Skip to main content
×
×
Home
  • Print publication year: 2014
  • Online publication date: July 2014

6 - Flight behavior: Degradation of flight muscle power and locomotor capacity in transgenicDrosophila

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Behavioral Genetics of the Fly (Drosophila Melanogaster)
  • Online ISBN: 9780511920585
  • Book DOI: https://doi.org/10.1017/CBO9780511920585
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×

References

Adams, M., Celniker, S., Holt, R., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287: 2185–2195.
Arredondo, J.J., Mardahl-Dumesnil, M., Cripps, R.M., Cervera, M., and Berstein, S.I. (2001) Overexpression of miniparamyosin causes muscle dysfunction and age-dependant myofibril degeneration in the indirect flight muscles of Drosophila melanogaster. J Muscle Res Cell Motil 22: 287–299.
Ayer, G. and Vigoreaux, J.O. (2003) Flightin is a myosin rod binding protein. Cell Biochem Biophys 38: 41–54.
Barton, B., Ayer, G., Heymann, N., Maughan, D.W., Lehmann, F.-O., and Vigoreaux, J.O. (2005) Flight muscle properties and aerodynamic performance of Drosophila expressing a flightin gene. J Exp Biol 208: 549–560.
Bier, E., Vaessin, H., Shepherd, S., et al. (1989) Searching pattern and mutation in the Drosophila genome with a P-lacZ vector. Gene Dev 3: 1273–1287.
Brembs, B., Christiansen, F., Pflüger, H.J., and Duch, C. (2007) Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. J Neurosci 27: 11122–11131.
Buchanan, R.L. and Benzer, S. (1993) Defective glia in the Drosophila brain degeneration mutant drop-dead. Neuron 10: 839–850.
Bullard, B., Bell, J., Craig, R., and Leonard, K. (1985) Arthrin: A new actin-like protein in insect flight muscle. J Mol Biol 182: 443–54.
Bullard, B., Leonard, K., Larkins, G., Butcher, G., Karlik, C., and Fyrberg, E. (1988) Troponin of asynchrous flight muscle. J Mol Biol 204: 621–637.
Casey, T.M., Hegel, J.H., and Buser, C.S. (1981) Physiology and energetics of pre flight warm-up in the eastern tent caterpillar moth Malacosoma americum. J Exp Biol 94: 119–135.
Connolly, K., Tunnicliff, G., and Rick, J.T. (1971) The effect of γ-hydroxybutyric acid on spontaneous locomotor activity and dopamine level in a selected strain of Drosophila melanogaster. Physiol Comp Biochem 40: 321–326.
Dickinson, M.H. and Tu, M.S. (1997) The function of Dipteran flight muscle. Comp Biochem Physiol A 116A: 223–238.
Dickinson, M.H., Hyatt, C.J., Lehmann, F.-O., et al. (1997) Phosphorylation-dependent power output of transgenic flies: An integrated study. Biophys J 7: 3122–3134.
Dickinson, M.H., Lehmann, F.-O., and Sane, S. (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284: 1954–1960.
Duistermars, B.J., Chow, D.M., Condro, M., and Frye, M.A. (2007) The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila. J Exp Biol 210: 3218–3227.
Ellington, C.P. (1984) The aerodynamics of insect flight. VI. Lift and power requirements. Phil Trans Roy Soc Lond B 305: 145–181.
Freeman, M. (1991) First, trap your enhancer. Curr Biol 1: 378–381.
Gilchrist, G.W., Huey, R.B., and Patridge, L. (1997) Thermal sensitivity of Drosophila melanogaster: Evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Physiol Zool 70: 403–414.
Gordon, S. and Dickinson, M.H. (2006) Role of calcium in the regulation of mechanical power in insect flight. Proc Natl Acad Sci 103: 4311–4315.
Götz, K.G., Hengstenberg, B., and Biesinger, R. (1979) Optomotor control of wing beat and body posture in Drosophila. Biol Cybernetics 35: 101–112.
Granzier, H.L.M. and Wang, K. (1993a) Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle: A functional dissection by gelsolin-mediated thin filament removal. J Gen Physiol 101: 235–270.
Granzier, H.L.M. and Wang, K. (1993b) Passive tension and stiffness of vertebrate skeletal and insect flight muscles: The contribution of weak cross-bridges and elastic filaments. Biophys J 65: 2141–2159.
Hannun, Y.A., Luberto, C., and Argraves, K.M. (2001) Enzymes of sphingolipid metabolism: From modular to integrative signaling. Biochemistry 40: 4893–4903.
Heisenberg, M. and Wolf, R. (1984) Vision in Drosophila. Berlin: Springer.
Helfand, S.L. and Naprta, B. (1996) The expression of a reporter protein, β-galactosidase, is preserved during maturation and aging in some cells of the adult Drosophila melanogaster. Mech Dev 55: 45–51.
Helfand, S.L., Blake, K.J., Rogina, B., Stracks, M.D., Centurion, A., and Naprta, B. (1995) Temporal pattern of gene expression in the antenna of the adult Drosophila melanogaster. Genetics 140: 549–555.
Henkin, J.A., Maughan, D.W., and Vigoreaux, J.O. (2004) Mutations that affect flightin expression in Drosophila alter the viscoelastic properties of flight muscle fibers. Am J Physiol 286: C65--C72.
Herr, D.R., Fyrst, H., Phan, V., Heinecke, K., Georges, R., and Harris, G.L. (2003) Sply regulation of sphingolipid signaling molecules is essential for Drosophila development. Development 130: 2443–2453.
Jordon, K.W., Morgan, T.J., and Mackay, T.F.C. (2006) Quantitative trait loci for locomotor behavior in Drosophila melanogaster. Genetics 174: 271–284.
Josephson, R.K. (2006) Comparative physiology of insect flight muscle. In Nature's Versatile Engine: Insect Flight Muscle Inside and Out, Vigoreaux J.O., ed., New York: Springer, pp. 288.
Kassis, J.A., VanSickle, E.P., and Sensabaugh. (1991) A fragment of engrailed regulatory DNA can mediate transvection of the white gene in Drosophila. Genetics 128: 751–761.
Katzemich, A., Kreisköther, N., Alexandrovich, A., et al. (2012) The function of the M-line protein obscurin in the controlling the symmetry of the sarcomere in the flight muscle of Drosophila. J Cell Sci 125: 3367–3379.
Kern, R. and Egelhaaf, M. (2000) Optomotor course control in flies with largely asymmetric visual input. J Comp Physiol A 186: 45–55.
Kronert, W.A., O’Donnell, P.T., Fieck, A., et al. (1995) Defects in the Drosophila myosin rod permit sarcomere assembly but cause flight muscle degeneration. J Mol Biol 2490: 111–125.
Kržič, U., Vladimir, R., Leonard, K.R., Linke, W.A., and Bullard, B. (2010) Regulation of the oscillatory contraction in insect flight muscle by troponin. J Mol Biol 397: 110–118.
Leal, S.M. and Neckameyer, W.S. (2002) Pharmocological evidence for GABAergic regulation of specific behaviors in Drosophila melanogaster. J Neurobiol 50: 245–261.
Lehmann, F.-O. and Cierotzki, V. (2010) Locomotor performance in the Drosophila brain mutant drop-dead. Comp Biochem Physiol A, Molec Integ Physiol 156: 337–343.
Lehmann, F.-O. and Dickinson, M.H. (1997) The changes in power requirements and muscle efficiency during elevated force production in the fruit fly, Drosophila melanogaster. J Exp Biol 200: 1133–1143.
Lehmann, F.-O. and Dickinson, M.H. (1998) The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J Exp Biol 201: 385–401.
Liu, H., Mardahl-Dumesnil, M., Sweeney, M., O’Kane, S.T., and Bernstein, S.I. (2003) Drosophila paramyosin is important for myoblast function and essential for myofibril formation. J Cell Biol 160: 899–908.
Maughan, D., Yamashita, H., and Hyatt, C. (1994) Effects of MgATP, MgADP, and phosphate on complex stiffness moduli of skinned flight muscle fibers of Drosophila. Biophys J 66: 303a.
Miller, M.S., Lekkas, P., Braddock, J.M., et al. (2008) Aging enhances indirect flight muscle performance yet decreases flight ability in Drosophila. Biophys J 95: 2391–2401.
Merrill, A.H., Jr., Sullards, M.C., Wang, E., Voss, K.A., and Riley, R.T. (2001) Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins. Environ Health Perspect 109: 283–289.
Moore, J.R., Dickinson, M.H., Vigoreaux, J.O., and Maughan, D.W. (2000) The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of indirekt flight muscle. Biophys J 78: 1431–1440.
Mronz, M. and Lehmann, F.-O. (2008) The free flight response of Drosophila to motion of the visual environment. J Exp Biol 211: 2026–2045.
O’Kane, C.J. and Gehring, W.J. (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci 84: 9123–9127.
Olanow, C.W. and Tatton, W.G. (1999) Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22: 123–144.
Peller, C.R., Bacon, E.M., Bucheger, J.A., and Blumenthal, E.M. (2009) Defective gut function in drop-dead mutant Drosophila. J Insect Physiol 55: 834–839.
Poetter, K., Jiang, H., Hassanzadeh, S., et al. (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13: 63–69.
Prieschl, E.E. and Baumruker, T. (2000) Sphingolipids: Second messangers, mediators, and raft constituents in signaling. Immunol Today 21: 555–560.
Pyne, S. and Pyne, N.J. (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349: 385–402.
Ramanath, S., Wang, Q., Bernstein, S.I., and Swank, D.M. (2011) Disrupting the myosin converter-relay interface impairs Drosophila indirect flight muscle performance. Biophys J 101: 1114–1122.
Reedy, M.C., Bullard, B., and Vigoreaux, J.O. (2000) Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscle. J Cell Biol 151: 1483–1499.
Scholtissen, B., Verhey, F.R., Steinbusch, H.W., and Leentjens, A.F. (2006) Seretonergic mechanisms in Parkinson's disease: Opposing results from preclinical and clinical data. J Neural Transm 113: 59–73.
Sombati, S. and Hoyle, G. (1984) Generation of specific behaviors in al locust by local release into neuropil of the natural neuromodulator octopamine. J Neurobiol 15: 481–506.
Swank, D.M. (2012) Mechanical anaylsis of Drosophila indirect flight and jump muscles. Methods 56: 69–77.
Swank, D.M., Braddock, J.M., Brown, W., Lesage, H., Bernstein, S.I., and Maughan, D.W. (2006) An alternative domain near the ATP binding pocket of Drosophila myosin affects muscle fiber kinetics. Biophys J 90: 2427–2435.
Tawada, K. and Kawai, M. (1990) Covalent cross-linking of single fibers from rabbit psoas increases oscillatory power. Biophys J 57: 643–647.
Tohtong, R., Yamashita, H., Graham, M., Haeberle, J., Simcox, A., and Maughan, D. (1995) Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature 374: 650–653.
Tu, M.S. and Dickinson, M.H. (1996) The control of wing kinematics by two steering muscles of the blowfly, Calliphora vicina. J Comp Physiol A 178: 813–830.
Vigoreaux, J.O. (2006) Nature's Versatile Engine: Insect Flight Muscle Inside and Out. Vigoreaux J.O., ed. New York: Springer.
Vigoreaux, J.O., Saide, J.D., Valgeirsdottir, K., and Pardue, M.L. (1993) Flightin, a novel myofibrillay protein of Drosophila stretch activated muscles. J Cell Biol 121: 587–598.
Yang, C., Ramanath, S., Kronert, W.A., Berstein, S.I., Maughan, D.W., and Swank, D.M. (2008) Alternative versions of the myosin relay domain differently respond to load to influence Drosophila muscle kinetics. Biophys J 95: 5228–5237.
Yang, C., Kaplan, C.N., Thatcher, M.L., and Swank, D.M. (2010) The influence of myosin converter and relay domains on cross-bridge kinetics of Drosophila indirect flight muscle. Biophys J 99: 1546–1555.
Zhao, Y. and Kawai, M. (1993) The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers: II. Elementary steps affected by the spacing change. Biophys J 64: 197–210.