 5723–5745.Google Scholar
Monaghan, D. T., Cotman, C. W. (1985) Distribution of N-methyl-d-aspartate-sensitive l-[3H]glutamate-binding sites in rat brain. J Neurosci 5: 2909–2919.Google Scholar
Monaghan, D. T., Olverman, H. J., Nguyen, L., et al. (1988) Two classes of N-methyl-d-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc Natl Acad Sci USA 85: 9836–9840.CrossRefGoogle Scholar
Monconduit, L., Bourgeais, L., Bernard, J. F., Bars, D., Villanueva, L. (1999) Ventromedial thalamic neurons convey nociceptive signals from the whole body surface to the dorsolateral neocortex. J Neurosci 19: 9063–9072.Google Scholar
Monteiro, A., French, V., Smit, G., Brakefield, P. M., Metz, J. A. (2001) Butterfly eyespot patterns: evidence for specification by a morphogen diffusion gradient. Acta Biotheor 49: 77–88.CrossRefGoogle Scholar
Mosconi, T. M., Rice, F. L. (1991) Sensory innervation of the mystacial pad fur of the ferret. Neurosci Lett 121: 199–202.CrossRefGoogle Scholar
Mountcastle, V. B. (1957) Modality and topographic properties of single neurons of cat's somatic sensory cortex. J Neurophysiol 20: 408–434.Google Scholar
Mountcastle, V. B., Powell, T. P. (1959) Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. Bull Johns Hopkins Hosp 105: 201–232.Google Scholar
Mountcastle, V. B., Davies, P. W., Berman, A. L. (1957) Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. J Neurophysiol 20: 374–407.Google Scholar
Muly, E. C., Maddox, M., Smith, Y. (2003) Distribution of mGluR1alpha and mGluR5 immunolabeling in primate prefrontal cortex. J Comp Neurol 467: 521–535.CrossRefGoogle Scholar
Munoz, A., Liu, X. B., Jones, E. G. (1999) Development of metabotropic glutamate receptors from trigeminal nuclei to barrel cortex in postnatal mouse. J Comp Neurol 409: 549–566.3.0.CO;2-I>CrossRefGoogle Scholar
Nadarajah, B., Parnavelas, J. G. (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3: 423–432.CrossRefGoogle Scholar
Nagerl, U. V., Eberhorn, N., Cambridge, S. B., Bonhoeffer, T. (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44: 759–767.CrossRefGoogle Scholar
Nakao, Y., Itoh, Y., Kuang, T. Y., et al. (2001) Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Proc Natl Acad Sci USA 98: 7593–7598.CrossRefGoogle Scholar
Nedivi, E., Wu, G. Y., Cline, H. T. (1998) Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281: 1863–1866.CrossRefGoogle Scholar
Neimark, M. A., Andermann, M. L., Hopfield, J. J., Moore, C. I. (2003) Vibrissa resonance as a transduction mechanism for tactile encoding. J Neurosci 23: 6499–6509.Google Scholar
Nicolelis, M. A., Chapin, J. K. (1994) Spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus. J Neurosci 14: 3511–3532.Google Scholar
Nicolelis, M. A., Chapin, J. K., Lin, R. C. (1991) Thalamic plasticity induced by early whisker removal in rats. Brain Res 561: 344–349.CrossRefGoogle Scholar
Nicolelis, M. A., Baccala, L. A., Lin, R. C., Chapin, J. K. (1995) Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268: 1353–1358.CrossRefGoogle Scholar
Nicolelis, M. A., Lin, R. C., Chapin, J. K. (1997) Neonatal whisker removal reduces the discrimination of tactile stimuli by thalamic ensembles in adult rats. J Neurophysiol 78: 1691–1706.Google Scholar
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., Kriegstein, A. R. (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7: 136–144.CrossRefGoogle Scholar
Nomura, S., Itoh, K., Sugimoto, T., et al. (1986) Mystacial vibrissae representation within the trigeminal sensory nuclei of the cat. J Comp Neurol 253:121–133.CrossRefGoogle Scholar
North, S., Moenner, M., Bikfalvi, A. (2005) Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett 218: 1–14.CrossRefGoogle Scholar
Olausson, B., Shyu, B. C., Rydenhag, B. (1989) Projection from the thalamic intralaminar nuclei on the isocortex of the rat: a surface potential study. Exp Brain Res 75: 543–554.CrossRefGoogle Scholar
Olavarria, J., Sluyters, R. C., Killackey, H. P. (1984) Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex. Brain Res 291: 364–368.CrossRefGoogle Scholar
Oliva, A. A. Jr., Jiang, M., Lam, T., Smith, K. L., Swann, J. W. (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20: 3354–3368.Google Scholar
Orr-Urtreger, A., Goldner, F. M., Saeki, M., et al. (1997) Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha-bungarotoxin binding sites and hippocampal fast nicotinic currents. J Neurosci 17: 9165–9171.Google Scholar
Oury, F., Murakami, Y., Renaud, J. S., et al. (2006) Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map. Science 313: 1408–1413.CrossRefGoogle Scholar
Pasternak, J. R., Woolsey, T. A. (1975) The number, size and spatial distribution of neurons in lamina IV of the mouse SmI neocortex. J Comp Neurol 160: 291–306.CrossRefGoogle Scholar
Paxinos, G., Watson, C. (1986) The Rat Brain in Sterotaxic Coordinates, 2nd edn. San Diego, CA: Academic Press.
Perez-Garci, E., Gassmann, M., Bettler, B., Larkum, M. E. (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2 + spikes in layer 5 somatosensory pyramidal neurons. Neuron 50: 603–616.CrossRefGoogle Scholar
Persico, A. M., Mengual, E., Moessner, R., et al. (2001) Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci 21: 6862–6873.Google Scholar
Peters, A., Harriman, K. M. (1988) Enigmatic bipolar cell of rat visual cortex. J Comp Neurol 267: 409–432.CrossRefGoogle Scholar
Peters, A., Jones, E. G. (1984) Cellular Components of the Cerebral Cortex. New York: Plenum.
Peters, A., Kimerer, L. M. (1981) Bipolar neurons in rat visual cortex: a combined Golgi–electron microscope study. J Neurocytol 10: 921–946.CrossRefGoogle Scholar
Petersen, C. C. (2002) Short-term dynamics of synaptic transmission within the excitatory neuronal network of rat layer 4 barrel cortex. J Neurophysiol 87: 2904–2914.Google Scholar
Petersen, C. C., Grinvald, A., Sakmann, B. (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23: 1298–1309.Google Scholar
Petersen, R. S., Diamond, M. E. (2000) Spatial-temporal distribution of whisker-evoked activity in rat somatosensory cortex and the coding of stimulus location. J Neurosci 20: 6135–6143.Google Scholar
Petralia, R. S., Wang, Y. X., Singh, S., et al. (1997) A monoclonal antibody shows discrete cellular and subcellular localizations of mGluR1 alpha metabotropic glutamate receptors. J Chem Neuroanat 13: 77–93.CrossRefGoogle Scholar
Petreanu, L. T., Shepherd, G. M. G., Svoboda, K. (2005) Laser-scanning photostimulation reveals that two classes of layer 5B neurons mediate distinct aspects of experience-dependent plasticity. Proceedings of the Annual Meeting of the Society for Neuroscience, Washington, DC, abstract 985.2.
Pierret, T., Lavallee, P., Deschenes, M. (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20: 7455–7462.Google Scholar
Pinto, D. J., Brumberg, J. C., Simons, D. J., Ermentrout, G. B. (1996) A quantitative population model of whisker barrels: re-examining the Wilson–Cowan equations. J Comput Neurosci 3: 247–264.CrossRefGoogle Scholar
Pinto, D. J., Brumberg, J. C., Simons, D. J. (2000) Circuit dynamics and coding strategies in rodent somatosensory cortex. J Neurophysiol 83: 1158–1166.Google Scholar
Pinto, D. J., Hartings, J. A., Brumberg, J. C., Simons, D. J. (2003) Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. Cereb Cortex 13: 33–44.CrossRefGoogle Scholar
Porter, J. T., Johnson, C. K., Agmon, A. (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21: 2699–2710.Google Scholar
Priest, C. A., Thompson, A. J., Keller, A. (2001) Gap junction proteins in inhibitory neurons of the adult barrel neocortex. Somatosens Mot Res 18: 245–252.Google Scholar
Rabow, L. E., Russek, S. J., Farb, D. H. (1995) From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 21: 189–274.CrossRefGoogle Scholar
Radnikow, G., Feldmeyer, D., Lubke, J. (2002) Axonal projection, input and output synapses, and synaptic physiology of Cajal–Retzius cells in the developing rat neocortex. J Neurosci 22: 6908–6919.Google Scholar
Rakic, P. (1971) Guidance of neurones migrating to the fetal monkey neocortex. Brain Research 33: 471–476.CrossRefGoogle Scholar
, Ramon yCajal, S. (1911) Histologie due Systeme Nerveux de l'Homme et des Vertebres. Paris: Maloine.
, Ramon yCajal, S. (1922) Studien uber die Sehrinde der Katze. J Psychol Neurol 29: 161–181.Google Scholar
Rao, Y., Fischer, Q. S., Yang, Y., et al. (2004) Reduced ocular dominance plasticity and long-term potentiation in the developing visual cortex of protein kinase A RII alpha mutant mice. Eur J Neurosci 20: 837–842.CrossRefGoogle Scholar
Rebsam, A., Seif, I., Gaspar, P. (2002) Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J Neurosci 22: 8541–8552.Google Scholar
Rema, V., Armstrong-James, M., Ebner, F. F. (1998) Experience-dependent plasticity of adult rat S1 cortex requires local NMDA receptor activation. J Neurosci 18: 10196–10206.Google Scholar
Rema, V., Armstrong-James, M., Jenkinson, N., Ebner, F. F. (2006) Short exposure to an enriched environment accelerates plasticity in the barrel cortex of adult rats. Neuroscience 140: 659–672.CrossRefGoogle Scholar
Ren, J. Q. (1991) [Stereological analysis of GABAergic neurons and calcium binding protein parvalbumin-containing neurons in the rat somatosensory cortex.]Fukuoka Igaku Zasshi 82: 659–670.Google Scholar
Ren, J. Q., Aika, Y., Heizmann, C. W., Kosaka, T. (1992) Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp Brain Res 92: 1–14.CrossRefGoogle Scholar
Reyes, A., Sakmann, B. (1999) Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. J Neurosci 19: 3827–3835.Google Scholar
Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P., Sakmann, B. (1998) Target-cell-specific facilitation and depression in neocortical circuits. Nat Neurosci 1: 279–285.Google Scholar
Rhoades, R. W., Strang, V., Bennett-Clarke, C. A., Killackey, H. P., Chiaia, N. L. (1997) Sensitive period for lesion-induced reorganization of intracortical projections within the vibrissae representation of rat's primary somatosensory cortex. J Comp Neurol 389: 185–192.3.0.CO;2-K>CrossRefGoogle Scholar
Rice, D. S., Curran, T. (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24: 1005–1039.CrossRefGoogle Scholar
Rice, F. L., Loos, H. (1977) Development of the barrels and barrel field in the somatosensory cortex of the mouse. J Comp Neurol 171: 545–560.CrossRefGoogle Scholar
Rice, F. L., Gomez, C., Barstow, C., Burnet, A., Sands, P. (1985) A comparative analysis of the development of the primary somatosensory cortex: interspecies similarities during barrel and laminar development. J Comp Neurol 236: 477–495.CrossRefGoogle Scholar
Rice, F. L., Mance, A., Munger, B. L. (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol 252: 154–174.Google Scholar
Rice, F. L., Kinnman, E., Aldskogius, H., Johansson, O., Arvidsson, J. (1993) The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence. J Comp Neurol 337: 366–385.CrossRefGoogle Scholar
Riddle, D. R., Purves, D. (1995) Individual variation and lateral asymmetry of the rat primary somatosensory cortex. J Neurosci 15: 4184–4195.Google Scholar
Riva, C., Ross, B., Benedek, G. B. (1972) Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol 11: 936–944.Google Scholar
Rocamora, N., Welker, E., Pascual, M., Soriano, E. (1996) Upregulation of BDNF mRNA expression in the barrel cortex of adult mice after sensory stimulation. J Neurosci 16: 4411–4419.Google Scholar
Rodgers, K. M., Benison, A. M., Barth, D. S. (2006) Two-dimensional coincidence detection in the vibrissa/barrel field. J Neurophysiol 96: 1981–1990.CrossRefGoogle Scholar
Roger, M., Cadusseau, J. (1984) Afferent connections of the nucleus posterior thalami in the rat, with some evolutionary and functional considerations. J Hirnforsch 25: 473–485.Google Scholar
Rovainen, C. M., Woolsey, T. A., Blocher, N. C., Wang, D. B., Robinson, O. F. (1993) Blood flow in single surface arterioles and venules on the mouse somatosensory cortex measured with videomicroscopy, fluorescent dextrans, nonoccluding fluorescent beads, and computer-assisted image analysis. J Cereb Blood Flow Metab 13: 359–371.CrossRefGoogle Scholar
Rozas, C., Frank, H., Heynen, A. J., et al. (2001) Developmental inhibitory gate controls the relay of activity to the superficial layers of the visual cortex. J Neurosci 21: 6791–6801.Google Scholar
Rumpel, S., Kattenstroth, G., Gottmann, K. (2004) Silent synapses in the immature visual cortex: layer-specific developmental regulation. J Neurophysiol 91: 1097–1101.Google Scholar
Sakurada, O., Sokoloff, L., Jacquet, Y. F. (1978) Local cerebral glucose utilization following injection of beta-endorphin into periaqueductal gray matter in the rat. Brain Res 153: 403–407.CrossRefGoogle Scholar
Salin, P. A., Prince, D. A. (1996) Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex. J Neurophysiol 75: 1589–1600.Google Scholar
Salminen, M., Meyer, B. I., Gruss, P. (1998) Efficient poly A trap approach allows the capture of genes specifically active in differentiated embryonic stem cells and in mouse embryos. Dev Dyn 212: 326–333.3.0.CO;2-1>CrossRefGoogle Scholar
Sawtell, N. B., Frenkel, M. Y., Philpot, B. D., et al. (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38: 977–985.CrossRefGoogle Scholar
Scheibel, M. E., Scheibel, A. B. (1967) Structural organization of nonspecific thalamic nuclei and their projection toward cortex. Brain Res 6: 60–94.CrossRefGoogle Scholar
Schlaggar, B. L., O'Leary, D. D. (1991) Potential of visual cortex to develop an array of functional units unique to somatosensory cortex. Science 252: 1556–1560.CrossRefGoogle Scholar
Schlaggar, B. L., O'Leary, D. D. (1994) Early development of the somatotopic map and barrel patterning in rat somatosensory cortex. J Comp Neurol 346: 80–96.CrossRefGoogle Scholar
Schlaggar, B. L., Fox, K., O'Leary, D. D. (1993) Postsynaptic control of plasticity in developing somatosensory cortex. Nature 364: 623–626.CrossRefGoogle Scholar
Schliebs, R., Walch, C., Stewart, M. G. (1989) Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography. J Hirnforsch 30: 303–311.Google Scholar
Schubert, D., Staiger, J. F., Cho, N., et al. (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21: 3580–3592.Google Scholar
Schubert, D., Kotter, R., Zilles, K., Luhmann, H. J., Staiger, J. F. (2003) Cell type-specific circuits of cortical layer IV spiny neurons. J Neurosci 23: 2961–2970.Google Scholar
Schubert, D., Kotter, R., Luhmann, H. J., Staiger, J. F. (2006b) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex 16: 223–236.Google Scholar
Schubert, V., Da Silva, J. S., Dotti, C. G. (2006a) Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner. J Cell Biol 172: 453–467.Google Scholar
Scott, B. B., Zaratin, P. F., Gilmartin, A. G., et al. (2005) TNF-alpha modulates angiopoietin-1 expression in rheumatoid synovial fibroblasts via the NF-kappa B signalling pathway. Biochem Biophys Res Commun 328: 409–414.CrossRefGoogle Scholar
Scott, H. L., Braud, S., Bannister, N. J., Isaac, J. T. (2007) Synaptic strength at the thalamocortical input to layer IV neonatal barrel cortex is regulated by protein kinase C. Neuropharmacology 52: 185–192.CrossRefGoogle Scholar
Seidenman, K. J., Steinberg, J. P., Huganir, R., Malinow, R. (2003) Glutamate receptor subunit 2 serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23: 9220–9228.Google Scholar
Senft, S. L., Woolsey, T. A. (1991) Growth of thalamic afferents into mouse barrel cortex. Cereb Cortex 1: 308–335.CrossRefGoogle Scholar
Shatz, C. J., Stryker, M. P. (1978) Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J Physiol 281: 267–283.CrossRefGoogle Scholar
Shepherd, G. M., Pologruto, T. A., Svoboda, K. (2003) Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38: 277–289.CrossRefGoogle Scholar
Shepherd, G. M., Stepanyants, A., Bureau, I., Chklovskii, D., Svoboda, K. (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8: 782–790.CrossRefGoogle Scholar
Sherman, S. M., Guillery, R. W. (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 357: 1695–1708.CrossRefGoogle Scholar
Sheth, S. A., Nemoto, M., Guiou, M., et al. (2004) Columnar specificity of microvascular oxygenation and volume responses: implications for functional brain mapping. J Neurosci 24: 634–641.CrossRefGoogle Scholar
Shi, Y., Ethell, I. M. (2006) Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2 +/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci 26: 1813–1822.CrossRefGoogle Scholar
Shimegi, S., Ichikawa, T., Akasaki, T., Sato, H. (1999) Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J Neurosci 19: 10164–10175.Google Scholar
Shimegi, S., Akasaki, T., Ichikawa, T., Sato, H. (2000) Physiological and anatomical organization of multiwhisker response interactions in the barrel cortex of rats. J Neurosci 20: 6241–6248.Google Scholar
Shimogori, T., Grove, E. A. (2005) Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J Neurosci 25: 6550–6560.CrossRefGoogle Scholar
Shipley, M. T. (1974) Response characteristics of single units in the rat's trigeminal nuclei to vibrissa displacements. J Neurophysiol 37: 73–90.Google Scholar
Shoykhet, M., Doherty, D., Simons, D. J. (2000) Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing. Somatosens Mot Res 17: 171–180.CrossRefGoogle Scholar
Sieghart, W. (2000) Unraveling the function of GABA(A) receptor subtypes. Trends Pharmacol Sci 21: 411–413.CrossRefGoogle Scholar
Sik, A., Penttonen, M., Ylinen, A., Buzsaki, G. (1995) Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 15: 6651–6665.Google Scholar
Silva, A. C., Zhang, W., Williams, D. S., Koretsky, A. P. (1995) Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling. Magn Reson Med 33: 209–214.CrossRefGoogle Scholar
Silva, A. J., Stevens, C. F., Tonegawa, S., Wang, Y. (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257: 201–206.CrossRefGoogle Scholar
Silver, R. A., Lubke, J., Sakmann, B., Feldmeyer, D. (2003) High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302: 1981–1984.CrossRefGoogle Scholar
Simons, D. J. (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41: 798–820.Google Scholar
Simons, D. J. (1985) Temporal and spatial integration in the rat SI vibrissa cortex. J Neurophysiol 54: 615–635.Google Scholar
Simons, D. J., Carvell, G. E. (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol 61: 311–330.Google Scholar
Simons, D. J., Land, P. W. (1987) Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature 326: 694–697.CrossRefGoogle Scholar
Simons, D. J., Land, P. W. (1994) Neonatal whisker trimming produces greater effects in nondeprived than deprived thalamic barreloids. J Neurophysiol 72: 1434–1437.Google Scholar
Simons, D. J., Woolsey, T. A. (1984) Morphology of Golgi–Cox-impregnated barrel neurons in rat SmI cortex. J Comp Neurol 230: 119–132.CrossRefGoogle Scholar
Simpson, K. L., Waterhouse, B. D., Lin, R. C. (2006) Characterization of neurochemically specific projections from the locus coeruleus with respect to somatosensory-related barrels. Anat Rec A Discov Mol Cell Evol Biol 288: 166–173.CrossRefGoogle Scholar
Sinclair, R. J., Burton, H. (1991) Tactile discrimination of gratings: psychophysical and neural correlates in human and monkey. Somatosens Mot Res 8: 241–248.CrossRefGoogle Scholar
Siucinska, E., Kossut, M. (2006) Short-term sensory learning does not alter parvalbumin neurons in the barrel cortex of adult mice: a double-labeling study. Neuroscience 138: 715–724.CrossRefGoogle Scholar
Sjostrom, P. J., Turrigiano, G. G., Nelson, S. B. (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39: 641–654.CrossRefGoogle Scholar
Sjostrom, P. J., Turrigiano, G. G., Nelson, S. B. (2004) Endocannabinoid-dependent neocortical layer-5 LTD in the absence of postsynaptic spiking. J Neurophysiol 92: 3338–3343.CrossRefGoogle Scholar
Skangiel-Kramska, J., Rajkowska, G., Kosmal, A., Kossut, M. (1992) The distribution of cholinergic muscarinic receptors in the dog frontal lobe. J Chem Neuroanat 5: 391–398.CrossRefGoogle Scholar
Sloper, J. J. (1972) Gap junctions between dendrites in the primate neocortex. Brain Res 44: 641–646.CrossRefGoogle Scholar
Solomon, J. H., Hartmann, M. J. (2006) Biomechanics: robotic whiskers used to sense features. Nature 443: 525.CrossRefGoogle Scholar
Somogyi, P., Tamas, G., Lujan, R., Buhl, E. H. (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26: 113–135.CrossRefGoogle Scholar
Son, H., Hawkins, R. D., Martin, K., et al. (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87: 1015–1023.CrossRefGoogle Scholar
Staiger, J. F., Zilles, K., Freund, T. F. (1996) Distribution of GABAergic elements postsynaptic to ventroposteromedial thalamic projections in layer IV of rat barrel cortex. Eur J Neurosci 8: 2273–2285.CrossRefGoogle Scholar
Staiger, J. F., Kotter, R., Zilles, K., Luhmann, H. J. (2000) Laminar characteristics of functional connectivity in rat barrel cortex revealed by stimulation with caged-glutamate. Neurosci Res 37: 49–58.CrossRefGoogle Scholar
Staiger, J. F., Flagmeyer, I., Schubert, D., et al. (2004) Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cereb Cortex 14: 690–701.CrossRefGoogle Scholar
Stanton, P. K., Sejnowski, T. J. (1989) Associative long-term depression in the hippocampus induced by hebbian covariance. Nature 339: 215–218.CrossRefGoogle Scholar
Steriade, M., Ropert, N., Kitsikis, A., Oaksen, G. (1981) Ascending Activating Neuronal Networks in Midbrain Reticular Core and Related Rostral Systems. New York: Raven Press.
Steriade, M., Deschenes, M., Domich, L., Mulle, C. (1985) Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54: 1473–1497.Google Scholar
Stern, E. A., Maravall, M., Svoboda, K. (2001) Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron 31: 305–315.CrossRefGoogle Scholar
Stern, M. D., Lappe, D. L., Bowen, P. D., et al. (1977) Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol 232: H441–H448.Google Scholar
Stettler, D. D., Yamahachi, H., Li, W., Denk, W., Gilbert, C. D. (2006) Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49: 877–887.CrossRefGoogle Scholar
Storm-Mathisen, J., Leknes, A. K., Bore, A. T., et al. (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301: 517–520.CrossRefGoogle Scholar
Stryker, M. P., Harris, W. A. (1986) Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J Neurosci 6: 2117–2133.Google Scholar
Sugino, K., Hempel, C. M., Miller, M. N., et al. (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9: 99–107.CrossRefGoogle Scholar
Swadlow, H. A. (2003) Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cereb Cortex 13: 25–32.CrossRefGoogle Scholar
Swadlow, H. A., Gusev, A. G. (2002) Receptive-field construction in cortical inhibitory interneurons. Nat Neurosci 5: 403–404.CrossRefGoogle Scholar
Szwed, M., Bagdasarian, K., Ahissar, E. (2003) Encoding of vibrissal active touch. Neuron 40: 621–630.CrossRefGoogle Scholar
Tabony, J. (1994) Morphological bifurcations involving reaction–diffusion processes during microtubule formation. Science 264: 245–248.CrossRefGoogle Scholar
Tailby, C., Wright, L. L., Metha, A. B., Calford, M. B. (2005) Activity-dependent maintenance and growth of dendrites in adult cortex. Proc Natl Acad Sci USA 102: 4631–4636.CrossRefGoogle Scholar
Takahashi, T., Svoboda, K., Malinow, R. (2003) Experience strengthening transmission by driving AMPA receptors into synapses. Science 299: 1585–1588.CrossRefGoogle Scholar
Tamas, G., Buhl, E. H., Lorincz, A., Somogyi, P. (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3: 366–371.CrossRefGoogle Scholar
Thomson, A. M., Bannister, A. P. (1999) Release-independent depression at pyramidal inputs onto specific cell targets: dual recordings in slices of rat cortex. J Physiol 519(Pt 1): 57–70.CrossRefGoogle Scholar
Thomson, A. M., Deuchars, J., West, D. C. (1993) Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. J Neurophysiol 70: 2354–2369.Google Scholar
Timofeeva, E., Merette, C., Emond, C., Lavallee, P., Deschenes, M. (2003) A map of angular tuning preference in thalamic barreloids. J Neurosci 23: 10717–10723.Google Scholar
Timofeeva, E., Lavallee, P., Arsenault, D., Deschenes, M. (2004) Synthesis of multiwhisker-receptive fields in subcortical stations of the vibrissa system. J Neurophysiol 91: 1510–1515.CrossRefGoogle Scholar
Toledo-Rodriguez, M., Goodman, P., Illic, M., Wu, C., Markram, H. (2005) Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J Physiol 567: 401–413.CrossRefGoogle Scholar
Trachtenberg, J. T., Chen, B. E., Knott, G. W., et al. (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420: 788–794.CrossRefGoogle Scholar
Trageser, J. C., Keller, A. (2004) Reducing the uncertainty: gating of peripheral inputs by zona incerta. J Neurosci 24: 8911–8915.CrossRefGoogle Scholar
Traub, R. D., Contreras, D., Cunningham, M. O., et al. (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93: 2194–2232.Google Scholar
Trettel, J., Levine, E. S. (2002) Cannabinoids depress inhibitory synaptic inputs received by layer 2/3 pyramidal neurons of the neocortex. J Neurophysiol 88: 534–539.Google Scholar
Trettel, J., Fortin, D. A., Levine, E. S. (2004) Endocannabinoid signalling selectively targets perisomatic inhibitory inputs to pyramidal neurones in juvenile mouse neocortex. J Physiol 556: 95–107.CrossRefGoogle Scholar
Tsodyks, M. V., Markram, H. (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94: 719–723.CrossRefGoogle Scholar
Turing, A. M. (1990) The chemical basis of morphogenesis, 1953. Bull Math Biol 52: 153–197; discussion 119–152. [Republication of the 1953 paper.]Google Scholar
Tyszkiewicz, J. P., Gu, Z., Wang, X., Cai, X., Yan, Z. (2004) Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex. J Physiol 554: 765–777.CrossRefGoogle Scholar
Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367: 1–48.CrossRefGoogle Scholar
Urban, J., Kossut, M., Hess, G. (2002) Long-term depression and long-term potentiation in horizontal connections of the barrel cortex. Eur J Neurosci 16: 1772–1776.CrossRefGoogle Scholar
Valcanis, H., Tan, S. S. (2003) Layer specification of transplanted interneurons in developing mouse neocortex. J Neurosci 23: 5113–5122.Google Scholar
Valverde, F. (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3: 337–352.CrossRefGoogle Scholar
Valverde, F. (1971) Rate and extent of recovery from dark rearing in the visual cortex of the mouse. Brain Res 33: 1–11.CrossRefGoogle Scholar
Loos, H. (1976) Neuronal circuitry and its development. Prog Brain Res 45: 259–278.CrossRefGoogle Scholar
Loos, H., Woolsey, T. A. (1973) Somatosensory cortex: structural alterations following early injury to sense organs. Science 179: 395–398.CrossRefGoogle Scholar
Loos, H., Welker, E., Dorfl, J., Rumo, G. (1986) Selective breeding for variations in patterns of mystacial vibrissae of mice. Bilaterally symmetrical strains derived from ICR stock. J Hered 77: 66–82.Google Scholar
Veinante, P., Deschenes, M. (1999) Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J Neurosci 19: 5085–5095.Google Scholar
Veinante, P., Jacquin, M. F., Deschenes, M. (2000) Thalamic projections from the whisker-sensitive regions of the spinal trigeminal complex in the rat. J Comp Neurol 420: 233–243.3.0.CO;2-T>CrossRefGoogle Scholar
Venance, L., Rozov, A., Blatow, M., et al. (2000) Connexin expression in electrically coupled postnatal rat brain neurons. Proc Natl Acad Sci USA 97: 10260–10265.CrossRefGoogle Scholar
Waite, P. M., Cragg, B. G. (1979) The effect of destroying the whisker follicles in mice on the sensory nerve, the thalamocortical radiation and cortical barrel development. Proc R Soc Lond B Biol Sci 204: 41–55.CrossRefGoogle Scholar
Waite, P. M., Cragg, B. G. (1982) The peripheral and central changes resulting from cutting or crushing the afferent nerve supply to the whiskers. Proc R Soc Lond B Biol Sci 214: 191–211.CrossRefGoogle Scholar
Waite, P. M., Jacquin, M. F. (1992) Dual innervation of the rat vibrissa: responses of trigeminal ganglion cells projecting through deep or superficial nerves. J Comp Neurol 322: 233–245.CrossRefGoogle Scholar
Waite, P. M., Taylor, P. K. (1978) Removal of whiskers in young rats causes functional changes in cerebral cortex. Nature 274: 600–602.CrossRefGoogle Scholar
Waite, P. M., Marotte, L. R., Mark, R. F. (1991) Development of whisker representation in the cortex of the tammar wallaby Macropus eugenii. Brain Res Dev Brain Res 58: 35–41.CrossRefGoogle Scholar
Waite, P. M., Li, L., Ashwell, K. W. (1992) Developmental and lesion induced cell death in the rat ventrobasal complex. Neuroreport 3: 485–488.CrossRefGoogle Scholar
Wall, P. D., Fitzgerald, M., Nussbaumer, J. C., Loos, H., Devor, M. (1982) Somatotopic maps are disorganized in adult rodents treated neonatally with capsaicin. Nature 295: 691–693.CrossRefGoogle Scholar
Wallace, H., Fox, K. (1999a) The effect of vibrissa deprivation pattern on the form of plasticity induced in rat barrel cortex. Somatosens Mot Res 16: 122–138.Google Scholar
Wallace, H., Fox, K. (1999b) Local cortical interactions determine the form of cortical plasticity. J Neurobiol 41: 58–63.Google Scholar
Wallace, H., Glazewski, S., Liming, K., Fox, K. (2001) The role of cortical activity in experience-dependent potentiation and depression of sensory responses in rat barrel cortex. J Neurosci 21: 3881–3894.Google Scholar
Walsh, C., Cepko, C. L. (1988) Clonally related cortical cells show several migration patterns. Science 241: 1342–1345.CrossRefGoogle Scholar
Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., Markram, H. (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12: 395–410.CrossRefGoogle Scholar
Wang, Y., Toledo-Rodriguez, M., Gupta, A., et al. (2004) Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol 561: 65–90.CrossRefGoogle Scholar
Watanabe, Y., Song, T., Sugimoto, K., et al. (2003) Post-synaptic density-95 promotes calcium/calmodulin-dependent protein kinase II-mediated Ser847 phosphorylation of neuronal nitric oxide synthase. Biochem J 372: 465–471.CrossRefGoogle Scholar
Watson, R. F., Abdel-Majid, R. M., Barnett, M. W., et al. (2006) Involvement of protein kinase A in patterning of the mouse somatosensory cortex. J Neurosci 26: 5393–5401.CrossRefGoogle Scholar
Wei, L., Rovainen, C. M., Woolsey, T. A. (1995) Ministrokes in rat barrel cortex. Stroke 26: 1459–1462.CrossRefGoogle Scholar
Wei, L., Erinjeri, J. P., Rovainen, C. M., Woolsey, T. A. (2001) Collateral growth and angiogenesis around cortical stroke. Stroke 32: 2179–2184.CrossRefGoogle Scholar
Welker, C. (1976) Receptive fields of barrels in the somatosensory neocortex of the rat. J Comp Neurol 166: 173–189.CrossRefGoogle Scholar
Welker, C., Woolsey, T. A. (1974) Structure of layer IV in the somatosensory neocortex of the rat: description and comparison with the mouse. J Comp Neurol 158: 437–453.CrossRefGoogle Scholar
Welker, E., Loos, H. (1986) Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae. J Neurosci 6: 3355–3373.Google Scholar
Welker, E., Hoogland, P. V., Loos, H. (1988) Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse. Exp Brain Res 73: 411–435.CrossRefGoogle Scholar
Welker, E., Armstrong-James, M., Bronchti, G., et al. (1996) Altered sensory processing in the somatosensory cortex of the mouse mutant barrelless. Science 271: 1864–1867.CrossRefGoogle Scholar
Welker, W. I. (1964) Analysis of sniffing of the the albino rat. Behaviour 12: 223–244.CrossRefGoogle Scholar
Weller, W. L. (1972) Barrels in somatic sensory neocortex of the marsupial Trichosurus vulpecula (brush-tailed possum). Brain Res 43: 11–24.CrossRefGoogle Scholar
Whitaker, V. R., Cui, L., Miller, S., Yu, S. P., Wei, L. (2007) Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice. J Cereb Blood Flow Metab 27: 57–68.CrossRefGoogle Scholar
White, E. L. (1978) Identified neurons in mouse Sml cortex which are postsynaptic to thalamocortical axon terminals: a combined Golgi–electron microscopic and degeneration study. J Comp Neurol 181: 627–661.CrossRefGoogle Scholar
White, E. L., DeAmicis, R. A. (1977) Afferent and efferent projections of the region in mouse SmL cortex which contains the posteromedial barrel subfield. J Comp Neurol 175: 455–482.CrossRefGoogle Scholar
White, E. L., Hersch, S. M. (1982) A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex. J Neurocytol 11: 137–157.CrossRefGoogle Scholar
White, E. L., Keller, A. (1987) Intrinsic circuitry involving the local axon collaterals of corticothalamic projection cells in mouse SmI cortex. J Comp Neurol 262: 13–26.CrossRefGoogle Scholar
White, E. L., Weinfeld, L., Lev, D. L. (1997) A survey of morphogenesis during the early postnatal period in PMBSF barrels of mouse SmI cortex with emphasis on barrel D4. Somatosens Mot Res 14: 34–55.CrossRefGoogle Scholar
Whitford, K. L., Dijkhuizen, P., Polleux, F., Ghosh, A. (2002) Molecular control of cortical dendrite development. Annu Rev Neurosci 25: 127–149.CrossRefGoogle Scholar
Wiesel, T. N., Hubel, D. H. (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28: 1029–1040.Google Scholar
Wilent, W. B., Contreras, D. (2004) Synaptic responses to whisker deflections in rat barrel cortex as a function of cortical layer and stimulus intensity. J Neurosci 24: 3985–3998.CrossRefGoogle Scholar
Wilent, W. B., Contreras, D. (2005) Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nat Neurosci 8: 1364–1370.CrossRefGoogle Scholar
Wilson, R. I., Nicoll, R. A. (2002) Endocannabinoid signaling in the brain. Science 296: 678–682.CrossRefGoogle Scholar
Woolsey, T. A. (1990) Peripheral Alteration and Somatosensory Development. New York: John Wiley.
Woolsey, T. A., Loos, H. (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17: 205–242.Google Scholar
Woolsey, T. A., Wann, J. R. (1976) Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages. J Comp Neurol 170: 53–66.CrossRefGoogle Scholar
Woolsey, T. A., Welker, C., Schwartz, R. H. (1975a) Comparative anatomical studies of the SmL face cortex with special reference to the occurrence of “barrels” in layer IV. J Comp Neurol 164: 79–94.Google Scholar
Woolsey, T. A., Dierker, M. L., Wann, D. F. (1975b) Mouse SmI cortex: qualitative and quantitative classification of Golgi-impregnated barrel neurons. Proc Natl Acad Sci USA 72: 2165–2169.Google Scholar
Woolsey, T. A., Rovainen, C. M., Cox, S. B., et al. (1996) Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. Cereb Cortex 6: 647–660.CrossRefGoogle Scholar
Woolston, D. C., Londe, J. R., Gibson, J. M. (1982) Comparison of response properties of cerebellar- and thalamic-projecting interpolaris neurons. J Neurophysiol 48: 160–173.Google Scholar
Wright, A. K., Norrie, L., Ingham, C. A., Hutton, E. A., Arbuthnott, G. W. (1999) Double anterograde tracing of outputs from adjacent “barrel columns” of rat somatosensory cortex. Neostriatal projection patterns and terminal ultrastructure. Neuroscience 88: 119–133.Google Scholar
Wright, A. K., Norrie, L., Arbuthnott, G. W. (2000) Corticofugal axons from adjacent “barrel” columns of rat somatosensory cortex: cortical and thalamic terminal patterns. J Anat 196 (Pt 3): 379–390.CrossRefGoogle Scholar
Xiang, Z., Huguenard, J. R., Prince, D. A. (1998) Cholinergic switching within neocortical inhibitory networks. Science 281: 985–988.CrossRefGoogle Scholar
Yamada, J., Furukawa, T., Ueno, S., Yamamoto, S., Fukuda, A. (2006) Molecular basis for the GABAA receptor-mediated tonic inhibition in rat somatosensory cortex. Cereb Cortex bhl087 (e-publication).
Yamakado, M. (1995) Remodelling in the array of cell aggregates in somatotopic representation of the facial vibrissae through the trigeminal sensory system of the mouse. Neurosci Res 23: 399–413.CrossRefGoogle Scholar
Yang, Y., Fischer, Q. S., Zhang, Y., et al. (2005) Reversible blockade of experience-dependent plasticity by calcineurin in mouse visual cortex. Nat Neurosci 8: 791–796.CrossRefGoogle Scholar
Yasuda, H., Barth, A. L., Stellwagen, D., Malenka, R. C. (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6: 15–16.Google Scholar
Yin, J. C., Wallach, J. S., Del Vecchio, M., et al. (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79: 49–58.CrossRefGoogle Scholar
Young-Davies, C. L., Bennett-Clarke, C. A., Lane, R. D., Rhoades, R. W. (2000) Selective facilitation of the serotonin(1B) receptor causes disorganization of thalamic afferents and barrels in somatosensory cortex of rat. J Comp Neurol 425: 130–138.3.0.CO;2-B>CrossRefGoogle Scholar
Yuste, R., Peinado, A., Katz, L. C. (1992) Neuronal domains in developing neocortex. Science 257: 665–669.CrossRefGoogle Scholar
Zhang, Z., Chopp, M. (2002) Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med 12: 62–66.CrossRefGoogle Scholar
Zhang, Z. W., Deschenes, M. (1997) Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 17: 6365–6379.Google Scholar
Zhu, J. J., Connors, B. W. (1999) Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J Neurophysiol 81: 1171–1183.Google Scholar
Zhu, Y., Stornetta, R. L., Zhu, J. J. (2004) Chandelier cells control excessive cortical excitation: characteristics of whisker-evoked synaptic responses of layer 2/3 nonpyramidal and pyramidal neurons. J Neurosci 24: 5101–5108.CrossRefGoogle Scholar
Zucker, E., Welker, W. I. (1969) Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion. Brain Res 12: 138–156.CrossRefGoogle Scholar
Zuo, Y., Yang, G., Kwon, E., Gan, W. B. (2005a) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436: 261–265.Google Scholar
Zuo, Y., Lin, A., Chang, P., Gan, W. B. (2005b) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46: 181–189.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kevin Fox, Cardiff University
  • Foreword by Thomas Woolsey
  • Book: Barrel Cortex
  • Online publication: 17 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541636.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kevin Fox, Cardiff University
  • Foreword by Thomas Woolsey
  • Book: Barrel Cortex
  • Online publication: 17 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541636.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kevin Fox, Cardiff University
  • Foreword by Thomas Woolsey
  • Book: Barrel Cortex
  • Online publication: 17 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541636.011
Available formats
×