Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T00:15:42.443Z Has data issue: false hasContentIssue false

6 - Multiple sequence alignment methods

Published online by Cambridge University Press:  05 September 2012

Richard Durbin
Affiliation:
Sanger Centre, Cambridge
Sean R. Eddy
Affiliation:
Washington University, Missouri
Anders Krogh
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

In Chapter 5, we assumed that a reasonable multiple sequence alignment was already known and provided the starting point for constructing a profile HMM. We now look at what a ‘reasonable’ multiple alignment is, and at ways to construct one automatically from unaligned sequences.

Multiple alignments must usually be inferred from primary sequences alone. Biologists produce high quality multiple sequence alignments by hand using expert knowledge of protein sequence evolution. This knowledge comes from experience. Important factors include: specific sorts of columns in alignments, such as highly conserved residues or buried hydrophobic residues; the influence of secondary and tertiary structure, such as the alternation of hydrophobic and hydrophilic columns in exposed beta sheet; and expected patterns of insertions and deletions, that tend to alternate with blocks of conserved sequence. Furthermore, the phylogenetic relationships between sequences dictate constraints on the changes that occur in columns and in the patterns of gaps. RNA alignments involve similar knowledge but additionally they are often strongly constrained by a secondary structure model that in many cases has also been inferred from primary sequence data (Chapter 10).

Manual multiple alignment is tedious. Automatic multiple sequence alignment methods are a topic of extensive research in computational biology. In general, an automatic method must have a way to assign a score so that better multiple alignments get better scores. We should carefully distinguish the problem of scoring a multiple alignment from the problem of searching over possible multiple alignments to find the best one.

Type
Chapter
Information
Biological Sequence Analysis
Probabilistic Models of Proteins and Nucleic Acids
, pp. 135 - 160
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×