Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T06:09:46.541Z Has data issue: false hasContentIssue false

13 - Behaviours Mediating Ant Invasions

from Part III - Case Studies

Published online by Cambridge University Press:  27 October 2016

Judith S. Weis
Affiliation:
Rutgers University, New Jersey
Daniel Sol
Affiliation:
National Spanish Research Council (CSIC)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

a l'Allemand, S.L. and Witte, V. (2010). A sophisticated, modular communication contributes to ecological dominance in the invasive ant Anoplolepis gracilipes. Biological Invasions, 12, 35513561.CrossRefGoogle Scholar
Abbott, K.L. (2005). Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes on an oceanic island: forager activity patterns, density and biomass. Insectes Sociaux, 52, 266273.CrossRefGoogle Scholar
Abbott, K.L., Greaves, S.N.J., Ritchie, P.A. and Lester, P.J. (2007). Behaviourally and genetically distinct populations of an invasive ant provide insight into invasion history and impacts on a tropical ant community. Biological Invasions, 9, 453463.CrossRefGoogle Scholar
Abril, S. and Gomez, C. (2010). Aggressive behavior of the two European Argentine ant supercolonies (Hymenoptera: Formicidae) towards displaced native ant species of the northeastern Iberian Peninsula. Myrmecological News, 14, 99106.Google Scholar
Alder, P.M. and Silverman, J. (2005). Effects of interspecific competition between two urban ant species, Linepithema humile and Monomorium minimum, on toxic bait performance. Journal of Economic Entomology, 98, 493501.CrossRefGoogle ScholarPubMed
Ascunce, M.S., Yang, C-C., Oakey, J., et al. (2011). Global invasion history of the fire ant, Solenopsis invicta. Science, 331, 10661068.Google ScholarPubMed
Bednar, D.M. and Silverman, J. (2011). Use of termites, Reticulitermes virginicus, as a springboard in the invasive success of a predatory ant, Pachycondyla (=Brachyponera) chinensis. Insectes Sociaux, 58, 459467.CrossRefGoogle Scholar
Bednar, D.M., Shik, J.Z. and Silverman, J. (2013). Prey handling performance facilitates competitive dominance of an invasive over native keystone ant. Behavioral Ecology, 24, 13121319.CrossRefGoogle Scholar
Bertelsmeier, C. and Courchamp, F. (2014). Future ant invasions in France. Environmental Conservation, 41, 217228.CrossRefGoogle Scholar
Bertelsmeier, C., Luque, G.M. and Courchamp, F. (2012). Global warming may freeze the invasion of big-headed ants. Biological Invasions, 15, 15611572.CrossRefGoogle Scholar
Bertelsmeier, C., Guenard, B. and Courchamp, F. (2013). Climate change may boost the invasion of the Asian needle ant. PLoS ONE, 8(10), e75438. doi:10.1371/journal.pone.0075438.CrossRefGoogle ScholarPubMed
Bjoerkman-Chiswell, B.T., van Wilgenburg, E., Thomas, M.L., Swearer, S.E. and Elgar, M.A. (2008). Absence of aggression but not nestmate recognition in an Australian population of the Argentine ant Linepithema humile. Insectes Sociaux, 55, 207212.CrossRefGoogle Scholar
Blight, O., Provost, E., Renucci, M., Tirard, A. and Orgeas, J. (2010). A native ant armed to limit the spread of the Argentine ant. Biological Invasions, 12, 37853793.CrossRefGoogle Scholar
Blight, O., Berville, L., Vogel, V., et al. (2012). Variation in the level of aggression, chemical and genetic distance among three supercolonies of the Argentine ant in Europe. Molecular Ecology, 21, 41064121.CrossRefGoogle ScholarPubMed
Bradley, B.A., Blumenthal, D.M., Wilcove, D.S. and Ziska, L.H. (2010). Predicting plant invasions in an era of global change. Trends in Ecology and Evolution, 25, 310318.CrossRefGoogle Scholar
Brandt, M., van Wilgenburg, E., Sulc, R., Shea, K.J. and Tsutsui, N.D. (2009). The scent of supercolonies: the discovery, synthesis and behavioural verification of ant colony recognition cues. BMC Biology, 7, 71.CrossRefGoogle ScholarPubMed
Brightwell, R.J. and Silverman, J. (2007). Argentine ant foraging activity and interspecific competition in complete vs. queenless and broodless colonies. Insectes Sociaux, 54, 329333.CrossRefGoogle Scholar
Brightwell, R.J. and Silverman, J. (2011). The Argentine ant persists through unfavorable winters via a mutualism facilitated by a native tree. Environmental Entomology, 40, 10191026.CrossRefGoogle Scholar
Brightwell, R.J., Labadie, P.L. and Silverman, J. (2010). Northward expansion of the invasive Argentine ant, Linepithema humile (Hymenoptera: Formicidae) in the eastern U.S. is constrained by winter soil temperatures. Environmental Entomology, 39, 16591665.CrossRefGoogle ScholarPubMed
Buckley, R.C. (1987). Interactions involving plants, homoptera, and ants. Annual Review of Ecology and Systematics, 18, 111135.CrossRefGoogle Scholar
Buczkowski, G. (2010). Extreme life history plasticity and the evolution of invasive characteristics in a native ant. Biological Invasions, 12, 33433349.CrossRefGoogle Scholar
Buczkowski, G. and Bennett, G.W. (2006). Dispersed central-place foraging in the polydomous odorous house ant, Tapinoma sessile as revealed by a protein marker. Insectes Sociaux, 53, 282290.CrossRefGoogle Scholar
Buczkowski, G. and Bennett, G.W. (2008). Aggressive interactions between the introduced Argentine ant, Linepithema humile and the native odorous house ant, Tapinoma sessile. Biological Invasions, 10, 10011011.CrossRefGoogle Scholar
Buczkowski, G. and Kruskelnycky, P. (2012). The odorous house ant, Tapinoma sessile (Hymenoptera: Formicidae), as a new temperate-origin invader. Myrmecological News, 16, 6166.Google Scholar
Buczkowski, G. and Silverman, J. (2005). Context-dependent nestmate discrimination and the effect of action thresholds on exogenous cue recognition in the Argentine ant. Animal Behaviour, 69, 741749.CrossRefGoogle Scholar
Buczkowski, G. and Silverman, J. (2006). Geographical variation in Argentine ant aggression behavior mediated by environmentally derived nestmate recognition cues. Animal Behaviour, 71, 327335.CrossRefGoogle Scholar
Buczkowski, G., Vargo, E. and Silverman, J. (2004). The diminutive supercolony: the Argentine ants of the southeastern United States. Molecular Ecology, 13, 22352242.CrossRefGoogle ScholarPubMed
Buczkowski, G., Kumar, R., Suib, S.L. and Silverman, J. (2005). Diet-related modification of cuticular hydrocarbon profiles of the Argentine ant, Linepithema humile, diminishes intercolony aggression. Journal of Chemical Ecology, 31, 829843.CrossRefGoogle ScholarPubMed
Butchart, S.H.M., Walpole, M., Collen, B., et al. (2010). Global biodiversity: indicators of recent declines. Science, 328, 11641168.CrossRefGoogle ScholarPubMed
Carpintero, S. and Reyes-Lopez, J. (2008). The role of competitive dominance in the invasive ability of the Argentine ant (Linepithema humile). Biological Invasions, 10, 2535.CrossRefGoogle Scholar
Cassill, D.L., Vo, K. and Becker, B. (2008). Young fire ant workers feign death and survive aggressive neighbors. Naturwissenschaften, 95, 617624.CrossRefGoogle ScholarPubMed
Cerda, X., Retana, J. and Cros, S. (1997). Thermal disruption of transitive hierarchies in Mediterranean ant communities. Journal of Animal Ecology, 66, 363374.CrossRefGoogle Scholar
Chapple, D.G., Simmonds, S.M. and Wong, B.M. (2012). Can behavioral and personality traits influence the success of unintentional species introductions? Trends in Ecology and Evolution, 27, 5764.CrossRefGoogle ScholarPubMed
Coppler, L.B., Murphy, J.F. and Eubanks, M.D. (2007). Red imported fire ants (Hymenoptera: Formicidae) increase the abundance of aphids in tomato. Florida Entomologist, 90, 419425.CrossRefGoogle Scholar
Cremer, S., Ugelvig, L.V., Drijfhout, F.P., et al. (2008). The evolution of invasiveness in garden ants. PLoS ONE, 3(12), e3838.CrossRefGoogle ScholarPubMed
Crowder, D.W. and Snyder, W.E. (2010). Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators. Biological Invasions, 12, 28572876.CrossRefGoogle Scholar
Czaczkes, T.J., Vollet-Neto, A. and Ratnieks, F.L.W. (2013). Prey escorting behavior and possible convergent evolution of foraging recruitment mechanisms in an invasive ant. Behavioral Ecology, 24, 11771184.CrossRefGoogle Scholar
Daane, K.M., Sime, K.R., Fallon, J. and Cooper, M.L. (2007). Impacts of Argentine ants on mealybugs and their natural enemies in California's coastal vineyards. Ecological Entomology, 32, 583596.CrossRefGoogle Scholar
Davidson, D.W., Cook, S.C., Snelling, R.R. and Chua, T.H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300, 969972.CrossRefGoogle ScholarPubMed
Dejean, A., Kenne, M. and Moreau, C.S. (2007). Predatory abilities favor the success of the invasive ant Pheidole megacephala in an introduced area. Journal of Applied Entomology, 131, 625629.CrossRefGoogle Scholar
Dejean, A., Moreau, C.S., Kenne, M. and Leponce, M. (2008). The raiding success of Pheidole megacephala on other ants in both its native and introduced ranges. Comptes Rendus Biologies, 331, 631635.CrossRefGoogle ScholarPubMed
Deneubourg, J.-L., Aron, S., Goss, S. and Pasteels, J.M. (1990). The self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3, 159168.CrossRefGoogle Scholar
Drescher, J., Bluthgen, N., Schmitt, T., Buhler, J. and Feldhaar, H. (2010). Societies drifting apart? behavioural, genetic and chemical differentiation between supercolonies in the yellow crazy ant Anoplolepis gracilipes. PLoS ONE, 5(10), e13581. doi:10.1371/journal.pone.0013581CrossRefGoogle ScholarPubMed
Drescher, J, Feldhaar, H. and Bluthgen, N. (2011). Interspecific aggression and resource monopolization of the invasive ant Anoplolepis gracilipes in Malaysian Borneo. Biotropica, 43, 9399.CrossRefGoogle Scholar
Dussutour, A., Nicolis, S.C., Shephard, G., Beekman, M. and Sumpter, D.J.T. (2009). The role of multiple pheromones in food recruitment by ants. The Journal of Experimental Biology, 212, 23372348.CrossRefGoogle ScholarPubMed
Errard, C., Delabie, J, Jourdan, H. and Hefetz, A. (2005). Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Roger) (Hymenoptera Formicidae): a key to the invasive success of a tramp species. Naturwissenschaften, 92, 319323.CrossRefGoogle Scholar
Espadaler, X., Rey, S. and Bernal, V. (2004). Queen number in a supercolony of the invasive garden ant, Lasius neglectus. Insectes Sociaux, 51, 232238.CrossRefGoogle Scholar
Flanagan, T.P., Pinter-Wollman, N.M., Moses, M.E. and Gordon, D.M. (2013). Fast and flexible: Argentine ants recruit from nearby trails. PLoS ONE, 8, e70888.CrossRefGoogle ScholarPubMed
Foucaud, J., Orivel, J., Fournier, D., et al. (2009). Reproductive system, social organization, human disturbance and ecological dominance in native populations of the little fire ant, Wasmannia auropunctata. Molecular Ecology, 18, 50595073.CrossRefGoogle ScholarPubMed
Fournier, D., de Biseau, J.-C. and Aron, S. (2009). Genetics, behaviour and chemical recognition of the invading ant Pheidole megacephala. Molecular Ecology, 18, 186199.CrossRefGoogle ScholarPubMed
Garnas, J.R., Drummond, F.A. and Groden, E. (2007). Intercolony aggression within and among local populations of the invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in coastal Maine. Environmental Entomology, 36, 105113.CrossRefGoogle ScholarPubMed
Giraud, T., Pedersen, J.S. and Keller, L. (2002). Evolution of supercolonies: the Argentine ants of southern Europe. Proceedings of the National Academy of Sciences of the Unites States of America, 99, 60756079.CrossRefGoogle ScholarPubMed
Gordon, D.M. and Heller, N.E. (2013). The invasive Argentine ant Linepithema humile (Hymenoptera: Formicidae) in Northern California reserves: from foraging behavior to local spread. Myrmecological News, 19, 103110.Google Scholar
Gottwald, W.H. (1995). Army Ants: The Biology of Social Predation. Ithaca, NY: Cornell University Press.Google Scholar
Groden, E., Drummond, F.A., Garnas, J. and Franceour, A. (2005). Distribution of an invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in Maine. Journal of Economic Entomology, 98, 17741784.CrossRefGoogle ScholarPubMed
Grover, C.D., Kay, A.D., Monson, J.A., Marsh, T.C. and Holway, D.A. (2007). Linking nutrition and behavioral dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proceedings of the Royal Society: Biological Sciences B, 274, 29512957.Google ScholarPubMed
Gruber, M.A.M., Hoffmann, B.D., Ritchie, P.A. and Lester, P.J. (2012). Recent behavioural and population genetic divergence of an invasive ant in a novel environment. Diversity and Distributions, 18, 323333.CrossRefGoogle Scholar
Guenard, B. and Dunn, R.R. (2010). A new (old), invasive ant in the hardwood forests of eastern North America and its potentially widespread impacts. PLoS ONE, 5, e11614.CrossRefGoogle ScholarPubMed
Guenard, B. and Silverman, J. (2011). Tandem carrying, a new foraging strategy in ants: description, function and adaptive significance relative to other described foraging strategies. Naturwissenschaften, 98, 651659.CrossRefGoogle ScholarPubMed
Harris, R. and Barker, G. (2007). Relative risk of invasive ants (Hymenoptera: Formicidae) establishing in New Zealand invasive social insect. New Zealand Journal of Zoology, 34, 161178.CrossRefGoogle Scholar
Hee, J.J., Holway, D.A., Suarez, A.V. and Case, T.J. (2000). Role of propagule size in the success of incipient colonies of the invasive Argentine ant. Conservation Biology, 14, 559563.CrossRefGoogle Scholar
Helantera, H., Strassmann, J.E., Carrillo, J. and Queller, D.C. (2009). Unicolonial ants: where do they come from, what are they and where are they going? Trends in Ecology and Evolution, 24, 341349.CrossRefGoogle ScholarPubMed
Heller, N.E. (2004). Colony structure in native and introduced populations of the invasive Argentine ant, Linepithema humile. Insectes Sociaux, 51, 378386.CrossRefGoogle Scholar
Heller, N.E., Ingram, K.K. and Gordon, D.M. (2008). Nest connectivity and colony structure in unicolonial Argentine ants. Insectes Sociaux, 55, 397403.CrossRefGoogle Scholar
Helms, K.R. (2013). Mutualisms between ants (Hymenoptera: Formicidae) and honeydew-producing insects: are they important in ant invasions? Myrmecological News, 18, 6171.Google Scholar
Helms, K.R. and Vinson, S.B. (2002). Widespread association of the invasive ant Solenopsis invicta with an invasive mealybug. Ecology, 83, 24252438.CrossRefGoogle Scholar
Helms, K.R. and Vinson, S.B. (2008). Plant resources and colony growth in an invasive ant: the importance of honeydew-producing Hemiptera in carbohydrate transfer across trophic levels. Environmental Entomology, 37, 487493.CrossRefGoogle Scholar
Hicks, B.J. (2012). How does Myrmica rubra (Hymenoptera: Formicidae) disperse in its native range? Record of male-only swarming flights from Newfoundland. Myrmecological News, 16, 3134.Google Scholar
Hoffmann, B.D. (2014). Quantification of supercolonial traits in the yellow crazy ant, Anoplolepis gracilipes. Journal of Insect Science, 14, 121.CrossRefGoogle ScholarPubMed
Hoffmann, B.D. and Saul, W.C. (2010). Yellow crazy ant (Anoplolepis gracilipes) invasions within undisturbed mainland Australian habitats: no support for biotic resistance hypothesis. Biological Invasions, 13, 30933108.CrossRefGoogle Scholar
Hölldobler, B. and Wilson, E. (1990). The Ants. Cambridge, MA: Belknap Press.CrossRefGoogle Scholar
Holway, D.A. (1999). Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology, 80, 238251.CrossRefGoogle Scholar
Holway, D.A. and Case, T.J. (2000). Mechanisms of dispersed central-place foraging in polydomous colonies of the Argentine ant. Animal Behaviour, 59, 433441.CrossRefGoogle ScholarPubMed
Holway, D.A. and Case, T.J. (2001). Effects of colony-level variation on competitive ability in the invasive Argentine ant. Animal Behaviour, 61, 11811192.CrossRefGoogle Scholar
Holway, D.A. and Suarez, A.V. (1999). Animal behavior: an essential component of invasion biology. Trends in Ecology and Evolution, 14, 328330.CrossRefGoogle ScholarPubMed
Holway, D.A. and Suarez, A.V. (2004). Colony-structure variation and interspecific competitive ability in the invasive Argentine ant. Oecologia, 138, 216222.CrossRefGoogle ScholarPubMed
Holway, D.A., Suarez, A.V. and Case, T.J. (1998). Loss of intraspecific aggression in the success of a widespread invasive social insect. Science, 282, 949952.CrossRefGoogle ScholarPubMed
Holway, D.A., Lach, L., Suarez, A.V., Tsutsui, N.D. and Case, T.J. (2002). Causes and consequences of ant invasions. Annual Review of Ecology Evolution and Systematics, 33, 181233.CrossRefGoogle Scholar
Horn, K.C., Eubanks, M.D. and Siemann, E. (2013). The effect of diet and opponent size on aggressive interactions involving Caribbean crazy ants (Nylanderia fulva). PLoS ONE, 8(6), e66912.CrossRefGoogle ScholarPubMed
Howard, R.W. and Blomquist, G.J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50, 371393.CrossRefGoogle ScholarPubMed
Human, K.G. and Gordon, D.M. (1996). Exploitative and interference competition between the Argentine ant and native ant species. Oecologia, 105, 405412.CrossRefGoogle ScholarPubMed
Human, K.G. and Gordon, D.M. (1997). Effects of Argentine ants on invertebrate diversity in northern California. Conservation Biology, 11, 12421248.CrossRefGoogle Scholar
Human, K.G. and Gordon, D.M. (1999). Behavioral interactions of the invasive Argentine ant with native ant species. Insectes Sociaux, 46, 159163.CrossRefGoogle Scholar
Ingram, K.K. and Gordon, D.M. (2003). Genetic analysis of dispersal dynamics in an invading population of Argentine ants. Ecology, 84, 28322842.CrossRefGoogle Scholar
Jaquiéry, J., Vogel, V. and Keller, L. (2005). Multilevel genetic analyses of two supercolonies of the Argentine ant, Linepithema humile. Molecular Ecology, 14, 589598.CrossRefGoogle ScholarPubMed
Jandt, J.M., Bengston, S., Pinter-Wollman, N., et al. (2014). Behavioural syndromes and social insects: personality at multiple levels. Biological Reviews of the Cambridge Philosophical Society, 89, 4867.CrossRefGoogle ScholarPubMed
Kabashima, J.N., Greenberg, L., Rust, M.K. and Paine, T.D. (2007). Aggressive interactions between Solenopsis invicta and Linepithema humile (Hymenoptera: Formicidae) under laboratory conditions. Journal of Economic Entomology, 100, 148154.CrossRefGoogle ScholarPubMed
Kaplan, I. and Eubanks, M.D. (2005). Aphids alter the community-wide impact of fire ants. Ecology, 86, 16401649.CrossRefGoogle Scholar
Kay, A.D., Zumbusch, T.B., Heinen, J.L., Marsh, T.C. and Holway, D.A. (2010). Nutrition and interference competition have interactive effects on the behavior and performance of Argentine ants. Ecology, 91, 57e64.CrossRefGoogle ScholarPubMed
Lach, L. (2005). Interference and exploitation competition of three nectar-thieving invasive ant species. Insectes Sociaux, 52, 257262.CrossRefGoogle Scholar
Lach, L. and Hooper-Bui, L.M. (2010). Consequences of ant invasions. In Ant Ecology, ed. Lach, L., Parr, C.L. and Abbott, K.L. Oxford, UK: Oxford University Press, pp. 261286.Google Scholar
Le Breton, J., Delabie, J.H.C., Chazeau, J., Dejean, A. and Jourdan, H. (2004). Experimental evidence of large scale unicoloniality in the tramp ant Wasmannia auropunctata (Roger). Journal of Insect Behaviour, 17, 263271.CrossRefGoogle Scholar
Le Breton, J., Jourdan, H., Chazeau, J., Orivel, J. and Dejean, A. (2005). Niche opportunity and ant invasion: the case of Wasmannia auropunctata in a New Caledonian rain forest. Journal of Tropical Ecology, 21, 9398.CrossRefGoogle Scholar
LeBreton, J., Orivel, J., Chazeau, J. and Dejean, A. (2007). Unadapted behaviour of native, dominant ant species during the colonization of an aggressive, invasive ant. Ecological Research, 22, 107114.CrossRefGoogle Scholar
LeBrun, E.G., Tillberg, C.V., Suarez, A.V., et al. (2007). An experimental study of competition between fire and Argentine ants in their native range. Ecology, 88, 6375.CrossRefGoogle ScholarPubMed
LeBrun, E.G., Abbott, J. and Gilbert, L.E. (2013). Imported crazy ant displaces imported fire ant, reduces and homogenizes grassland ant and arthropod assemblages. Biological Invasions, 15, 24292442.CrossRefGoogle Scholar
LeBrun, E.G., Jones, N.T.J. and Gilbert, L.E. (2014). Chemical warfare among invaders: a detoxification interaction facilitates an ant invasion. Science, 343, 10141017.CrossRefGoogle ScholarPubMed
Lessard, J.P., Fordyce, J.A., Gotelli, N.J. and Sanders, N.J. (2009). Invasive ants alter the phylogenetic structure of ant communities. Ecology, 90, 26642669.CrossRefGoogle ScholarPubMed
Liang, D. and Silverman, J. (2000). ‘‘You are what you eat’’: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften, 87, 412416.CrossRefGoogle ScholarPubMed
Liang, D., Blomquist, G. and Silverman, J. (2001). Hydrocarbon-released nestmate aggression in the Argentine ant, Linepithema humile, following encounters with insect prey. Comparative Biochemistry and Physiology Part B, 129, 871882.CrossRefGoogle ScholarPubMed
Luque, G.M., Giraud, T. and Courchamp, F. (2013). Allee effects in ants. Journal of Animal Ecology, 82, 956965.CrossRefGoogle ScholarPubMed
Macom, T.E. and Porter, S.D. (1996). Comparison of polygyne and monogyne red imported fire ant (Hymenoptera: Formicidae) population densities. Annals of the Entomological Society of America, 89, 535543.CrossRefGoogle Scholar
Markin, G.P. (1968). Nest relationships of the Argentine ant, Iridomyrmex humilis (Hymenoptera: Formicidae). Journal of Economic Entomology, 41, 511516.Google Scholar
McGlynn, T.P. (1999). The worldwide transfer of ants: geographic distribution and ecological invasions. Journal of Biogeography, 26, 535548.CrossRefGoogle Scholar
McGlynn, T.P. (2012). The ecology of nest movement in social insects. Annual Review of Entomology, 57, 291308.CrossRefGoogle ScholarPubMed
McPhee, K., Garnas, J., Drummond, F. and Groden, E. (2012). Homopterans and an invasive red ant, Myrmica rubra (L.), in Maine. Environmental Entomology, 41, 5971.CrossRefGoogle Scholar
Menke, S.B. and Holway, D.A. (2006). Abiotic factors control invasion by Argentine ants at the community scale. Journal of Animal Ecology, 75, 368376.CrossRefGoogle ScholarPubMed
Menke, S.B., Booth, W., Dunn, R.R., et al. (2010). Is it easy to be urban? Convergent success in urban habitats among lineages of a widespread native ant. PLoS ONE, 5, e9194.CrossRefGoogle ScholarPubMed
Ness, J.H. and Bronstein, I.L. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions, 6, 445461.CrossRefGoogle Scholar
O'Dowd, D.J., Green, P.T. and Lake, P.S. (2003). Invasional ‘meltdown’ on an oceanic island. Ecology Letters, 6, 812817.CrossRefGoogle Scholar
Orivel, J., Grangier, J., Foucaud, J., et al. (2009). Ecologically heterogeneous populations of the invasive ant Wasmannia auropunctata within its native and introduced ranges. Ecological Entomology, 34, 504512.CrossRefGoogle Scholar
Paris, C.I. and Espadaler, X. (2009). Honeydew collection by the invasive garden ant Lasius neglectus versus the native ant L. grandis. Arthropod-Plant Interactions, 3, 7585.CrossRefGoogle Scholar
Passera, L. and Keller, L. (1994). Mate availability and male dispersal in the Argentine and Linepithema humile (Mayr) (=Iridomyrmex humilis). Animal Behaviour, 48, 361369.CrossRefGoogle Scholar
Pedersen, J.S., Krieger, M.J.B., Vogel, V., Giraud, T. and Keller, L. (2006). Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution, 60, 782791.Google ScholarPubMed
Phillips, B.L. and Suarez, A.V. (2012). The role of behavioural variation in invasion of new areas. In Behavioural Responses to a Changing World: Mechanisms and Consequences, ed. Candolin, U. and Wong, B.B.M. Oxford: Oxford University Press, pp. 190200.CrossRefGoogle Scholar
Porter, S.D., Williams, D.F., Patterson, R.S. and Fowler, H.G. (1997). Intercontinental differences in the abundance of Solenopsis fire ants (Hymenoptera: Formicidae): Escape from natural enemies? Environmental Entomology, 26, 373384.CrossRefGoogle Scholar
Powell, B.E. and Silverman, J. (2010a). Population growth of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae) in the presence of Linepithema humile and Tapinoma sessile (Hymenoptera: Formicidae). Environmental Entomology, 39, 14921499.CrossRefGoogle ScholarPubMed
Powell, B.E. and Silverman, J. (2010b). Impact of Linepithema humile and Tapinoma sessile (Hymenoptera: Formicidae) on three natural enemies of Aphis gossypii (Hemiptera: Aphididae). Biological Control, 54, 285291.CrossRefGoogle Scholar
Powell, B.E., Brightwell, R.J. and Silverman, J. (2009). Effect of an invasive and native ant on a field population of the black citrus aphid (Hemiptera: Aphididae). Environmental Entomology, 38, 16181625.CrossRefGoogle ScholarPubMed
Rabitsch, W. (2011). The hitchhiker's guide to alien ant invasions. BioControl, 56, 551572.CrossRefGoogle Scholar
Rice, K.B. and Eubanks, M.D. (2013). No enemies needed: cotton aphids (Hemiptera: Aphididae) directly benefit from red imported fire ant (Hymenoptera: Formicidae) tending. Florida Entomologist, 96, 929932.CrossRefGoogle Scholar
Roulston, T.H., Buczkowski, G., Silverman, J. (2003). Nestmate discrimination in ants: effect of bioassay on aggressive behavior. Insectes Sociaux, 50, 151159.CrossRefGoogle Scholar
Roura-Pascual, N., Suarez, A.V., Gomez, , et al. (2004). Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society London B: Biological Sciences, 271, 25272534.CrossRefGoogle ScholarPubMed
Roura-Pascual, N., Hui, C., Takayoshi, I., et al. (2011). Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proceedings of the National Academy of Sciences, USA, 108, 220225.CrossRefGoogle Scholar
Rowles, A.D. and O'Dowd, D.J. (2007). Interference competition by Argentine ants displaces native ants: implications for biotic resistance to invasion. Biological Invasions, 9, 7385.CrossRefGoogle Scholar
Rowles, A.D. and Silverman, J. (2009). Carbohydrate supply limits invasion of natural communities by Argentine ants. Oecologia, 161, 161171.CrossRefGoogle ScholarPubMed
Sagata, K. and Lester, P.J. (2009). Behavioural plasticity associated with propagule size, resources, and the invasion success of the Argentine ant Linepithema humile. Journal of Applied Ecology, 46, 1927.CrossRefGoogle Scholar
Shik, J.Z. and Silverman, J. (2013). Towards a nutritional ecology of invasive establishment: aphid mutualists provide better fuel for incipient Argentine ant colonies than insect prey. Biological Invasions, 15, 829836.CrossRefGoogle Scholar
Shik, J.Z., Kay, A.D. and Silverman, J. (2014). Aphid honeydew provides a nutritionally balanced resource for incipient Argentine ant mutualists. Animal Behaviour, 95, 3339.CrossRefGoogle Scholar
Shoemaker, D.D., DeHeer, C.J., Krieger, M.J.B. and Ross, K.G. (2006). Population genetics of the invasive fire ant Solenopsis invicta (Hymenoptera: Formicidae) in the United States. Annals of the Entomological Society of America, 99, 12131233.CrossRefGoogle Scholar
Silverman, J. and Liang, D. (2001). Colony disassociation following diet partitioning in a unicolonial ant. Naturwissenshaften, 88, 7377.Google Scholar
Silverman, J. and Nsimba, B. (2000). Soil-free collection of Argentine ants based on food-directed brood and queen movement. Florida Entomologist, 83, 1016.CrossRefGoogle Scholar
Simberloff, D., Martin, J.-L., Genovesi, P., et al. (2013). Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution, 28, 5866.CrossRefGoogle ScholarPubMed
Sorrells, T.R., Kuritzky, L.Y., Kauhanen, P.G., et al. (2011). Chemical defense by the native winter ant (Prenolepis imparis) against the invasive Argentine ant (Linepithema humile). PLoS ONE, 6(4), e18717.CrossRefGoogle ScholarPubMed
Spicer-Rice, E. and Silverman, J. (2013a). Propagule pressure and climate contribute to the displacement of Linepithema humile by Pachycondyla chinensis. PLoS ONE, 8(2), e56281. doi:10.1371/journal.pone.0056281.CrossRefGoogle Scholar
Spicer-Rice, E. and Silverman, J. (2013b). Submissive behaviour and habituation facilitate entry into habitat occupied by an invasive ant. Animal Behaviour, 86, 497506.CrossRefGoogle Scholar
Steiner, F.M., Schlick-Steiner, B.C., Trager, J., et al. (2006). Tetramorium tsushimae, a new invasive ant in North America. Biological Invasions, 8, 117123.CrossRefGoogle Scholar
Steiner, F.M., Schlick-Steiner, B.C., Moder, K., et al. (2007). Abandoning aggression but maintaining self-nonself discrimination as a first stage in ant supercolony formation. Current Biology, 17, 19031907.CrossRefGoogle ScholarPubMed
Sturgis, S.J. and Gordon, D.M. (2012). Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecological News, 16, 101110.Google Scholar
Suarez, A.V., Tsutsui, N.D., Holway, D.A. and Case, T.J. (1999). Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biological Invasions, 1, 4353.CrossRefGoogle Scholar
Suarez, A.V., Holway, D.A. and Case, T.J. (2001). Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proceedings of the National Academy of Sciences, USA, 98, 10951100.CrossRefGoogle ScholarPubMed
Suarez, A.V., Holway, D.A. and Tsutsui, N.D. (2008). Genetics and behavior of a colonizing species: the invasive Argentine ant. The American Naturalist, 172, Suppl. 1, S7284.CrossRefGoogle ScholarPubMed
Sunamura, E., Espadaler, X., Sakamoto, H., et al. (2009). Intercontinental union of Argentine ants: behavioral relationships among introduced populations in Europe, North America, and Asia. Insectes Sociaux, 56, 143147.CrossRefGoogle Scholar
Sunamura, E., Hoshizaki, S., Sakamoto, H., et al. (2011). Workers select mates for queens: a possible mechanism of gene flow restriction between supercolonies of the invasive Argentine ant. Naturwissenschaften, 98, 361368.CrossRefGoogle ScholarPubMed
Thomas, M.L. and Holway, D.A. (2005). Condition-specific competition between invasive Argentine ants and Australian Iridomyrmex. Journal of Animal Ecology, 74, 532542.CrossRefGoogle Scholar
Thomas, M.L., Tsutsui, N.D. and Holway, D.A. (2005). Intraspecific competition influences the symmetry and intensity of aggression in the Argentine ant. Behavioral Ecology, 16, 472481.CrossRefGoogle Scholar
Thomas, M.L., Payne-Makrisâ, C. M., Suarez, A.V., Tsutsui, N.D. and Holway, D.A. (2006). When supercolonies collide: territorial aggression in an invasive and unicolonial social insect. Molecular Ecology, 15, 43034315.CrossRefGoogle Scholar
Thullier, W., Richardson, D.M. and Midgley, G.F. (2007). Will climate change promote alien plant invasions? In Biological Invasions, ed. Nentwig, W. Berlin: Springer, pp. 197211.CrossRefGoogle Scholar
Tillberg, C.V., Holway, D.A., LeBrun, E.G. and Suarez, A.V. (2007). Trophic ecology of invasive Argentine ants in their native and introduced ranges. Proceedings of the National Academy of Sciences, USA, 104, 2085620861.CrossRefGoogle ScholarPubMed
Tschinkel, W.R. (2006). The Fire Ants. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Tsutsui, N.D., Suarez, A.V., Holway, D.A. and Case, T.J. (2000). Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences, USA, 97, 59485953.CrossRefGoogle ScholarPubMed
Tsutsui, N.D., Suarez, A.V. and Grosberg, R.K. (2003). Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proceedings of the National Academy of Sciences, USA, 100, 10781083.CrossRefGoogle Scholar
Ugelvig, L.V., Drijfhout, F.P., Kronauer, D.J.C, et al. (2008). The introduction history of invasive garden ants in Europe: integrating genetic, chemical and behavioural approaches. BMC Biology, 6, 11.CrossRefGoogle ScholarPubMed
Valery, L., Fritz, H., Lefeuvre, J-C. and Simberloff, D. (2008). In search of a real definition of the biological invasion phenomenon itself. Biological Invasions, 10, 13451351.CrossRefGoogle Scholar
Valery, L., Fritz, H., Lefeuvre, J-C. and Simberloff, D. (2009). Invasive species can also be native. Trends in Ecology and Evolution, 24, 585.CrossRefGoogle ScholarPubMed
Vander Meer, R.K., Williams, F.D. and Lofgren, C.S. (1981). Hydrocarbon components of the trail pheromone of the red imported fire ant Solenopsis invicta. Tetrahedron Letters, 22, 16511654.Google Scholar
Vander Meer, R.K., Lofgren, C.S. and Alvarez, F.M. (1990). The orientation inducer pheromone of the fire ant Solenopsis invicta. Physiological Entomology, 15, 483488.CrossRefGoogle Scholar
van Wilgenburg, E. and Elgar, M.A. (2013). Confirmation bias in studies of nestmate recognition: a cautionary note for research into the behavior of animals. PLoS One, 8, e53548.CrossRefGoogle ScholarPubMed
van Wilgenburg, E., Sulc, R., Shea, K.J. and Tssutsui, N.D. (2010). Deciphering the chemical basis of nestmate recognition. Journal of Chemical Ecology, 36, 751758.CrossRefGoogle ScholarPubMed
van Zweden, J.S. and d'Ettorre, P. (2010). Nestmate recognition in social insects and the role of hydrocarbons. In Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology, ed. Blomquist, G.J. and Bagneres, A.-G. Cambridge, UK: Cambridge University Press.Google Scholar
Vasquez, G.M. and Silverman, J. (2008a). Intraspecific aggression and colony fusion in the Argentine ant. Animal Behaviour, 75, 583593.CrossRefGoogle Scholar
Vasquez, G.M and Silverman, J. (2008b). Non-nestmate conspecific acceptance and the complexity of nestmate discrimination in the Argentine ant. Behavioral Ecology and Sociobiology, 62, 537548.CrossRefGoogle Scholar
Vasquez, G.M., Schal, C. and Silverman, J. (2008). Cuticular hydrocarbons as queen adoption cues in the invasive Argentine ant. Journal of Experimental Biology, 211, 12491256.CrossRefGoogle ScholarPubMed
Vasquez, G.M., Schal, C. and Silverman, J. (2009). Colony fusion in Argentine ants is guided by worker and queen cuticular hydrocarbon profile similarity. Journal of Chemical Ecology, 35, 922932.CrossRefGoogle ScholarPubMed
Vasquez, G.M., Vargo, E.L. and Silverman, J. (2012). Fusion between southeastern US Argentine ant colonies and its effect on colony size and productivity. Annals of the Entomological Society of America, 105, 268274.CrossRefGoogle Scholar
Vega, S.Y. and Rust, M.K. (2003). Determining the foraging range and origin of resurgence after treatment of Argentine ant (Hymenoptera: Formicidae) in urban areas. Journal of Economic Entomology, 96, 844849.CrossRefGoogle ScholarPubMed
Vogel, V., Pedersen, J.S., D'Ettorre, P., Lehmann, L. and Keller, L. (2009). Dynamics and genetic structure of Argentine ant supercolonies in their native range. Evolution, 63, 16271639.CrossRefGoogle ScholarPubMed
Vogt, J.T., Reed, J.T. and Brown, R.L. (2004). Temporal foraging activity of selected ant species in Northern Mississippi during summer months. Journal of Entomological Science, 39, 444452.CrossRefGoogle Scholar
Walters, A.C. and Mackay, D.A. (2005). Importance of large colony size for successful invasion by Argentine ants (Hymenoptera: Formicidae): evidence for biotic resistance by native ants. Austral Ecology, 30, 395406.CrossRefGoogle Scholar
Ward, P.S., Beggs, J.R., Clout, M.N., Harris, R.J. and O'Connor, S. (2006). The diversity and origin of exotic ant arriving in New Zealand via human-mediated dispersal. Diversity and Distributions, 12, 601609.CrossRefGoogle Scholar
Weeks, R.D.., Wilson, L.T., Vinson, S.B. and James, W.D. (2004). Flow of carbohydrates, lipids and protein among colonies of polygyne red imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 97, 105110.CrossRefGoogle Scholar
Wetterer, J.K. (2007). Biology and impacts of Pacific Island invasive species. 3. The African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Pacific Science, 61, 437456.CrossRefGoogle Scholar
Wetterer, J.K. (2012). Worldwide spread of the African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Myrmecological News, 17, 5162.Google Scholar
Wetterer, J.K. and Radchenko, A.G. (2011). Worldwide spread of the ruby ant, Myrmica rubra (Hymenopetra: Formicidae). Myrmecological News, 14, 8796.Google Scholar
Wilder, S.M., Holway, D.A., Suarez, A.V. and Eubanks, M.D. (2011). Macronutrient content of plant-based food affects growth of a carnivorous arthropod. Ecology, 92, 325332.CrossRefGoogle ScholarPubMed
Wirth, R., Betschlag, W., Ryel, R.J. and Holldobler, B. (1997). Annual foraging of the leaf-cutting ant Atta colombica in a semideciduous rain forest in Panama. Journal of Tropical Ecology, 13, 741757.CrossRefGoogle Scholar
Witte, V., Attygalle, A.B. and Meinwald, J. (2007). Complex chemical communication in the crazy ant Paratrechina longicornis Latreille (Hymenoptera: Formicidae). Chemoecology, 17, 5762.CrossRefGoogle Scholar
Zee, J. and Holway, D.A. (2006). Nest raiding by the invasive Argentine ant on colonies of the harvester ant, Pogonomyrmex subnitidus. Insectes Sociaux, 53, 161167.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×