Published online by Cambridge University Press: 05 June 2012
In the previous chapter we have considered the properties of strongly correlated electrons. The systems we mostly had in mind were the compounds of transition metal and maybe rare earth elements with partially filled inner d or f shells. We have discussed only the correlated electrons themselves, the prototype model being the Hubbard model (12.1).
When turning to real materials, several extra factors missing in the model (12.1) are important. One of them is the possible influence of orbital degrees of freedom, especially in cases with orbital degeneracy, treated in Section 12.9.
In many situations there is yet another very important factor. There may exist in a system, besides correlated electrons, also electrons of other bands, e.g. electrons in wide conduction bands, responsible for ordinary metallic conductivity. Such is for instance the situation for magnetic impurities in metals, or in the concentrated systems like rare earth metals and compounds in which localized f electrons coexist with the metallic electrons in broad spd bands. The interplay between localized, or, better, strongly correlated electrons and itinerant electrons of the wide bands can lead to a number of very interesting consequences; these will be discussed in this chapter.
Localized magnetic moments in metals
When we put transition metal impurities in ordinary metals (e.g. Mn or Fe in Cu, Au), the result may be two-fold. In certain cases the impurities retain their magnetic moment, but in others they lose it.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.