Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T20:49:08.966Z Has data issue: false hasContentIssue false

Part II - Physiography of the Highest Barrier on Earth

Published online by Cambridge University Press:  20 April 2017

Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Tsewang Namgail
Affiliation:
Snow Leopard Conservancy India Trust
Get access
Type
Chapter
Information
Bird Migration across the Himalayas
Wetland Functioning amidst Mountains and Glaciers
, pp. 143 - 216
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Gansser, A. (1964). Geology of the Himalayas. Chichester: John Wiley & Sons.Google Scholar
Green, O.R., Searle, M.P., Corfield, R.I. & Corfield, R.M. (2008). Cretaceous-Tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (Northwest India). Journal of Geology, 116, 331353.CrossRefGoogle Scholar
Licht, A., Van Cappelle, M., Abels, H.A., et al. (2014). Asian monsoons in a late Eocene greenhouse world. Nature Geosciences, 513, 501506.Google Scholar
Searle, M.P. (2010). Low-angle normal faults in the compressional Himalayan orogeny: evidence from the Annapurna-Dhaulagiri Himalaya, Nepal. Geosphere, 6, 296315.Google Scholar
Searle, M. (2013). Colliding Continents: A Geological Exploration of the Himalaya, Karakoram and Tibet. Oxford: Oxford University Press.Google Scholar
Searle, M.P., Cottle, J.M., Streule, M.J. & Waters, D.J. (2010). Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. Transactions of the Royal Society of Edinburgh, 100, 219233.CrossRefGoogle Scholar
Searle, M.P., Elliott, J.R., Phillips, R.J. & Chung, S.L. (2011). Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, London, 168, 633672.CrossRefGoogle Scholar
Searle, M.P., Law, R.D. & Jessup, M.J. (2006). Crustal structure, restoration and evolution of the Greater Himalaya in Nepal–South Tibet: implications for channel flow and ductile extrusion of the middle crust. In Law, R.D., Searle, M.P. & Godin, L., eds., Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. London: Geological Society, Special Publication 268, pp.355378.Google Scholar

References

Abramowski, U., Bergau, A., Seebach, D., et al. (2006). Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan) and the Alay-Turkestan range (Kyrgyzstan). Quaternary Science Reviews, 25, 10801096.Google Scholar
Bagla, P. (2009). No sign yet of Himalayan meltdown, Indian report finds. Science, 326, 924925.Google Scholar
Barnard, P.L., Owen, L.A. & Finkel, R.C. (2004a). Style and timing of glacial and paraglacial sedimentation in a monsoonal influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, 165, 199221.CrossRefGoogle Scholar
Barnard, P.L., Owen, L.A., Sharma, M.C. & Finkel, R.C. (2004b). Late Quaternary (Holocene) landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology, 61, 91110.CrossRefGoogle Scholar
Benn, D.I. & Owen, L.A. (1998). The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. Journal of the Geological Society, 155, 353363.Google Scholar
Benn, D.I. & Owen, L.A. (2002). Himalayan glacial sedimentary environments: a framework for reconstructing and dating former glacial extents in high mountain regions. Quaternary International, 97/98, 326.Google Scholar
Benn, D.I., Owen, L.A., Osmaston, H.A., Seltzer, G.O., Porter, S.C. & Mark, B. (2005). Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quaternary International, 138/139, 821.Google Scholar
Bishop, M.P., Bush, A., Copland, L., et al. (2010). Climate change and mountain topographic evolution in the Central Karakoram, Pakistan. Annals of Geography, 100, 122.Google Scholar
Bolch, T., Kulkarni, A., Kääb, A., et al. (2012). The state and fate of Himalayan glaciers. Science, 336, 310314.Google Scholar
Chevalier, M.-L., Hilley, G., Tapponnier, P., et al. (2011). Constraints on the late Quaternary glaciations in Tibet from cosmogenic exposure ages of moraine surfaces. Quaternary Science Reviews, 30, 528554.Google Scholar
Chevalier, M.-L., Ryerson, F.J., Tapponnier, P., et al. (2005). Slip-rate measurements on the Karakoram Fault may imply secular variations in fault motion. Science, 307, 411414.Google Scholar
Cogley, J.G. (2011). Present and future states of Himalaya and Karakoram glaciers. Annals of Glaciology, 52, 6973.Google Scholar
Copland, L., Sylvestre, T., Bishop, M.P., et al. (2011). Expanded and recently increased glacier surging the Karakoram Arctic. Alpine and Antarctic Research, 43, 503516.Google Scholar
Derbyshire, E. (1981). Glacier regime and glacial sediment facies: a hypothetical framework for the Qinghai-Xizang Plateau. In: Proceedings of Symposium on Qinghai-Xizang (Tibet) Plateau, Beijing, China. Geological and Ecological Studies of Qinghai-Xizang Plateau. Vol. 2. Beijing: Science Press, 1981, pp. 16491656.Google Scholar
Derbyshire, E. & Owen, L.A. (1997). Quaternary glacial history of the Karakoram Mountains and northwest Himalayas: a review. Quaternary International, 38/39, 85102.Google Scholar
Dortch, J.M., Owen, L.A. & Caffee, M.W. (2010). Quaternary glaciation in the Nubra and Shyok valley confluence, northernmost Ladakh, India. Quaternary Research, 74, 132144.Google Scholar
Dortch, J.M., Owen, L.A. & Caffee, M.W. (2013). Timing and Climatic Drivers for Glaciation across Semi-arid Western Himalayan-Tibetan Orogen. Quaternary Science Reviews, 78, 168208.CrossRefGoogle Scholar
Duncan, C.C., Klein, A.J., Masek, J.G. & Isacks, B.L. (1998). Late Pleistocene and modern glaciations in Central Nepal from digital elevation data and satellite imagery. Quaternary Research, 49, 241254.CrossRefGoogle Scholar
Ehlers, J. & Gibbard, P. (2004). Quaternary glaciations – extent and chronologies. Part III: South America, Asia, Africa, Australia, Antarctica. Developments. Quaternary Science, 2, 380 pp.Google Scholar
Elhers, J., Gibbard, P. & Hughes, P.D. (2011). Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Science, vol. 15, Elsevier, Amsterdam, 2nd Edition, pp. 929942.Google Scholar
Fielding, E., Isacks, B., Barazangi, M. & Duncan, C. (1994). How flat is Tibet? Geology, 22, 163167.2.3.CO;2>CrossRefGoogle Scholar
Frenzel, B. (1960). Die Vegetations- und Landschaftszonen Nordeurasiens während der letzten Eiszeit und während der Postglazialen Warmezeit. Akademie der Wissenschaften und der Literatur in Mainz, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, 13, 9371099.Google Scholar
Gillespie, A. & Molnar, P. (1995). Asynchronous maximum advances of mountain and continental glaciers. Reviews of Geophysics, 33, 311364.Google Scholar
Hedrick, K.A., Seong, Y.B., Owen, L.A., Caffee, M.C. & Dietsch, C. (2011). Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Transhimalaya of Northern India. Quaternary International, 236, 2133.Google Scholar
Hewitt, K. (1999). Quaternary moraines vs catastrophic avalanches in the Karakoram Himalaya, northern Pakistan. Quaternary Research, 51, 220237.Google Scholar
Hewitt, K., Gosse, J. & Clague, J.J. (2011). Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. Geological Society of America Bulletin, 123, 18361850.Google Scholar
Heyman, J., Hattestrand, C. & Stroeven, V. (2008). Glacial geomorphology of the Bayan Har sector of the NE Tibetan plateau. Journal of Maps, 2008, 4262.CrossRefGoogle Scholar
Intergovernmental Panel on Climate Change (2007). Climate Change 2007: Impacts, Adaptations and Vulnerability. Parry, M., Canziani, O., Palutikof, J., Van der Linden, P. & Hanson, C. eds., Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, p. 976.Google Scholar
Kamp, U. & Owen, L.A. (2011). Late Quaternary Glaciation of Northern Pakistan. In Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Science, vol. 15, Amsterdam: Elsevier, pp. 909927.Google Scholar
Klute, F. (1930). Verschiebung der Klimagebiete der letzten Eiszeit. Petermanns Mitteilungen Ergänzungsheft, 209, 166182.Google Scholar
Kuhle, M. (1985). Ein subtropisches Inlandeis als Eiszeitauslöser, Südtibet un Mt. Everest expedition 1984. Georgia Augusta, Nachrichten aus der Universität Gottingen, May, 117.Google Scholar
Kuhle, M. (1987). The Problem of a Pleistocene Inland Glaciation of the Northeastern Qinghai-Xizang Plateau. In Hövermann, J & Wang, W., eds., Reports of the Qinghai- Xizang (Tibet) Plateau. Beijing: Science Press, pp. 250315.Google Scholar
Kuhle, M. (1988). Geomorphological findings on the build-up of Pleistocene glaciation in southern Tibet and on the problem of inland ice. GeoJournal, 17, 457512.CrossRefGoogle Scholar
Kuhle, M. (1991). Observations supporting the Pleistocene inland glaciation of High Asia. GeoJournal, 25, 131231.Google Scholar
Kuhle, M. (1995). Glacial isostatic uplift of Tibet as a consequence of a former ice sheet. GeoJournal, 37, 431449.Google Scholar
Lee, S.Y., Seong, Y.B., Owen, L.A., et al. (2014). Late Quaternary glaciation in the Nun-Kun massif, northwestern India. Boreas, 43, 6789.Google Scholar
Li, B., Li, J. & Cui, Z. (1991). Quaternary glacial distribution map of Qinghai-Xizang (Tibet) Plateau 1:3,000,000. Shi, Y., Quaternary Glacier, and Environment Research Center, Lanzhou University.Google Scholar
Lowe, J. & Walker, M. (2015). Reconstructing Quaternary Environments. London: Routledge, 3rd edition, p. 538.Google Scholar
Mayer, C., Lambrecht, A., Belò, M., Smiraglia, C. & Diolaiuti, G. (2006). Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan. Annals of Glaciology, 43, 123131.Google Scholar
Mix, A.C., Bard, E. & Schneider, R. (2001). Environmental processes of the ice age: land, ocean, glaciers (EPILOG). Quaternary Science Reviews, 20, 627657.Google Scholar
Morén, B., Heyman, J. & Stroeven, A.P. (2011). Glacial geomorphology of the central Tibetan Plateau. Journal of Maps, 2011, 115125.Google Scholar
Murari, M.K., Owen, L.A., Dortch, J.M., et al. (2014). Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan-Tibetan orogen. Quaternary Science Reviews, 88C, 159182.Google Scholar
National Academy (Committee on Himalayan Glaciers, Hydrology, Climate Change, and Implications for Water Security) (2012). Himalayan Glaciers: Climate Change, Water Resources, and Water Security. Washington, DC: The National Academies Press, p. 156.Google Scholar
NGRIP members (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147151.Google Scholar
Owen, L.A. (2010) Landscape development of the Himalayan-Tibetan orogen: a review. Special Publication of the Geological Society of London, 338, 389407.Google Scholar
Owen, L.A. & Benn, D.I. (2005). Equilibrium-line altitudes of the Last Glacial Maximum for the Himalaya and Tibet: an assessment and evaluation of results. Quaternary International, 138/139, 5578.Google Scholar
Owen, L.A., Caffee, M., Bovard, K., Finkel, R.C. & Sharma, M. (2006). Terrestrial cosmogenic surface exposure dating of the oldest glacial successions in the Himalayan orogen. Geological Society of America Bulletin, 118, 383392.Google Scholar
Owen, L.A., Caffee, M.W., Finkel, R.C. & Seong, B. S. (2008). Quaternary glaciation of the Himalayan–Tibetan orogen. Journal of Quaternary Science, 23, 513532.CrossRefGoogle Scholar
Owen, L.A. & Dortch, J.M. (2014) Quaternary glaciation of the Himalayan-Tibetan orogen. Quaternary Science Reviews, 88, 1454.Google Scholar
Owen, L.A., Finkel, R.C., Caffee, M.W. & Gualtieri, L. (2002a). Timing of multiple glaciations during the Late Quaternary in the Hunza Valley, Karakoram Mountains, northern Pakistan: defined by cosmogenic radionuclide dating of moraines. Geological Society of America Bulletin, 114, 593604.Google Scholar
Owen, L.A., Gualtieri, L., Finkel, R.C., Caffee, M.W., Benn, D.I. & Sharma, M.C. (2001). Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern India: defining the timing of Late Quaternary glaciation. Journal of Quaternary Science, 16, 555563.CrossRefGoogle Scholar
Owen, L.A., Kamp, U., Spencer, J.Q. & Haserodt, K. (2002b). Timing and style of Late Quaternary glaciation in the eastern Hindu Kush, Chitral, northern Pakistan: a review and revision of the glacial chronology based on new optically stimulated luminescence dating. Quaternary International, 97–98, 4156.Google Scholar
Owen, L.A., Robinson, R., Benn, D.I., et al. (2009). Quaternary glaciation of Mount Everest. Quaternary Science Reviews, 28, 14121433.Google Scholar
Owen, L.A., White, B., Rendell, H. & Derbyshire, E. (1992). Loessic silts in the western Himalayas: their sedimentology, genesis and age. Catena, 19, 493509.Google Scholar
Owen, L.A., Yi, C., Finkel, R.C. & Davis, N. (2010). Quaternary glaciation of Gurla Mandata (Naimon’anyi). Quaternary Science Reviews, 29, 18171830.Google Scholar
Phillips, W.M., Sloan, V.F., Shroder, J.F. Jr., Sharma, P., Clarke, M.L. & Rendell, H.M. (2000). Asynchronous glaciation at Nanga Parbat, northwestern Himalaya Mountains, Pakistan. Geology, 28, 431434.Google Scholar
Porter, S.C. (1970). Quaternary glacial record in the Swat Kohistan, West Pakistan. Geological Society of America Bulletin, 81, 14211446.Google Scholar
Richards, B.W.M., Owen, L.A. & Rhodes, E.J. (2000). Timing of Late Quaternary glaciations in the Himalayas of northern Pakistan. Journal of Quaternary Science, 15, 283297.Google Scholar
Röhringer, I., Zech, R., Abramowski, U., et al. (2012). The late Pleistocene glaciation in the Bogchigir Valleys (Pamir, Tajikistan) based on 10Be surface exposure dating. Quaternary Research, 78, 590597.Google Scholar
Röthlisberger, F. & Geyh, M.A. (1985a). Gletscherschwankungen der letzten 10.000 Jahre – Ein Verleich zwischen Nord- und Südhemisphäre (Alpen, Himalaya, Alaska, Südamerika, Neuseeland). Aarau: Verlag Sauerländer.Google Scholar
Röthlisberger, F. & Geyh, M. (1985b). Glacier variations in Himalayas and Karakoram. Zeitschrift für Gletscherkunde und Glazialgeologie, 21, 237249.Google Scholar
Rutter, N.W. (1995). Problematic ice sheets. Quaternary International, 28, 1937.Google Scholar
Schäfer, J.M., Tschudi, S., Zhao, Z., et al. (2002). The limited influence of glaciations in Tibet on global climate over the past 170000 yr. Earth and Planetary Science Letters, 194, 287297.Google Scholar
Seong, Y.B., Owen, L.A., Bishop, M.P., et al. (2007). Quaternary glacial history of the central Karakoram. Quaternary Science Reviews, 26, 33843405.Google Scholar
Seong, Y.B., Owen, L.A., Bishop, M.P., et al. (2008). Reply to comments by Kuhle, Matthias on Seong, Y.B., Owen, L.A., Bishop, M.P., Bush, A., et al. 2007. Quaternary glacial history of the central Karakoram. Quaternary Science Reviews, 27, 16561658.Google Scholar
Seong, Y.B., Owen, L.A., Yi, C. & Finkel, R.C. (2009). Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geological Society of America, Bulletin, 121, 348365.CrossRefGoogle Scholar
Sharma, M.C. & Owen, L.A. (1996). Quaternary glacial history of NW Garhwal Himalayas. Quaternary Science Reviews, 15, 335365.Google Scholar
Shi, Y. (1992). Glaciers and glacial geomorphology in China. Zeitschrift für Geomorphologie, 86, 1935.Google Scholar
Shi, Y., Zheng, B. & Li, S. (1992). Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: a controversy to M.Kuhle’s ice sheet hypothesis. Zeitschrift für Geomorphologie, 84, 1935.Google Scholar
Shiraiwa, T. & Watanabe, T. (1991). Late Quaternary glacial fluctuations in the Langtang Valley, Nepal Himalaya, reconstructed by relative dating methods. Arctic and Alpine Research, 23, 404416.Google Scholar
Solomina, O., Bradley, R.S., Hodgson, D.A., et al. (2015). Holocene glacier fluctuations. Invited review. Quaternary Science Reviews, 111, 934.Google Scholar
Spencer, J.Q. & Owen, L.A. (2004). Optically stimulated luminescence dating of Late Quaternary glaciogenic sediments in the upper Hunza valley: validating the timing of glaciation and assessing dating methods. Quaternary Sciences Reviews, 23, 175191.Google Scholar
Taylor, P.J. & Mitchell, W.A. (2000). Late Quaternary glacial history of the Zanskar Range, north-west Indian Himalaya. Quaternary International, 65/66, 81100.Google Scholar
Thackray, G.D., Owen, L.A. & Yi, C. (2008). Timing and nature of late Quaternary mountain glaciation. Journal of Quaternary Science, 23, 503508.Google Scholar
Watanabe, T., Shiraiwa, T. & Ono, Y. (1989). Distribution of periglacial landforms in the Langtang Valley, Nepal Himalaya. Bulletin of Glacier Research, 7, 209220.Google Scholar
Yi, C., Chen, H., Yang, J., et al. (2008). Review of Holocene glacial chronologies based on radiocarbon dating in Tibet and its surrounding mountains. Journal of Quaternary Science, 23, 533558.Google Scholar
Zech, R., Abramowski, U., Glaser, B., Sosin, P., Kubik, P.W. & Zech, W. (2005). Late Quaternary glacier and climate history of the Pamir Mountains derived from cosmogenic 10Be exposure ages. Quaternary Research, 64, 212220.Google Scholar
Zech, W., Glaser, B., Sosin, P., Kubik, P.W. & Zech, W. (2003). Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir Mountains (Tajikistan) from 10Be surface exposure dating. Earth and Planetary Science Letters, 237, 453461.Google Scholar
Zheng, B. & Rutter, N. (1998). On the problem of Quaternary glaciations, and the extent and patterns of Pleistocene ice cover in the Qinghai-Xizang (Tibet) plateau. Quaternary International, 45/46, 109122.Google Scholar
Zhou, S., Li, J., Zhao, J., Wang, J. & Zheng, J. (2011). Quaternary glaciations: extent and chronology in China. In Elhers, J., Gibbard, P. & Hughes, P.D., eds., Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Science, vol. 15, Amsterdam: Elsevier, 2nd Edition, pp. 9811002.Google Scholar

References

Alford, D. & Armstrong, R. (2010). The role of glaciers in stream flow from the Nepal Himalaya. The Cryosphere Discussion, 4, 469494.Google Scholar
Amidon, W.H., Bookhagen, B., Avouac, J.P., Smith, T. & Rood, D. (2013). Late Pleistocene glacial advances in the western Tibet interior. Earth and Planetary Science Letters, 381, 210221.CrossRefGoogle Scholar
Andermann, C., Bonnet, S. & Gloaguen, R. (2011). Evaluation of precipitation data sets along the Himalayan front. Geochemistry Geophysics Geosystems, 12, 16.Google Scholar
Archer, D.R. & Fowler, H.J. (2004). Spatial and temporal variations in precipitation in the upper Indus basin, global teleconnections and hydrological implications. Hydrology and Earth System Sciences, 8, 4761.Google Scholar
Arendt, A., Bliss, A., Bolch, T. & Cogley, J.G. (2012). Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 3.2, Edited. Global Land Ice Measurements from Space, Boulder, CO: Digital Media.Google Scholar
Baraer, M., Mark, B.G., McKenzie, J.M., et al. (2012). Glacier recession and water resources in Peru’s Cordillera Blanca. Journal of Glaciology, 58, 134150.Google Scholar
Barnett, T.P., Adam, J.C. & Lettenmaier, D.P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309.Google Scholar
Boers, N., Bookhagen, B., Marengo, J., Marwan, N., von Storch, J.-S. & Kurths, J. (2015). Extreme rainfall of the South American monsoon system: a dataset comparison using complex networks. Journal of Climate, 28, 10311056.Google Scholar
Boers, N., Rheinwalt, A., Bookhagen, B., et al. (2014). The South American rainfall dipole: a complex network analysis of extreme events. Geophysical Research Letters, 41, 73977405.Google Scholar
Bolch, T., Kulkarni, A., Kaab, A., et al. (2012). The state and fate of Himalayan glaciers. Science, 336, 310314.Google Scholar
Bookhagen, B. (2010). Appearance of extreme monsoonal rainfall events and their impact on erosion in the Himalaya. Geomatics Natural Hazards & Risk, 1, 3750.Google Scholar
Bookhagen, B. & Burbank, D.W. (2006). Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters, 33, L08405, 15.Google Scholar
Bookhagen, B. & Burbank, D.W. (2010). Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research-Earth Surface, 115, F03019, 115.Google Scholar
Bookhagen, B. & Strecker, M.R. (2008). Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophysical Research Letters, 35, L06403, 16.Google Scholar
Bookhagen, B. & Strecker, M.R. (2010). Modern Andean Rainfall Variation during ENSO Cycles and Its Impact on the Amazon Basin. Neogene History of Western Amazonia and Its Significance for Modern Diversity. Hoorn, H.V.C. & Wesselingh, F.. Oxford: Blackwell Publishing.Google Scholar
Bookhagen, B. & Strecker, M.R. (2012). Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: examples from the southern Central Andes. Earth and Planetary Science Letters, 327, 97110.Google Scholar
Bookhagen, B., Thiede, R.C. & Strecker, M.R. (2005). Abnormal monsoon years and their control on erosion and sediment flux in the high, and northwest Himalaya. Earth and Planetary Science Letters, 231, 131146.Google Scholar
Bunn, S.E. & Arthington, A.H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30, 492507.Google Scholar
Cannon, F., Carvalho, L.V., Jones, C. & Bookhagen, B. (2015). Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Climate Dynamics, 44, 441455.Google Scholar
Carvalho, L.M.V., Jones, C., Posadas, A.N.D., Quiroz, R., Bookhagen, B. & Liebmann, B. (2012). Precipitation characteristics of the South American monsoon system derived from multiple datasets. Journal of Climate, 25, 46004620.Google Scholar
Clemens, S., Prell, W., Murray, D., Shimmield, G. & Weedon, G. (1991). Forcing mechanisms of the Indian-Ocean Monsoon. Nature, 353, 720725.Google Scholar
Draganits, E., Gier, S., Hofmann, C.-C., Janda, C., Bookhagen, B. & Grasemann, B. (2014). Holocene versus modern catchment erosion rates at 300 mW Baspa II hydroelectric power plant (India, NW Himalaya). Journal of Asian Earth Sciences, 90, 157172.Google Scholar
Ficke, A.D., Myrick, C.A. & Hansen, L.J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17, 581613.Google Scholar
Gardelle, J., Berthier, E. & Arnaud, Y. (2012). Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience, 5, 322325.Google Scholar
Gardelle, J., Berthier, E., Arnaud, Y. & Kaab, A. (2013). Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. The Cryosphere, 7, 12631286.Google Scholar
Gurung, D.R., Kulkarni, A.V., Giriraj, A., Aung, K.S., Shrestha, B. & Srinivasan, J. (2011). Changes in seasonal snow cover in Hindu Kush-Himalayan region. The Cryosphere Discussion, 5, 755777.Google Scholar
Hewitt, K. (2005). The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’ Karakoram Himalaya. Mountain Research and Development, 25, 332340.Google Scholar
Hewitt, K. (2014). Glaciers of the Karakoram Himalaya. Dordrecht: Springer.Google Scholar
Hijioka, Y., Lin, E., Pereira, J.J., et al. (2014). Asia. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Barros, V.R., Field, C.B., Dokken, M.D. D.J. et al. Cambridge, UK and New York: Cambridge University Press, pp. 13271370.Google Scholar
Huffman, G.J., Adler, R.F., Bolvin, D.T., et al. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 3855.Google Scholar
Immerzeel, W.W., Droogers, P., de Jong, S.M. & Bierkens, M.F.P. (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing of Environment, 113, 4049.Google Scholar
Immerzeel, W.W., Pellicciotti, F. & Bierkens, M.F.P. (2013). Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience, 6, 742745.Google Scholar
Immerzeel, W.W., Van Beek, L.P.H. & Bierkens, M.F.P. (2010). Climate change will affect the Asian Water Towers. Science, 328, 13821385.Google Scholar
IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press.Google Scholar
Jeelani, G., Feddema, J.J., Van der Veen, C.J. & Stearns, L. (2012). Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate. Water Resources Research, 48, W12508, 116.Google Scholar
Johnston, C.A. (1991). Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Critical Reviews in Environmental Control, 21, 491565.Google Scholar
Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495498.Google Scholar
Kapnick, S.B., Delworth, T.L., Ashfaq, M., Malyshev, S. & Milly, P.C.D. (2014). Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nature Geoscience, 7, 834840.Google Scholar
Kargel, J.S., Cogley, J.G., Leonard, G.J., Haritashya, U. & Byers, A. (2011). Himalayan glaciers: the big picture is a montage. Proceedings of the National Academy of Sciences of the United States of America, 108, 1470914710.Google Scholar
Kaser, G. (1999). A review of the modern fluctuations of tropical glaciers. Global and Planetary Change, 22, 93103.Google Scholar
Kaser, G., Grosshauser, M. & Marzeion, B. (2010). Contribution potential of glaciers to water availability in different climate regimes. Proceedings of the National Academy of Sciences of the United States of America, 107, 2022320227.Google Scholar
Lang, T.J. & Barros, A.P. (2004). Winter storms in the central Himalayas. Journal of the Meteorological Society of Japan, 82, 829844.Google Scholar
Oerlemans, J. (2005). Extracting a climate signal from 169 glacier records. Science, 308, 675677.Google Scholar
Palazzi, E., Von Hardenberg, J. & Provenzale, A. (2013). Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. Journal of Geophysical Research-Atmospheres, 118, 85100.Google Scholar
Price, M.F. & Weingartner, R. (2012). Global change and the world’s mountains. Mountain Research and Development, 32(S1), S3S6.Google Scholar
Pulliainen, J. & Hallikainen, M. (2001). Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sensing of Environment, 75, 7685.Google Scholar
Putkonen, J.K. (2004). Continuous snow and rain data at 500 to 4400 m altitude near Annapurna, Nepal, 1999–2001. Arctic Antarctic and Alpine Research, 36, 244248.Google Scholar
Quincey, D.J., Richardson, S.D., Luckman, A., et al. (2007). Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global and Planetary Change, 56, 137152.Google Scholar
Radic, V. & Hock, R. (2011). Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geoscience, 4, 9194.Google Scholar
Richardson, S.D. & Reynolds, J.M. (2000). An overview of glacial hazards in the Himalayas. Quaternary International, 65, 3147.Google Scholar
Scherler, D., Bookhagen, B. & Strecker, M.R. (2011a). Hillslope-glacier coupling: the interplay of topography and glacial dynamics in High Asia. Journal of Geophysical Research-Earth Surface, 116.Google Scholar
Scherler, D., Bookhagen, B. & Strecker, M.R. (2011b). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4, 156159.Google Scholar
Scherler, D., Bookhagen, B., Strecker, M.R., Von Blanckenburg, F. & Rood, D. (2010). Timing and extent of late Quaternary glaciation in the western Himalaya constrained by Be-10 moraine dating in Garhwal, India. Quaternary Science Reviews, 29, 815831.Google Scholar
Smith, T.T., Bookhagen, B. & Cannon, F. (2014). Improving semi-automated glacial mapping with a multi-method approach: areal changes in Central Asia. The Cryosphere Discussion, 8, 54335483.Google Scholar
Smith, T.T. & Bookhagen, B. (2016): Assessing uncertainty and sensor biases in passive microwave data across High Mountain Asia. Remote Sensing of Environment, 181, 174185.Google Scholar
Sultana, H., Ali, N., Iqbal, M.M. & Khan, A.M. (2009). Vulnerability and adaptability of wheat production in different climatic zones of Pakistan under climate change scenarios. Climatic Change, 94, 123142.Google Scholar
Tahir, A.A., Chevallier, P., Arnaud, Y. & Ahmad, B. (2011). Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, northern Pakistan. Hydrology and Earth System Sciences, 15, 22752290.Google Scholar
Tedesco, M., Derksen, C., Deems, J.S. & Foster, J.L. (2015). Remote Sensing of Snow Depth and Snow Water Equivalent. Remote Sensing of the Cryosphere (ed. Tedesco, M.). John Wiley & Sons Ltd, Chichester, UK, pp. 7398.Google Scholar
Tedesco, M., Pulliainen, J., Takala, M., Hallikainen, M. & Pampaloni, P. (2004). Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sensing of Environment, 90, 7685.Google Scholar
Terzago, S., Von Hardenberg, J., Palazzi, E. & Provenzale, A. (2014). Snowpack changes in the Hindu Kush–Karakoram–Himalaya from CMIP5 global climate models. Journal of Hydrometeorology, 15, 22932313.Google Scholar
Tockner, K. & Stanford, J.A. (2002). Riverine flood plains: present state and future trends. Environmental Conservation, 29, 308330.Google Scholar
Urrutia, R. & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research-Atmospheres, 114, D02108, 115.Google Scholar
Valentin, C., Agus, F., Alamban, R., et al. (2008). Runoff and sediment losses from 27 upland catchments in Southeast Asia: impact of rapid land use changes and conservation practices. Agriculture Ecosystems & Environment, 128, 225238.Google Scholar
Vaughan, D.G., Comiso, J.C., Allison, I., et al. (2013). Observations: Cryosphere. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press.Google Scholar
Webster, P.J., Magana, V.O., Palmer, T.N., et al. (1998). Monsoons: processes, predictability, and the prospects for prediction. Journal of Geophysical Research-Oceans, 103(C7), 1445114510.Google Scholar
Winiger, M., Gumpert, M. & Yamout, H. (2005). Karakorum-Hindukush-western Himalaya: assessing high-altitude water resources. Hydrological Processes, 19, 23292338.Google Scholar
Wulf, H., Bookhagen, B. & Scherler, D. (2010). Seasonal precipitation gradients and their impact on fluvial sediment flux in the northwest Himalaya. Geomorphology, 118, 1321.Google Scholar
Wulf, H., Bookhagen, B. & Scherler, D. (2012). Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya. Hydrology and Earth System Sciences, 16, 21932217.Google Scholar

References

Anonymous (2002). Forest and vegetation types of Nepal. Department of Forests, Govt. of Nepal. TISC. Document Series No. 105.Google Scholar
Aswal, B.S. & Mehrotra, B.N. (1994). Flora of Lahaul & Spiti: A Cold Desert in North West Himalaya. Bishen Singh Mahendra Pal Singh, Dehra Dun.Google Scholar
Bacha, M.S. (1992). Waterfowl Census in Kashmir Wetlands. Department of Wildlife Protection Jammu & Kashmir Government.Google Scholar
Bacha, M.S. (1994). Waterfowl Census in Kashmir Wetlands. Department of Wildlife Protection Jammu & Kashmir Government.Google Scholar
Birdlife International (2009). Important Bird Areas in China: Key Sites for Conservation. Cambridge: BirdLife International.Google Scholar
Braun-Blanquet, J. (1928). Pflanzensoziologie. Grundzüge der Vegetationskunde. Wien: Springer.Google Scholar
Braun-Blanquet, J. (1932). Plant Sociology: The Study of Plant Communities. New York: McGraw-Hill.Google Scholar
Champion, H.G. (1923). The interaction between Pinus longifolia (Chir) and its habitat in the Kumaon Hills. Indian Forester, 49, 405415.Google Scholar
Champion, H.G. (1936). A preliminary survey of forest types of India and Burma. Indian Forester, 63, 613615.Google Scholar
Champion, H.G. & Seth, S.K. (1968). A Revised Survey of the Forest Types of India. Manager of Publications, Delhi.Google Scholar
Choudhury, A. (2002). Globally threatened birds in Dibru-Saikhowa Biosphere Reserve. Himalayan Biosphere Reserves, 4, 4954.Google Scholar
Choudhury, A. (2006). Birds of Dibru-Saikhowa National Park and Biosphere Reserve, Assam, India. Indian Birds, 2, 95105.Google Scholar
Datta, S. (1996). Bird watching at Dibru-Saikhowa Wildlife Sanctuary. Newsletter for Birdwatchers, 36, 5153.Google Scholar
Dickore, W.B. & Miehe, G. (2002). Cold spots in the highest mountains of the world – Diversity patterns and gradients in the flora of the Karakorum. In Körner, Ch. & Spehn, E.M., eds., Mountain Biodiversity: A Global Assessment. London: Parthenon Publishing, pp. 129147.Google Scholar
Dickore, W.B. & Nusser, M. (2002). Flora of Nanga Parbat (NW Himalaya, Pakistan): an annotated inventory of vascular plants with remark on vegetation dynamics. Englera, 19, 1253.Google Scholar
Dudgeon, W. & Kenoyer, L.A. (1925). The ecology of Tehri-Garhwal. A contribution to the ecology of western Himalayas. Journal of the Indian Botanical Society, 4, 233285.Google Scholar
Hartmann, H. (2009). A Summarizing Report on the Phytosociological and Floristic Explorations (1976–1997) in Ladakh, India. Switzerland: Druck.Google Scholar
Islam, M.Z. & Rahmani, A.R. (2004). Important Bird Areas in India: Priority Sites for Conservation. Indian Bird Conservation Network. Bombay Natural History Society and Birdlife International U.K., pp. xviii+1133.Google Scholar
Jindal, R., Singh, H. & Sharma, C. (2013). Avian fauna of Pong Dam Wetland – a Ramsar site. International Journal of Environmental Sciences, 3, 22362250.Google Scholar
Kala, C.P., Rawat, G.S. & Uniyal, V.K. (1998). Ecology and Conservation of the Valley of Flowers National Park, Garhwal Himalaya. RR-98/003. Dehra Dun: Wildlife Institute of India.Google Scholar
Kenoyer, L.A. (1921). Forest formations and successions in the Sat Tal Valley, Kumaon, Himalayas. Journal of the Indian Botanical Society, 2, 236258.Google Scholar
Mahabal, A. (2005). Aves. In Fauna of Western Himalaya. (Ed.: The Director). Kolkata: Zoological Survey of India, pp. 275339.Google Scholar
Mani, M.S. (1978). Ecology & Phytogeography of High-Altitude Plants of the Northwest Himalaya. London: Chapman & Hall.Google Scholar
Miehe, G. (1997). Alpine vegetation types of the Central Himalaya. In Wielgolaski, F.E., ed., Polar and Alpine Tundra Ecosystems of the World 3, pp. 161184.Google Scholar
Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M. & Gascon, C. (2011). Global biodiversity conservation: the critical role of hotspots. In Biodiversity Hotspots. Heidelberg: Springer Berlin, pp. 322.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853858.Google Scholar
Namgail, T., Rawat, G.S., Mishra, C.D., Van Wieren, S.E. & Prins, H.H.T. (2012). Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas. Journal of Plant Research, 125, 93101.Google Scholar
Naqash, R.Y. & Sharma, L.K. (2011). Management Plan (2011–2016) Dachigam National Park. www.jkwildlife.com/pdf/pub/final_management_plan_DNP_06082011.pdf.Google Scholar
Padmawathe, R., Qureshi, Q. & Rawat, G.S. (2004). Effects of selective logging on vascular epiphyte diversity in a moist lowland forest of Eastern Himalaya, India. Biological Conservation, 119, 8192.Google Scholar
Pandey, S. (1993). Changes in waterbird diversity due to the construction of Pong Dam Reservoir, Himachal Pradesh, India. Biological Conservation, 66, 125130.Google Scholar
Pfister, O. (2004). Birding hotspot: Ladakh. Oriental Bird Club Newsletter, 2004, 12.Google Scholar
Prins, H.H.T. & Van Wieren, S.E. (2004). Number, population structure and habitat use of Bar-headed Geese Anser indicus in Ladakh (India) during the brood-rearing period. Acta Zoologica Sinica, 50, 738744.Google Scholar
Puri, G.S., Gupta, R.K., Meher-Homji, V.M. & Puri, S. (1989). Forest Ecology. New Delhi: Oxford and IBH Publication Co. Pvt. Ltd., Vol. II.Google Scholar
Rau, M.A. (1975). High Altitude Flowering Plants of West Himalaya. Howrah: Botanical Survey of India.Google Scholar
Rawat, G. S. (1998). Temperate and alpine grasslands of the Himalaya: Ecology and Conservation. Parks, 8, 2736.Google Scholar
Rawat, G.S. (2005a). Alpine Meadows of Uttaranchal: Ecology, Landuse and Status of Medicinal and Aromatic Plants. Dehra Dun: Bishen Singh Mahendrapal Singh.Google Scholar
Rawat, G.S. (2005b). Vegetation dynamics and management of Rhinoceros habitat in Duars of West Bengal: an ecological review. National Academy Science Letters, 28, 179186.Google Scholar
Rawat, G.S. (2005c). Terrestrial vegetation and ecosystem coverage within India Protected Areas. National Academy Science Letters, 28, 241250.Google Scholar
Rawat, G.S. (2007). Alpine Vegetation of Western Himalaya: Patterns of Species Diversity, Community Structure and Aspects of Conservation. D.Sc. Thesis. Kumaun University, Nainital.Google Scholar
Rawat, G.S. & Adhikari, B.S. (2005). Floristics and distribution of plant communities across moisture and topographic gradients in Tso Kar Basin, Changthang Plateau, Eastern Ladakh. Arctic, Antarctic, and Alpine Research, 37, 539544.Google Scholar
Samant, S.S. & Joshi, H.C. (2005). Plant diversity and conservation status of Nanda Devi National Park and comparison with highland national parks of the Indian Himalayan region. The International Journal of Biodiversity Science and Management, 1, 6573.Google Scholar
Samant, S.S., Dhar, U. & Rawal, R.S. (2005). Diversity, endemism and socio-economic values of the Indian Himalayan Papaveraceae and Fumariaceae. Journal of the Indian Botanical Society, 84, 3344.Google Scholar
Schweinfurth, U. (1957). Die horizontale und vertikale Verbreitung der Vegetation im Himalaya. Bonner Geographische Abhandlungen, 20, 1375.Google Scholar
Shah, M., Jan, U., Bhat, B.A. & Ahanger, F.A. (2011). Causes of decline of critically endangered Hangul deer in Dachigam National Park, Kashmir (India): a review. International Journal of Biodiversity and Conservation, 3, 735738.Google Scholar
Shah, M.G., Jan, U. & Wani, M.R. (2013). Study on distribution of avian fauna of Dachigam National Park, Kashmir, India. International Journal of Current Research, 5, 266270.Google Scholar
Singh, J.S. & Singh, S.P. (1987). Forest vegetation of the Himalaya. Botanical Review, 52, 80192.Google Scholar
Singh, J.S. & Singh, S.P. (1992). Forests of Himalaya: Structure, Functioning and Impact of Man. Nainital: Gyanodaya Prakashan.Google Scholar
Singh, J.S., Rawat, Y.S. & Chaturvedi, O.P. (1984). Replacement of oak forest with pine in the Himalaya affects the nitrogen cycle. Nature, 311, 5456.Google Scholar
Singh, P. (1987). Rangeland Reconstruction and Management for Optimizing Biomass Production. Jhansi: Indian Grassland and Fodder Research Institute.Google Scholar
Srinivasan, U., Dalvi, S., Naniwadekar, R., Anand, M.O. & Datta, A. (2010). The birds of Namdapha National Park and surrounding areas: recent significant records and a checklist of the species. Forktail, 26, 92116.Google Scholar
Stainton, J.D.A. (1972). Forests of Nepal. London: John Murray.Google Scholar
Sunder, K.G. & Kittur, S.A. (2012). Methodological, temporal and spatial factors affecting modeled occupancy of resident birds in the perennially cultivated landscape of Uttar Pradesh, India. Landscape Ecology, 27, 5971.Google Scholar
Takhtajan, A. (1969). Flowering Plants: Origin and Dispersal. Washington, DC: Smithsonian Institution Press.Google Scholar
Wetlands International. (2007). Comprehensive Management Action Plan for Wular Lake, Kashmir. Final Report submitted to the Department of Wildlife Protection, Govt. of Jammu & Kashmir, India.Google Scholar
Yang, Y.H., Fang, J.Y., Pan, Y.D. & Ji., C.J. (2009). Aboveground biomass in Tibetan Rangelands. Journal of Arid Environments, 73, 9195.Google Scholar
Zobel, D.B. & Singh, S.P. (1997). Himalayan forests and ecological generalization: forests in the Himalayan differ significantly from both tropical and temperate forests. BioScience, 47, 735744.Google Scholar
Zutshi, D.P. (1975). Associations of macrophytic vegetation in Kashmir lakes. Vegetatio, 30, 6166.Google Scholar

References

Bagchi, S., Briske, D.D., Bestelmeyer, B.T. & Wu, X.B. (2013b). Assessing resilience and state-transition models with historical records of cheatgrass Bromus tectorum invasion in North American sagebrush-steppe. Journal of Applied Ecology, 50, 11311141.Google Scholar
Bagchi, S., Briske, D.D., Wu, X.B., et al. (2012). Empirical assessment of state-and-transition models with a long-term vegetation record from the Sonoran Desert. Ecological Applications, 22, 400411.Google Scholar
Bagchi, R., Crosby, M., Huntley, B., et al. (2013a). Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Global Change Biology, 19, 12361248.Google Scholar
Bauer, S., Nolet, B.A., Giske, J., et al. (2011). Cues and decision rules in animal migration. In Milner-Gulland, E.J., Fryxell, J.M., and Sinclair, A.R.E., eds., Animal Migration: A Synthesis. Oxford: Oxford University Press, pp. 6887.Google Scholar
Bhutiyani, M.R., Kale, V.S. & Pawar, N.J. (2010). Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. International Journal of Climatology, 30, 535548.Google Scholar
Charmantier, A. & Gienapp, P. (2014). Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evolutionary Applications, 7, 1528.Google Scholar
Cleland, E.E., Chuine, I., Manzel, A., Mooney, H.A. & Schwart, M.D. (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22, 357365.Google Scholar
Hussain, S.A. (1985). Status of the blacknecked crance in Ladakh – problems and prospects. Journal of the Bombay Natural History Society, 82, 449481.Google Scholar
Hussain, S.A. & Pandav, B. (2008). Status of breeding waterbirds in Changthang Cold Desert Sanctuary, Ladakh. Indian Forester, 134, 469480.Google Scholar
Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M.E. (2011). Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biology, 17, 23852399.Google Scholar
Kawamura, K., Akiyama, T., Yokota, H.O., et al. 2005. Comparing MODIS vegetation indices with AVHRR NDVI for monitoring the forage quantity and quality in Inner Mongolia grassland, China. Grassland Science, 51, 3340.Google Scholar
Knox, N.M., Skidmore, A.K., Prins, H.H.T., et al. (2011). Dry season mapping of savanna forage quality, using the hyperspectral Carnegie Airborne Observatory sensor. Remote Sensing of Environment, 115, 14781488.Google Scholar
Knox, N., Skidmore, A.K., Van der Werff, H.M.K., et al. (2013). Differentiation of plant age in grasses using remote sensing. International Journal of Applied Earth Observation and Geoinformation, 24, 5462.Google Scholar
Korner, C. & Basler, D. (2010). Phenology under global warming. Science, 327, 14611462.Google Scholar
Kriegler, F.J., Malila, W.A., Nalepka, R.F. & Richardson, W. (1969). Preprocessing transformations and their effects on multispectral recognition. In Proceedings of the Sixth International Symposium on Remote Sensing of Environment, pp. 97131.Google Scholar
Lange, M. & Doktor, D. (2014). Phenex: auxiliary functions for phenological data analysis. http://cran.r-project.org/web/packages/phenex/index.html.Google Scholar
Mattiuzzi, M., Verbesselt, J., Stevens, F., et al. (2014). MODIS download and processing package. Processing functionalities for (multi-temporal) MODIS grid data. http://r-forge.r-project.org/projects/modis/.Google Scholar
Namgail, T., Mudappa, D. & Raman, T.R.S. (2009). Waterbird numbers at high altitude lakes in eastern Ladakh, India. Wildfowl, 59, 137144.Google Scholar
Namgail, T. & Yom-Tov, Y. (2009). Elevational range and timing of breeding in the birds of Ladakh: the effects of body mass, status and diet. Journal of Ornithology, 150, 505510.Google Scholar
Pettorelli, N., Vik, J.O., Mysterud, A., et al. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20, 503510.Google Scholar
Pfister, O. (2004). Birds and Mammals of Ladakh. New Delhi: Oxford University Press.Google Scholar
QGIS Development Team (2013). QGIS Geographic Information System. www.qgis.org.Google Scholar
R Development Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org.Google Scholar
Ramoelo, A., Skidmore, A.K., Choa, M.A., et al. (2013). Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. Journal of Photogrammetry and Remote Sensing, 82, 2740.Google Scholar
Shekhar, M.S., Chand, H., Kumar, S., Srinivasan, K. & Ganju, A. (2010). Climate-change studies in the western Himalaya. Annals of Glaciology, 51, 105112.Google Scholar
Si, Y., Xin, Q., De Boer, W.F., et al. (2015). Do Arctic breeding geese track or overtake a green wave during spring migration? Scientific Reports, 5, 8749.Google Scholar
Singh, N.J., Bhatnagar, Y.V., Lecomte, N., Fox, J.L. & Yoccoz, N.G. (2013). No longer tracking greenery in high altitudes: pastoral practices of Rupshu nomads and their implications for biodiversity conservation. Pastoralism: Research, Policy and Practice, 3, 16.Google Scholar
Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. (2011). The Anthropocene: conceptual and historical perspectives. Philosophical Transactions of the Royal Society A, 369, 842867.Google Scholar
Stenseth, N.C. & Mysterud, A. (2002). Climate, changing phenology, and other life history traits: nonlinearity and match–mismatch to the environment. Proceedings of the National Academy of Science, USA, 99, 1337913381.Google Scholar
Visser, M.E. & Both, C. (2005). Shifts in phenology due to global climate change: the need for a yardstick. Proceedings of the Royal Society B: Biological Sciences, 272, 25612569.Google Scholar
Visser, M.E., Gienapp, P., Husby, A., et al. (2015). Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. PLoS Biology, 13, e1002120.Google Scholar
Visser, M.E., Van Noordwijk, A.J., Tinbergen, J.M. & Lessels, C.M. (1998). Warmer springs lead to mistimed reproduction in great tits (Parus major). Proceedings of the Royal Society B: Biological Sciences, 265, 18671870.Google Scholar
Vrieling, A., de Leeuw, J. & Said, M.Y. (2013). Length of growing period over Africa: variability and trends from 30 years of NDVI time series. Remote Sensing, 5, 9821000.Google Scholar
Wang, X., Piao, S., Xu, X., et al. (2015). Has the advancing onset of spring vegetation green-up slowed down or changed abruptly over the last three decades? Global Ecology and Biogeography, 24, 621631.Google Scholar
Wang, T., Skidmore, A.K., Zeng, Z., et al. (2010). Migration patterns of two endangered sympatric species from a remote sensing perspective. Photogrammetric Engineering and Remote Sensing, 76, 13431352.Google Scholar
Zeng, Z., Beck, P.S.A., Wang, T., et al. (2010). Plant phenology and solar radiation drive seasonal movements of Golden takin in the Quinling Mountains, China. Journal of Mammalogy, 91, 92100.Google Scholar
Zhang, X., Friedl, M.A., Schaaf, C.B., et al. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84, 471475.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×