Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T16:52:55.261Z Has data issue: false hasContentIssue false

11 - Response and correlation functions

Published online by Cambridge University Press:  06 January 2010

Jean-Louis Barrat
Affiliation:
Université Lyon I
Jean-Pierre Hansen
Affiliation:
University of Cambridge
Get access

Summary

Probing dynamical properties at equilibrium

By definition, the macroscopic properties of a system at equilibrium do not change with time. This does not mean, however, that the system is dynamically inert. On the contrary, the equilibrium state is associated with permanent motion at the molecular level. Although this motion is sometimes described as random ‘thermal noise’, it is in fact quite well organized, and reflects the microscopic processes that govern the dynamics of the system. As these same processes will also determine the system response to an external perturbation, understanding their organization and time evolution is of primary importance for the determination of the material response, and of its relationship to the microscopic structure.

As a simple illustration of how seemingly random dynamical processes are organized in a coherent fashion, one may consider the case of vibrations in a crystalline solid. Each atom oscillates around its equilibrium position, in a way which is apparently very random. The well known harmonic analysis, however, shows that this motion is really caused by the superposition of well defined sound waves, the phonons, with different phases and directions of propagation. This organization of the atomic motions into excitations of well defined spatial and temporal structure determines many thermodynamic and transport properties of the crystal.

The harmonic crystal is of course particularly simple, since it is possible in that case to deduce analytically from the interaction potential the structure of the coherent excitations. In more complex, disordered systems, an analytical treatment is usually out of reach. Nevertheless, the information on the way atomic motions are organized is encoded in the correlation functions of atomic positions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×