Published online by Cambridge University Press: 23 November 2009
Recent rapid technical advances in genome sequencing (genomics) and protein identification (proteomics) have given rise to research problems that require combined expertise from statistics, biology, computer science, and other fields. The interdisciplinary nature of bioinformatics presents many research challenges related to integrating concepts, methods, software, and multiplatform data. In addition to new tools for investigating biological systems via high-throughput genomic and proteomic measurements, statisticians face many novel methodological research questions generated by such data. The work in this book is dedicated to the development and application of Bayesian statistical methods in the analysis of high-throughput bioinformatics data that arise from problems in medical research, in particular cancer research, and molecular and structural biology. This book does not aim to be comprehensive in all areas of bioinformatics. Rather, it presents a broad overview of statistical inference problems related to three main high-throughput platforms: microarray gene expression, serial analysis gene expression (SAGE), and mass spectrometry proteomic profiles. The book's main focus is on the design, statistical inference, and data analysis, from a Bayesian perspective, of data sets arising from such high-throughput experiments.
Chapter 1 provides a detailed introduction to the three main data platforms and sets the scene for subsequent methodology chapters. This chapter is mainly aimed at nonbiologists and covers elementary biological concepts, details the unique measurement technology with associated idiosyncrasies for the different platforms, and generates an overall outline of issues that statistical methodology can address.
Subsequent chapters focus on specific methodology developments and are grouped approximately by the main bioinformatics platform, with several chapters discussing the integration of at least two platforms.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.