Published online by Cambridge University Press: 11 April 2011
In this chapter we assume that you have a method for calculating the likelihood of some data from a parameterized model. Using some prior on the parameters, Bayes’ theorem then gives the probability of the parameters given the data and model. A common goal in cosmology is then to find estimates of the parameters and their error bars. This is relatively simple when the number of parameters is small, but when there are more than about five parameters it is often useful to use a sampling method. Therefore in this chapter we focus mainly on finding parameter uncertainties using Monte Carlo methods.
Why do sampling?
We suppose that you have (i) some data, d, (ii) a model, M, (iii) a set θ of unknown parameters of the model, and (iv) a method for calculating the probability of these parameters from the data P(θ|d, M). For convenience we mostly shall leave the dependence on d and M implicit, and thus write P(θ) = P(θ|d, M).
An example we will consider throughout this chapter is the estimation of cosmological parameters from cosmic microwave background (CMB) data. For example, you could consider that (i) the data is the CMB power spectrum, (ii) the cosmological model is a Big Bang inflation model with cold dark matter and a cosmological constant, and (iii) the unknown parameters are cosmological parameters such as the matter density and expansion rate of the Universe.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.