from Part III - Hydrogel scaffolds for regenerative medicine
Published online by Cambridge University Press: 05 February 2015
Introduction
Hydrogels are an excellent scaffold structure for numerous applications in tissue engineering and regenerative medicine. In particular, they can be used as cell and drug carriers to deliver such therapeutic components directly and locally [1]. Hydrogels can be injected and crosslinked in situ, reducing the need for risky invasive surgeries [2]. In addition, hydrogels can mimic the natural extracellular matrix (ECM) environment, and allow one to control cellular and tissue functions as well as the transport of nutrients and bioactive molecules [3, 4].
Fumarate-based hydrogels are synthetic polymers, allowing flexible control of physical, mechanical, and degradative properties for a desired application [4]. Fumaric acid, the fundamental component of these hydrogel scaffolds, is an unsaturated organic acid that is commonly found in the human body and can be metabolized through the Krebs cycle [5–7]. Polymer chains that contain fumarate units crosslink easily via the unsaturated double bonds and degrade through hydrolysis of the ester bonds in the fumarate group [6–9]. Furthermore, the biodegradable nature of these hydrogels allows neotissue ingrowth and eliminates the need for further surgery to remove the implanted scaffold [5, 10].
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.