Skip to main content Accessibility help
×
Hostname: page-component-cb9f654ff-65tv2 Total loading time: 0 Render date: 2025-08-10T06:50:10.505Z Has data issue: false hasContentIssue false

1 - On the Genetic Origin of Sex Differences

Published online by Cambridge University Press:  06 September 2017

Eric B. Keverne
Affiliation:
University of Cambridge
Get access

Information

Type
Chapter
Information
Beyond Sex Differences
Genes, Brains and Matrilineal Evolution
, pp. 1 - 18
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Bachtrog, D. (2013). Y chromosome evolution: merging insights into processes of Y chromosome degeneration. Nat. Rev. Genet. 14: 113–24.CrossRefGoogle Scholar
Bancroft, J. (2002). Biological factors in human sexuality. J. Sex. Res. 39: 1521.CrossRefGoogle ScholarPubMed
Biason-Lauber, A. & Chabolissier, M. C. (2015). Ovarian development and disease: the known and the unexpected. Semin. Cell Dev. Biol. 45: 5967.CrossRefGoogle ScholarPubMed
Bion, S. & Toniolo, D. (2000). X chromosome genes and premature ovarian failure. Semin. Reprod. Med. 18: 5157.CrossRefGoogle Scholar
Cortez, D., Marin, R., Toledo-Flores, D., et al. (2014). Origins and functional evolution of Y chromosomes across mammals. Nature 508: 488–93.CrossRefGoogle ScholarPubMed
de Vries, J. & Sodersten, P. (2009). Sex differences in the brain: the relation between structure and function. Horm. Behav. 55: 589–96.CrossRefGoogle ScholarPubMed
Eid, W., Potz, L. & Biason-Lauber, A. (2015). Genome-wide identification of CBX2 targets: insights in the human sexual development network. Mol. Endocrinol. 29: 247–57.CrossRefGoogle ScholarPubMed
Ferguson-Smith, M. A. & Rens, W. (2010). The unique sex chromosome system in platypus and echidna. Genetika 46: 1314–19.Google ScholarPubMed
Graves, J. A. (2010). Review: Sex chromosome evolution and the expression of sex-specific genes in the placenta. Placenta 31: S27–32.CrossRefGoogle ScholarPubMed
Herbert, J. (2015). Testosterone: Sex, Power and the Will to Win. New York, NY: Oxford University Press.Google Scholar
Hoffbuhr, K. C., Moses, L. M., Jerdonek, M. A. et al. (2002). Associations between MeCP2 mutations, X-chromosome inactivation, and phenotype. Ment. Retard. Dev. Disavil. Res. Rev. 8: 99105.CrossRefGoogle ScholarPubMed
Jiminez, R., Barrioneuvo, F. J. & Burgoa, M. (2013). Natural exceptions to normal gonad development in mammals. Sex Dev. 7: 147–62.Google Scholar
Katoh-Fukui, Y., Miyabayashi, K., Komatsu, T., et al. (2012). Cbx2, a polycomb group gene, is required for Sry gene expression in mice. Endocrinology 153: 913–24.CrossRefGoogle ScholarPubMed
Knickmeyer, R. C. & Davenport, M. (2011). Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders. J. Nueurodev. Disord. 2011: 293306.CrossRefGoogle Scholar
Kraemer, G. W. (1997). Psychbiology of early social attachment in rhesus monkeys. Ann. N.Y. Acad. Sci. 807: 401–18.CrossRefGoogle Scholar
Kuroiwa, A., Handa, S., Nishiyama, C., et al. (2011). Additional copies of CBX2 in the genomes of males and mammals lacking SRY, the Amami spiny rat (Tokudaia osemensis) and the Tokunoshima spiny rat (Tokudaia tokunoshimensis). Chromosome Res. 19: 635–44.CrossRefGoogle ScholarPubMed
Lee, J. T. & Barolomei, M. S. (2013). X-inactivation, imprinting, and long noncoding RNAs in helath and disease. Cell 152: 1308–23.CrossRefGoogle Scholar
Leroy, F. (2007). [Hermaphrodites and intersexed individuals from myth to reality. Second part]. Vesalius 13: 7781.Google ScholarPubMed
Matsumoto, Y., Buemio, A., Vafaee, M., et al. (2013). Epigenetic control of gonadal aromatase (cyp19a1) in temperature-dependent sex determination of red-eared slider turtles. PLoS ONE 8: e63599.CrossRefGoogle ScholarPubMed
Migeon, B. R., Brown, T. R., Axelman, J., et al. (1981). Studies of the locus for androgen receptor: localization on the human X chromosome and evidence for homology with the Tfm locus in the mouse. Proc. Natl Acad. Sci. USA 78: 6399–43.CrossRefGoogle ScholarPubMed
Pardridge, W. M., Gorski, R. A., Lippe, B. M., et al. (1982). Androgens and sexual behavior. Ann. Intern Med. 96: 488501.CrossRefGoogle ScholarPubMed
Sin, H. S. & Namekawa, S. H. (2013). The great escape: active genes on inactive sex chromosomes and their evolutionary implications. Epigenetics 8: 887–92.CrossRefGoogle ScholarPubMed
Sun, S. & Heitman, J. (2012). Should Y stay or should Y go: the evolution of non-recombining sex chromosomes. BioEssays 34: 938–42.CrossRefGoogle ScholarPubMed
Tardat, M., Albert, M., Kunzmann, R., et al. (2015). Cbx3 targets PCR1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol. Cell 58: 157–71.CrossRefGoogle Scholar
Urbach, A. & Benvenisty, N. (2009). Studying early lethality of 45,XO (Turner’s Syndrome) embryos using human embryonic stem cells. PLoS ONE 4: e4175.CrossRefGoogle ScholarPubMed
Viana, J., Pidsley, R., Troakes, C., et al. (2014). Epigenomic and transcriptomic signatures of a Klinefelter syndrome (47,XXY) karyotype in the brain. Epigenetics 9: 587–99.CrossRefGoogle ScholarPubMed
Wang, Z., Say, Y. L., Zhang, J., et al. (2014). Complete androgen insensitivity syndrome in juveniles and adults with female phenotypes. J. Obset. Gynaecol. Res. 40: 2044–55.Google ScholarPubMed
Yamauchi, Y., Riel, J. M., Stoytcheva, Z., et al. (2014). Two genes can replace the entire Y chromosome for assisted reproduction in the mouse. Science 343: 6972.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×