Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-cp4x8 Total loading time: 0 Render date: 2025-06-18T06:06:26.014Z Has data issue: false hasContentIssue false

1 - Oxyhaemoglobin dissociation curve

from Part 3b - Physiology: the respiratory system

Published online by Cambridge University Press:  13 August 2009

Sylva Dolenska
Affiliation:
William Harvey Hospital, Kent
Get access

Summary

The oxyhaemoglobin dissociation curve (see Figure 101) describes oxygen binding to haemoglobin and its release in terms of haemoglobin saturation as a function of partial pressure oxygen. It is a sigmoid curve and it rather resembles the drug dose–effect relationship curve (see the chapter on pharmacology). However, in the case of the oxyhaemoglobin dissociation curve, the ‘dose’, i.e. oxygen partial pressure, is on a linear scale. This means that small, linear increments in oxygen partial pressure produce large changes in haemoglobin saturation on the straight part of the curve; at the extreme ends of the curve the opposite applies.

The central value on the straight part of the curve, which corresponds to haemoglobin saturation of 50%, is called the p50; it is normally 3.6 kPa (26.6 mmHg). This is an unphysiological but convenient value to describe the position of the oxyhaemoglobin dissociation curve with respect to the pO2. Points on the normal curve that correspond to the arterial and venous point are denoted as A and V. A shift of the oxyhaemoglobin dissociation curve to the right results in a higher p50, and conversely a left shift lowers the p50. The higher the p50, the lower the affinity of haemoglobin for O2.

Oxygen affinity (and therefore P50 in a reciprocal manner) is affected by the following interrelated factors:

  • 2,3-Diphosphoglycerate (2,3-DPG) concentration in the red cell: this is the primary control mechanism. 2,3-DPG is the allosteric effector that binds selectively to the deoxygenated haemoglobin, producing changes in haemoglobin molecule conformation. Oxygen affinity of haemoglobin is inversely related to 2,3-DPG concentration, therefore the oxyhaemo-globin dissociation curve is shifted to the right with a rise in 2,3-DPG.

  • […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×